timekeeping.c 49.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
/**
122
 * tk_setup_internals - Set up internals to use clocksource clock.
123
 *
124
 * @tk:		The target timekeeper to setup.
125 126 127 128 129 130 131
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
132
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 134
{
	cycle_t interval;
135
	u64 tmp, ntpinterval;
136
	struct clocksource *old_clock;
137

138 139 140 141 142
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
143 144 145 146

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
147
	ntpinterval = tmp;
148 149
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
154
	tk->cycle_interval = interval;
155 156

	/* Go back from cycles -> shifted ns */
157 158 159
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
160
		((u64) interval * clock->mult) >> clock->shift;
161

162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
166
			tk->tkr.xtime_nsec >>= -shift_change;
167
		else
168
			tk->tkr.xtime_nsec <<= shift_change;
169
	}
170
	tk->tkr.shift = clock->shift;
171

172 173
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 176 177 178 179 180

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
181
	tk->tkr.mult = clock->mult;
182
	tk->ntp_err_mult = 0;
183
}
184

185
/* Timekeeper helper functions. */
186 187

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 189
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190
#else
191
static inline u32 arch_gettimeoffset(void) { return 0; }
192 193
#endif

194
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195
{
196
	cycle_t cycle_now, delta;
197
	s64 nsec;
198 199

	/* read clocksource: */
200
	cycle_now = tkr->read(tkr->clock);
201 202

	/* calculate the delta since the last update_wall_time: */
203
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204

205 206
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
207

208
	/* If arch requires, add in get_arch_timeoffset() */
209
	return nsec + arch_gettimeoffset();
210 211
}

212
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213
{
214
	struct clocksource *clock = tk->tkr.clock;
215
	cycle_t cycle_now, delta;
216
	s64 nsec;
217 218

	/* read clocksource: */
219
	cycle_now = tk->tkr.read(clock);
220 221

	/* calculate the delta since the last update_wall_time: */
222
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223

224
	/* convert delta to nanoseconds. */
225
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226

227
	/* If arch requires, add in get_arch_timeoffset() */
228
	return nsec + arch_gettimeoffset();
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 * @tk:		The timekeeper from which we take the update
 * @tkf:	The fast timekeeper to update
 * @tbase:	The time base for the fast timekeeper (mono/raw)
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[0], tk);
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[1], tk);
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
static void update_fast_timekeeper(struct timekeeper *tk)
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
	memcpy(base, &tk->tkr, sizeof(*base));

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

337 338 339 340
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
341
	struct timespec xt, wm;
342

343
	xt = timespec64_to_timespec(tk_xtime(tk));
344 345
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346
			    tk->tkr.cycle_last);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
363 364 365
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366
	tk->ntp_error += remainder << tk->ntp_error_shift;
367
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 369 370 371 372
}
#else
#define old_vsyscall_fixup(tk)
#endif

373 374
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

375
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376
{
377
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 379 380 381 382 383 384
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
385
	struct timekeeper *tk = &tk_core.timekeeper;
386 387 388
	unsigned long flags;
	int ret;

389
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
390
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391
	update_pvclock_gtod(tk, true);
392
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393 394 395 396 397 398 399 400 401 402 403 404 405 406

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

407
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
408
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410 411 412 413 414

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

415 416 417 418 419
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
420 421
	u64 seconds;
	u32 nsec;
422 423 424 425 426 427 428 429

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
430 431 432
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
	tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
433 434 435

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
436 437 438 439 440 441 442 443 444 445

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
	nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
446 447
}

448
/* must hold timekeeper_lock */
449
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
450
{
451
	if (action & TK_CLEAR_NTP) {
452
		tk->ntp_error = 0;
453 454
		ntp_clear();
	}
455

456 457
	tk_update_ktime_data(tk);

458 459 460
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

461
	if (action & TK_MIRROR)
462 463
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
464 465

	update_fast_timekeeper(tk);
466 467
}

468
/**
469
 * timekeeping_forward_now - update clock to the current time
470
 *
471 472 473
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
474
 */
475
static void timekeeping_forward_now(struct timekeeper *tk)
476
{
477
	struct clocksource *clock = tk->tkr.clock;
478
	cycle_t cycle_now, delta;
479
	s64 nsec;
480

481 482 483
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
484

485
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
486

487
	/* If arch requires, add in get_arch_timeoffset() */
488
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
489

490
	tk_normalize_xtime(tk);
491

492
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
493
	timespec64_add_ns(&tk->raw_time, nsec);
494 495 496
}

/**
497
 * __getnstimeofday64 - Returns the time of day in a timespec64.
498 499
 * @ts:		pointer to the timespec to be set
 *
500 501
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
502
 */
503
int __getnstimeofday64(struct timespec64 *ts)
504
{
505
	struct timekeeper *tk = &tk_core.timekeeper;
506
	unsigned long seq;
507
	s64 nsecs = 0;
508 509

	do {
510
		seq = read_seqcount_begin(&tk_core.seq);
511

512
		ts->tv_sec = tk->xtime_sec;
513
		nsecs = timekeeping_get_ns(&tk->tkr);
514

515
	} while (read_seqcount_retry(&tk_core.seq, seq));
516

517
	ts->tv_nsec = 0;
518
	timespec64_add_ns(ts, nsecs);
519 520 521 522 523 524 525 526 527

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
528
EXPORT_SYMBOL(__getnstimeofday64);
529 530

/**
531
 * getnstimeofday64 - Returns the time of day in a timespec64.
532
 * @ts:		pointer to the timespec64 to be set
533
 *
534
 * Returns the time of day in a timespec64 (WARN if suspended).
535
 */
536
void getnstimeofday64(struct timespec64 *ts)
537
{
538
	WARN_ON(__getnstimeofday64(ts));
539
}
540
EXPORT_SYMBOL(getnstimeofday64);
541

542 543
ktime_t ktime_get(void)
{
544
	struct timekeeper *tk = &tk_core.timekeeper;
545
	unsigned int seq;
546 547
	ktime_t base;
	s64 nsecs;
548 549 550 551

	WARN_ON(timekeeping_suspended);

	do {
552
		seq = read_seqcount_begin(&tk_core.seq);
553
		base = tk->tkr.base_mono;
554
		nsecs = timekeeping_get_ns(&tk->tkr);
555

556
	} while (read_seqcount_retry(&tk_core.seq, seq));
557

558
	return ktime_add_ns(base, nsecs);
559 560 561
}
EXPORT_SYMBOL_GPL(ktime_get);

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
579
		base = ktime_add(tk->tkr.base_mono, *offset);
580
		nsecs = timekeeping_get_ns(&tk->tkr);
581 582 583 584 585 586 587 588

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

630
/**
631
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
632 633 634 635
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
636
 * in normalized timespec64 format in the variable pointed to by @ts.
637
 */
638
void ktime_get_ts64(struct timespec64 *ts)
639
{
640
	struct timekeeper *tk = &tk_core.timekeeper;
641
	struct timespec64 tomono;
642
	s64 nsec;
643 644 645 646 647
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
648
		seq = read_seqcount_begin(&tk_core.seq);
649
		ts->tv_sec = tk->xtime_sec;
650
		nsec = timekeeping_get_ns(&tk->tkr);
651
		tomono = tk->wall_to_monotonic;
652

653
	} while (read_seqcount_retry(&tk_core.seq, seq));
654

655 656 657
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
658
}
659
EXPORT_SYMBOL_GPL(ktime_get_ts64);
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

709 710 711 712 713 714 715 716 717 718 719 720 721
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
722
	struct timekeeper *tk = &tk_core.timekeeper;
723 724 725 726 727 728
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
729
		seq = read_seqcount_begin(&tk_core.seq);
730

731
		*ts_raw = timespec64_to_timespec(tk->raw_time);
732
		ts_real->tv_sec = tk->xtime_sec;
733
		ts_real->tv_nsec = 0;
734

735
		nsecs_raw = timekeeping_get_ns_raw(tk);
736
		nsecs_real = timekeeping_get_ns(&tk->tkr);
737

738
	} while (read_seqcount_retry(&tk_core.seq, seq));
739 740 741 742 743 744 745 746

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

747 748 749 750
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
751
 * NOTE: Users should be converted to using getnstimeofday()
752 753 754
 */
void do_gettimeofday(struct timeval *tv)
{
755
	struct timespec64 now;
756

757
	getnstimeofday64(&now);
758 759 760 761
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
762

763
/**
764 765
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
766 767 768
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
769
int do_settimeofday64(const struct timespec64 *ts)
770
{
771
	struct timekeeper *tk = &tk_core.timekeeper;
772
	struct timespec64 ts_delta, xt;
773
	unsigned long flags;
774

775
	if (!timespec64_valid_strict(ts))
776 777
		return -EINVAL;

778
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
779
	write_seqcount_begin(&tk_core.seq);
780

781
	timekeeping_forward_now(tk);
782

783
	xt = tk_xtime(tk);
784 785
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
786

787
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
788

789
	tk_set_xtime(tk, ts);
790

791
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
792

793
	write_seqcount_end(&tk_core.seq);
794
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
795 796 797 798 799 800

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
801
EXPORT_SYMBOL(do_settimeofday64);
802

803 804 805 806 807 808 809 810
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
811
	struct timekeeper *tk = &tk_core.timekeeper;
812
	unsigned long flags;
813
	struct timespec64 ts64, tmp;
814
	int ret = 0;
815 816 817 818

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

819 820
	ts64 = timespec_to_timespec64(*ts);

821
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
822
	write_seqcount_begin(&tk_core.seq);
823

824
	timekeeping_forward_now(tk);
825

826
	/* Make sure the proposed value is valid */
827 828
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
829 830 831
		ret = -EINVAL;
		goto error;
	}
832

833 834
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
835

836
error: /* even if we error out, we forwarded the time, so call update */
837
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
838

839
	write_seqcount_end(&tk_core.seq);
840
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
841 842 843 844

	/* signal hrtimers about time change */
	clock_was_set();

845
	return ret;
846 847 848
}
EXPORT_SYMBOL(timekeeping_inject_offset);

849 850 851 852 853 854 855

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
856
	struct timekeeper *tk = &tk_core.timekeeper;
857 858 859 860
	unsigned int seq;
	s32 ret;

	do {
861
		seq = read_seqcount_begin(&tk_core.seq);
862
		ret = tk->tai_offset;
863
	} while (read_seqcount_retry(&tk_core.seq, seq));
864 865 866 867 868 869 870 871

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
872
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
873 874
{
	tk->tai_offset = tai_offset;
875
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
876 877 878 879 880 881 882 883
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
884
	struct timekeeper *tk = &tk_core.timekeeper;
885 886
	unsigned long flags;

887
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
888
	write_seqcount_begin(&tk_core.seq);
889
	__timekeeping_set_tai_offset(tk, tai_offset);
890
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
891
	write_seqcount_end(&tk_core.seq);
892
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
893
	clock_was_set();
894 895
}

896 897 898 899 900
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
901
static int change_clocksource(void *data)
902
{
903
	struct timekeeper *tk = &tk_core.timekeeper;
904
	struct clocksource *new, *old;
905
	unsigned long flags;
906

907
	new = (struct clocksource *) data;
908

909
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
910
	write_seqcount_begin(&tk_core.seq);
911

912
	timekeeping_forward_now(tk);
913 914 915 916 917 918
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
919
			old = tk->tkr.clock;
920 921 922 923 924 925 926
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
927
	}
928
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
929

930
	write_seqcount_end(&tk_core.seq);
931
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
932

933 934
	return 0;
}
935

936 937 938 939 940 941 942
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
943
int timekeeping_notify(struct clocksource *clock)
944
{
945
	struct timekeeper *tk = &tk_core.timekeeper;
946

947
	if (tk->tkr.clock == clock)
948
		return 0;
949
	stop_machine(change_clocksource, clock, NULL);
950
	tick_clock_notify();
951
	return tk->tkr.clock == clock ? 0 : -1;
952
}
953

954
/**
955 956
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
957 958 959
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
960
void getrawmonotonic64(struct timespec64 *ts)
961
{
962
	struct timekeeper *tk = &tk_core.timekeeper;
963
	struct timespec64 ts64;
964 965 966 967
	unsigned long seq;
	s64 nsecs;

	do {
968
		seq = read_seqcount_begin(&tk_core.seq);
969
		nsecs = timekeeping_get_ns_raw(tk);
970
		ts64 = tk->raw_time;
971

972
	} while (read_seqcount_retry(&tk_core.seq, seq));
973

974
	timespec64_add_ns(&ts64, nsecs);
975
	*ts = ts64;
976
}
977 978
EXPORT_SYMBOL(getrawmonotonic64);

979

980
/**
981
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
982
 */
983
int timekeeping_valid_for_hres(void)
984
{
985
	struct timekeeper *tk = &tk_core.timekeeper;
986 987 988 989
	unsigned long seq;
	int ret;

	do {
990
		seq = read_seqcount_begin(&tk_core.seq);
991

992
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
993

994
	} while (read_seqcount_retry(&tk_core.seq, seq));
995 996 997 998

	return ret;
}

999 1000 1001 1002 1003
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1004
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1005 1006
	unsigned long seq;
	u64 ret;
1007

J
John Stultz 已提交
1008
	do {
1009
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1010

1011
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
1012

1013
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1014 1015

	return ret;
1016 1017
}

1018
/**
1019
 * read_persistent_clock -  Return time from the persistent clock.
1020 1021
 *
 * Weak dummy function for arches that do not yet support it.
1022 1023
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1024 1025 1026
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1027
void __weak read_persistent_clock(struct timespec *ts)
1028
{
1029 1030
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1031 1032
}

1033 1034 1035 1036 1037 1038 1039 1040 1041
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1042
void __weak read_boot_clock(struct timespec *ts)
1043 1044 1045 1046 1047
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1048 1049 1050 1051 1052
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1053
	struct timekeeper *tk = &tk_core.timekeeper;
1054
	struct clocksource *clock;
1055
	unsigned long flags;
1056 1057
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1058

1059 1060 1061
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1062 1063 1064 1065
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1066 1067
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1068

1069 1070 1071
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1072 1073 1074 1075 1076
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1077

1078
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1079
	write_seqcount_begin(&tk_core.seq);
1080 1081
	ntp_init();

1082
	clock = clocksource_default_clock();
1083 1084
	if (clock->enable)
		clock->enable(clock);
1085
	tk_setup_internals(tk, clock);
1086

1087 1088 1089
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1090
	tk->base_raw.tv64 = 0;
1091
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1092
		boot = tk_xtime(tk);
1093

1094
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1095
	tk_set_wall_to_mono(tk, tmp);
1096

1097
	timekeeping_update(tk, TK_MIRROR);
1098

1099
	write_seqcount_end(&tk_core.seq);
1100
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1101 1102 1103
}

/* time in seconds when suspend began */
1104
static struct timespec64 timekeeping_suspend_time;
1105

1106 1107 1108 1109 1110 1111 1112
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1113
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1114
					   struct timespec64 *delta)
1115
{
1116
	if (!timespec64_valid_strict(delta)) {
1117 1118 1119
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1120 1121
		return;
	}
1122
	tk_xtime_add(tk, delta);
1123
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1124
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1125
	tk_debug_account_sleep_time(delta);
1126 1127 1128
}

/**
1129 1130
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1131 1132 1133 1134 1135 1136 1137
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1138
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1139
{
1140
	struct timekeeper *tk = &tk_core.timekeeper;
1141
	unsigned long flags;
1142

1143 1144 1145 1146 1147
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1148 1149
		return;

1150
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1151
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1152

1153
	timekeeping_forward_now(tk);
1154

1155
	__timekeeping_inject_sleeptime(tk, delta);
1156

1157
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1158

1159
	write_seqcount_end(&tk_core.seq);
1160
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1161 1162 1163 1164 1165

	/* signal hrtimers about time change */
	clock_was_set();
}

1166 1167 1168 1169 1170 1171 1172
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1173
static void timekeeping_resume(void)
1174
{
1175
	struct timekeeper *tk = &tk_core.timekeeper;
1176
	struct clocksource *clock = tk->tkr.clock;
1177
	unsigned long flags;
1178 1179
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1180 1181
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1182

1183 1184
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1185

1186
	clockevents_resume();
1187 1188
	clocksource_resume();

1189
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1190
	write_seqcount_begin(&tk_core.seq);
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1204
	cycle_now = tk->tkr.read(clock);
1205
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1206
		cycle_now > tk->tkr.cycle_last) {
1207 1208 1209 1210 1211
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1212 1213
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1228
		ts_delta = ns_to_timespec64(nsec);
1229
		suspendtime_found = true;
1230 1231
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1232
		suspendtime_found = true;
1233
	}
1234 1235 1236 1237 1238

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1239
	tk->tkr.cycle_last = cycle_now;
1240
	tk->ntp_error = 0;
1241
	timekeeping_suspended = 0;
1242
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1243
	write_seqcount_end(&tk_core.seq);
1244
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1245 1246 1247 1248 1249 1250

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1251
	hrtimers_resume();
1252 1253
}

1254
static int timekeeping_suspend(void)
1255
{
1256
	struct timekeeper *tk = &tk_core.timekeeper;
1257
	unsigned long flags;
1258 1259 1260
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1261

1262 1263
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1264

1265 1266 1267 1268 1269 1270 1271 1272
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1273
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1274
	write_seqcount_begin(&tk_core.seq);
1275
	timekeeping_forward_now(tk);
1276
	timekeeping_suspended = 1;
1277 1278 1279 1280 1281 1282 1283

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1284 1285
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1286 1287 1288 1289 1290 1291 1292 1293 1294
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1295
			timespec64_add(timekeeping_suspend_time, delta_delta);
1296
	}
1297 1298

	timekeeping_update(tk, TK_MIRROR);
1299
	write_seqcount_end(&tk_core.seq);
1300
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1301 1302

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1303
	clocksource_suspend();
1304
	clockevents_suspend();
1305 1306 1307 1308 1309

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1310
static struct syscore_ops timekeeping_syscore_ops = {
1311 1312 1313 1314
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1315
static int __init timekeeping_init_ops(void)
1316
{
1317 1318
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1319
}
1320
device_initcall(timekeeping_init_ops);
1321 1322

/*
1323
 * Apply a multiplier adjustment to the timekeeper
1324
 */
1325 1326 1327 1328
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1329
{
1330 1331
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1332

1333 1334 1335 1336
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1337
	}
1338 1339 1340
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1341

1342 1343 1344
	/*
	 * So the following can be confusing.
	 *
1345
	 * To keep things simple, lets assume mult_adj == 1 for now.
1346
	 *
1347
	 * When mult_adj != 1, remember that the interval and offset values
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1391
	if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1392 1393 1394 1395 1396
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1397
	tk->tkr.mult += mult_adj;
1398
	tk->xtime_interval += interval;
1399
	tk->tkr.xtime_nsec -= offset;
1400
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1420 1421
	tk->ntp_tick = ntp_tick_length();

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
1462 1463
		(abs(tk->tkr.mult - tk->tkr.clock->mult)
			> tk->tkr.clock->maxadj))) {
1464 1465 1466 1467 1468
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1484 1485 1486
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1487
		tk->ntp_error += neg << tk->ntp_error_shift;
1488
	}
1489 1490
}

1491 1492 1493 1494 1495 1496 1497 1498
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1499
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1500
{
1501
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1502
	unsigned int clock_set = 0;
1503

1504
	while (tk->tkr.xtime_nsec >= nsecps) {
1505 1506
		int leap;

1507
		tk->tkr.xtime_nsec -= nsecps;
1508 1509 1510 1511
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1512
		if (unlikely(leap)) {
1513
			struct timespec64 ts;
1514 1515

			tk->xtime_sec += leap;
1516

1517 1518 1519
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1520
				timespec64_sub(tk->wall_to_monotonic, ts));
1521

1522 1523
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1524
			clock_set = TK_CLOCK_WAS_SET;
1525
		}
1526
	}
1527
	return clock_set;
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1539
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1540 1541
						u32 shift,
						unsigned int *clock_set)
1542
{
T
Thomas Gleixner 已提交
1543
	cycle_t interval = tk->cycle_interval << shift;
1544
	u64 raw_nsecs;
1545

1546
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1547
	if (offset < interval)
1548 1549 1550
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1551
	offset -= interval;
1552
	tk->tkr.cycle_last += interval;
1553

1554
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1555
	*clock_set |= accumulate_nsecs_to_secs(tk);
1556

1557
	/* Accumulate raw time */
1558
	raw_nsecs = (u64)tk->raw_interval << shift;
1559
	raw_nsecs += tk->raw_time.tv_nsec;
1560 1561 1562
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1563
		tk->raw_time.tv_sec += raw_secs;
1564
	}
1565
	tk->raw_time.tv_nsec = raw_nsecs;
1566 1567

	/* Accumulate error between NTP and clock interval */
1568
	tk->ntp_error += tk->ntp_tick << shift;
1569 1570
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1571 1572 1573 1574

	return offset;
}

1575 1576 1577 1578
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1579
void update_wall_time(void)
1580
{
1581
	struct timekeeper *real_tk = &tk_core.timekeeper;
1582
	struct timekeeper *tk = &shadow_timekeeper;
1583
	cycle_t offset;
1584
	int shift = 0, maxshift;
1585
	unsigned int clock_set = 0;
J
John Stultz 已提交
1586 1587
	unsigned long flags;

1588
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1589 1590 1591

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1592
		goto out;
1593

J
John Stultz 已提交
1594
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1595
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1596
#else
1597 1598
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1599 1600
#endif

1601
	/* Check if there's really nothing to do */
1602
	if (offset < real_tk->cycle_interval)
1603 1604
		goto out;

1605 1606 1607 1608
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1609
	 * that is smaller than the offset.  We then accumulate that
1610 1611
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1612
	 */
1613
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1614
	shift = max(0, shift);
1615
	/* Bound shift to one less than what overflows tick_length */
1616
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1617
	shift = min(shift, maxshift);
1618
	while (offset >= tk->cycle_interval) {
1619 1620
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1621
		if (offset < tk->cycle_interval<<shift)
1622
			shift--;
1623 1624 1625
	}

	/* correct the clock when NTP error is too big */
1626
	timekeeping_adjust(tk, offset);
1627

J
John Stultz 已提交
1628
	/*
1629 1630 1631 1632
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1633

J
John Stultz 已提交
1634 1635
	/*
	 * Finally, make sure that after the rounding
1636
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1637
	 */
1638
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1639

1640
	write_seqcount_begin(&tk_core.seq);
1641 1642 1643 1644 1645 1646 1647
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1648
	 * memcpy under the tk_core.seq against one before we start
1649 1650 1651
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1652
	timekeeping_update(real_tk, clock_set);
1653
	write_seqcount_end(&tk_core.seq);
1654
out:
1655
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1656
	if (clock_set)
1657 1658
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1659
}
T
Tomas Janousek 已提交
1660 1661

/**
1662 1663
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1664
 *
1665
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1666 1667 1668 1669 1670 1671
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1672
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1673
{
1674
	struct timekeeper *tk = &tk_core.timekeeper;
1675 1676
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1677
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1678
}
1679
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1680

1681 1682
unsigned long get_seconds(void)
{
1683
	struct timekeeper *tk = &tk_core.timekeeper;
1684 1685

	return tk->xtime_sec;
1686 1687 1688
}
EXPORT_SYMBOL(get_seconds);

1689 1690
struct timespec __current_kernel_time(void)
{
1691
	struct timekeeper *tk = &tk_core.timekeeper;
1692

1693
	return timespec64_to_timespec(tk_xtime(tk));
1694
}
1695

1696 1697
struct timespec current_kernel_time(void)
{
1698
	struct timekeeper *tk = &tk_core.timekeeper;
1699
	struct timespec64 now;
1700 1701 1702
	unsigned long seq;

	do {
1703
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1704

1705
		now = tk_xtime(tk);
1706
	} while (read_seqcount_retry(&tk_core.seq, seq));
1707

1708
	return timespec64_to_timespec(now);
1709 1710
}
EXPORT_SYMBOL(current_kernel_time);
1711

1712
struct timespec64 get_monotonic_coarse64(void)
1713
{
1714
	struct timekeeper *tk = &tk_core.timekeeper;
1715
	struct timespec64 now, mono;
1716 1717 1718
	unsigned long seq;

	do {
1719
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1720

1721 1722
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1723
	} while (read_seqcount_retry(&tk_core.seq, seq));
1724

1725
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1726
				now.tv_nsec + mono.tv_nsec);
1727

1728
	return now;
1729
}
1730 1731

/*
1732
 * Must hold jiffies_lock
1733 1734 1735 1736 1737 1738
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1739 1740

/**
1741 1742 1743 1744 1745 1746
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1747
 */
1748 1749
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1750
{
1751
	struct timekeeper *tk = &tk_core.timekeeper;
1752
	unsigned int seq;
1753 1754
	ktime_t base;
	u64 nsecs;
1755 1756

	do {
1757
		seq = read_seqcount_begin(&tk_core.seq);
1758

1759 1760
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1761

1762 1763 1764
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1765
	} while (read_seqcount_retry(&tk_core.seq, seq));
1766

1767
	return ktime_add_ns(base, nsecs);
1768
}
T
Torben Hohn 已提交
1769

1770 1771
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1772
 * ktime_get_update_offsets_now - hrtimer helper
1773 1774
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1775
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1776 1777
 *
 * Returns current monotonic time and updates the offsets
1778
 * Called from hrtimer_interrupt() or retrigger_next_event()
1779
 */
1780
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1781
							ktime_t *offs_tai)
1782
{
1783
	struct timekeeper *tk = &tk_core.timekeeper;
1784
	unsigned int seq;
1785 1786
	ktime_t base;
	u64 nsecs;
1787 1788

	do {
1789
		seq = read_seqcount_begin(&tk_core.seq);
1790

1791
		base = tk->tkr.base_mono;
1792
		nsecs = timekeeping_get_ns(&tk->tkr);
1793

1794 1795
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1796
		*offs_tai = tk->offs_tai;
1797
	} while (read_seqcount_retry(&tk_core.seq, seq));
1798

1799
	return ktime_add_ns(base, nsecs);
1800 1801 1802
}
#endif

1803 1804 1805 1806 1807
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1808
	struct timekeeper *tk = &tk_core.timekeeper;
1809
	unsigned long flags;
1810
	struct timespec64 ts;
1811
	s32 orig_tai, tai;
1812 1813 1814 1815 1816 1817 1818
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1830
	getnstimeofday64(&ts);
1831

1832
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1833
	write_seqcount_begin(&tk_core.seq);
1834

1835
	orig_tai = tai = tk->tai_offset;
1836
	ret = __do_adjtimex(txc, &ts, &tai);
1837

1838 1839
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1840
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1841
	}
1842
	write_seqcount_end(&tk_core.seq);
1843 1844
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1845 1846 1847
	if (tai != orig_tai)
		clock_was_set();

1848 1849
	ntp_notify_cmos_timer();

1850 1851
	return ret;
}
1852 1853 1854 1855 1856 1857 1858

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1859 1860 1861
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1862
	write_seqcount_begin(&tk_core.seq);
1863

1864
	__hardpps(phase_ts, raw_ts);
1865

1866
	write_seqcount_end(&tk_core.seq);
1867
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1868 1869 1870 1871
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1872 1873 1874 1875 1876 1877 1878 1879
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1880
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1881
	do_timer(ticks);
1882
	write_sequnlock(&jiffies_lock);
1883
	update_wall_time();
T
Torben Hohn 已提交
1884
}