intel_lrc.c 79.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227 228
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
229

230 231
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
232

233 234 235 236 237 238
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
239
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 241 242
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
243 244
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
245 246
	WARN_ON(i915.enable_ppgtt == -1);

247 248 249 250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

253 254 255
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

256 257 258
	if (enable_execlists == 0)
		return 0;

259 260
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
261 262 263 264
		return 1;

	return 0;
}
265

266
static void
267
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268
{
269
	struct drm_device *dev = engine->dev;
270

271
	if (IS_GEN8(dev) || IS_GEN9(dev))
272
		engine->idle_lite_restore_wa = ~0;
273

274
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276
					(engine->id == VCS || engine->id == VCS2);
277

278 279
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 281
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
282 283
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284 285 286 287 288 289 290

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 292
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 294
}

295
/**
296 297
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
298
 *
299 300
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
301
 *
302 303 304 305 306 307 308 309 310 311
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
312
 */
313 314
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
315
				   struct intel_engine_cs *engine)
316
{
317
	uint64_t lrca, desc;
318

319
	lrca = ctx->engine[engine->id].lrc_vma->node.start +
320
	       LRC_PPHWSP_PN * PAGE_SIZE;
321

322
	desc = engine->ctx_desc_template;			   /* bits  0-11 */
323 324
	desc |= lrca;					   /* bits 12-31 */
	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325

326
	ctx->engine[engine->id].lrc_desc = desc;
327 328
}

329
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330
				     struct intel_engine_cs *engine)
331
{
332
	return ctx->engine[engine->id].lrc_desc;
333
}
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx: Context to get the ID for
 * @ring: Engine to get the ID for
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * The context ID is a portion of the context descriptor, so we can
 * just extract the required part from the cached descriptor.
 *
 * Return: 20-bits globally unique context ID.
 */
u32 intel_execlists_ctx_id(struct intel_context *ctx,
352
			   struct intel_engine_cs *engine)
353
{
354
	return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 356
}

357 358
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
359
{
360

361
	struct intel_engine_cs *engine = rq0->engine;
362
	struct drm_device *dev = engine->dev;
363
	struct drm_i915_private *dev_priv = dev->dev_private;
364
	uint64_t desc[2];
365

366
	if (rq1) {
367
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368 369 370 371
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
372

373
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374
	rq0->elsp_submitted++;
375

376
	/* You must always write both descriptors in the order below. */
377 378
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379

380
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381
	/* The context is automatically loaded after the following */
382
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383

384
	/* ELSP is a wo register, use another nearby reg for posting */
385
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 387
}

388 389 390 391 392 393 394 395 396 397
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
398
{
399
	struct intel_engine_cs *engine = rq->engine;
400
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402

403
	reg_state[CTX_RING_TAIL+1] = rq->tail;
404

405 406 407 408 409 410 411
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
412 413
}

414 415
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
416
{
417
	struct drm_i915_private *dev_priv = rq0->i915;
418
	unsigned int fw_domains = rq0->engine->fw_domains;
419

420
	execlists_update_context(rq0);
421

422
	if (rq1)
423
		execlists_update_context(rq1);
424

425
	spin_lock_irq(&dev_priv->uncore.lock);
426
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427

428
	execlists_elsp_write(rq0, rq1);
429

430
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431
	spin_unlock_irq(&dev_priv->uncore.lock);
432 433
}

434
static void execlists_context_unqueue(struct intel_engine_cs *engine)
435
{
436
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437
	struct drm_i915_gem_request *cursor, *tmp;
438

439
	assert_spin_locked(&engine->execlist_lock);
440

441 442 443 444
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
445
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446

447
	/* Try to read in pairs */
448
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449 450 451
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
452
		} else if (req0->ctx == cursor->ctx) {
453 454
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
455
			cursor->elsp_submitted = req0->elsp_submitted;
456
			list_move_tail(&req0->execlist_link,
457
				       &engine->execlist_retired_req_list);
458 459 460
			req0 = cursor;
		} else {
			req1 = cursor;
461
			WARN_ON(req1->elsp_submitted);
462 463 464 465
			break;
		}
	}

466 467 468
	if (unlikely(!req0))
		return;

469
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470
		/*
471 472 473 474 475 476
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
477
		 */
478
		struct intel_ringbuffer *ringbuf;
479

480
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
481 482
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
483 484
	}

485
	execlists_submit_requests(req0, req1);
486 487
}

488
static unsigned int
489
execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490
{
491
	struct drm_i915_gem_request *head_req;
492

493
	assert_spin_locked(&engine->execlist_lock);
494

495
	head_req = list_first_entry_or_null(&engine->execlist_queue,
496
					    struct drm_i915_gem_request,
497 498
					    execlist_link);

499 500
	if (!head_req)
		return 0;
501

502
	if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503 504 505 506 507 508 509 510
		return 0;

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

	list_move_tail(&head_req->execlist_link,
511
		       &engine->execlist_retired_req_list);
512

513
	return 1;
514 515
}

516
static u32
517
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518
		   u32 *context_id)
B
Ben Widawsky 已提交
519
{
520
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
521
	u32 status;
B
Ben Widawsky 已提交
522

523 524
	read_pointer %= GEN8_CSB_ENTRIES;

525
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526 527 528

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
529

530
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531 532 533
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
534 535
}

536
/**
537
 * intel_lrc_irq_handler() - handle Context Switch interrupts
538
 * @engine: Engine Command Streamer to handle.
539 540 541 542
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
543
static void intel_lrc_irq_handler(unsigned long data)
544
{
545
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
547
	u32 status_pointer;
548
	unsigned int read_pointer, write_pointer;
549 550
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
551 552
	unsigned int submit_contexts = 0;

553
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554

555
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556

557
	read_pointer = engine->next_context_status_buffer;
558
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559
	if (read_pointer > write_pointer)
560
		write_pointer += GEN8_CSB_ENTRIES;
561 562

	while (read_pointer < write_pointer) {
563 564 565 566 567 568
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
569

570 571 572 573 574 575 576 577
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

578
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579 580 581 582 583 584 585

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
586 587 588 589 590
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

591
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 593
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
594
				execlists_check_remove_request(engine, csb[i][1]);
595 596
	}

597
	if (submit_contexts) {
598
		if (!engine->disable_lite_restore_wa ||
599 600
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
601
	}
602

603
	spin_unlock(&engine->execlist_lock);
604 605 606

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
607 608
}

609
static void execlists_context_queue(struct drm_i915_gem_request *request)
610
{
611
	struct intel_engine_cs *engine = request->engine;
612
	struct drm_i915_gem_request *cursor;
613
	int num_elements = 0;
614

615
	if (request->ctx != request->i915->kernel_context)
616
		intel_lr_context_pin(request->ctx, engine);
617

618 619
	i915_gem_request_reference(request);

620
	spin_lock_bh(&engine->execlist_lock);
621

622
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623 624 625 626
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
627
		struct drm_i915_gem_request *tail_req;
628

629
		tail_req = list_last_entry(&engine->execlist_queue,
630
					   struct drm_i915_gem_request,
631 632
					   execlist_link);

633
		if (request->ctx == tail_req->ctx) {
634
			WARN(tail_req->elsp_submitted != 0,
635
				"More than 2 already-submitted reqs queued\n");
636
			list_move_tail(&tail_req->execlist_link,
637
				       &engine->execlist_retired_req_list);
638 639 640
		}
	}

641
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
642
	if (num_elements == 0)
643
		execlists_context_unqueue(engine);
644

645
	spin_unlock_bh(&engine->execlist_lock);
646 647
}

648
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649
{
650
	struct intel_engine_cs *engine = req->engine;
651 652 653 654
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
655
	if (engine->gpu_caches_dirty)
656 657
		flush_domains = I915_GEM_GPU_DOMAINS;

658
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 660 661
	if (ret)
		return ret;

662
	engine->gpu_caches_dirty = false;
663 664 665
	return 0;
}

666
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 668
				 struct list_head *vmas)
{
669
	const unsigned other_rings = ~intel_engine_flag(req->engine);
670 671 672 673 674 675 676 677
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

678
		if (obj->active & other_rings) {
679
			ret = i915_gem_object_sync(obj, req->engine, &req);
680 681 682
			if (ret)
				return ret;
		}
683 684 685 686 687 688 689 690 691 692 693 694 695

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
696
	return logical_ring_invalidate_all_caches(req);
697 698
}

699
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700
{
D
Dave Gordon 已提交
701
	int ret = 0;
702

703
	request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704

705 706 707 708 709 710 711 712 713 714 715 716 717
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

D
Dave Gordon 已提交
718
	if (request->ctx != request->i915->kernel_context)
719
		ret = intel_lr_context_pin(request->ctx, request->engine);
D
Dave Gordon 已提交
720 721

	return ret;
722 723 724 725
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
726
 * @request: Request to advance the logical ringbuffer of.
727 728 729 730 731 732
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
733
static int
734
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
735
{
736
	struct intel_ringbuffer *ringbuf = request->ringbuf;
737
	struct drm_i915_private *dev_priv = request->i915;
738
	struct intel_engine_cs *engine = request->engine;
739

740 741
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
742

743 744 745 746 747 748 749 750 751
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
752

753
	if (intel_engine_stopped(engine))
754
		return 0;
755

756 757 758 759 760 761 762 763 764 765 766
	if (engine->last_context != request->ctx) {
		if (engine->last_context)
			intel_lr_context_unpin(engine->last_context, engine);
		if (request->ctx != request->i915->kernel_context) {
			intel_lr_context_pin(request->ctx, engine);
			engine->last_context = request->ctx;
		} else {
			engine->last_context = NULL;
		}
	}

767 768 769 770
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
771 772

	return 0;
773 774
}

775 776 777 778 779 780 781 782 783 784 785 786
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

787
	return intel_ring_begin(request, 0);
788 789
}

790 791 792 793 794 795 796 797 798 799
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
800
 * @dispatch_flags: translated execbuffer call flags.
801 802 803 804 805 806
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
807
int intel_execlists_submission(struct i915_execbuffer_params *params,
808
			       struct drm_i915_gem_execbuffer2 *args,
809
			       struct list_head *vmas)
810
{
811
	struct drm_device       *dev = params->dev;
812
	struct intel_engine_cs *engine = params->engine;
813
	struct drm_i915_private *dev_priv = dev->dev_private;
814
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
815
	u64 exec_start;
816 817 818 819 820 821 822 823 824 825
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
826
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

851
	ret = execlists_move_to_gpu(params->request, vmas);
852 853 854
	if (ret)
		return ret;

855
	if (engine == &dev_priv->engine[RCS] &&
856
	    instp_mode != dev_priv->relative_constants_mode) {
857
		ret = intel_ring_begin(params->request, 4);
858 859 860 861 862
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
863
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
864 865 866 867 868 869
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

870 871 872
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

873
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
874 875 876
	if (ret)
		return ret;

877
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
878

879
	i915_gem_execbuffer_move_to_active(vmas, params->request);
880

881 882 883
	return 0;
}

884
void intel_execlists_retire_requests(struct intel_engine_cs *engine)
885
{
886
	struct drm_i915_gem_request *req, *tmp;
887 888
	struct list_head retired_list;

889 890
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
	if (list_empty(&engine->execlist_retired_req_list))
891 892 893
		return;

	INIT_LIST_HEAD(&retired_list);
894
	spin_lock_bh(&engine->execlist_lock);
895
	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
896
	spin_unlock_bh(&engine->execlist_lock);
897 898

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
899 900
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
901
				ctx->engine[engine->id].state;
902

903
		if (ctx_obj && (ctx != req->i915->kernel_context))
904
			intel_lr_context_unpin(ctx, engine);
905

906
		list_del(&req->execlist_link);
907
		i915_gem_request_unreference(req);
908 909 910
	}
}

911
void intel_logical_ring_stop(struct intel_engine_cs *engine)
912
{
913
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
914 915
	int ret;

916
	if (!intel_engine_initialized(engine))
917 918
		return;

919
	ret = intel_engine_idle(engine);
920
	if (ret)
921
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
922
			  engine->name, ret);
923 924

	/* TODO: Is this correct with Execlists enabled? */
925 926 927
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
928 929
		return;
	}
930
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
931 932
}

933
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
934
{
935
	struct intel_engine_cs *engine = req->engine;
936 937
	int ret;

938
	if (!engine->gpu_caches_dirty)
939 940
		return 0;

941
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
942 943 944
	if (ret)
		return ret;

945
	engine->gpu_caches_dirty = false;
946 947 948
	return 0;
}

949
static int intel_lr_context_do_pin(struct intel_context *ctx,
950
				   struct intel_engine_cs *engine)
951
{
952
	struct drm_device *dev = engine->dev;
953
	struct drm_i915_private *dev_priv = dev->dev_private;
954 955
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
	struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
956 957
	void *vaddr;
	u32 *lrc_reg_state;
958
	int ret;
959

960
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
961

962 963 964 965
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
966

967 968 969
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
970 971 972
		goto unpin_ctx_obj;
	}

973 974
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

975
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
976
	if (ret)
977
		goto unpin_map;
978

979 980
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
981
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
982
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
983
	ctx_obj->dirty = true;
984

985 986 987
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
988

989 990
	return ret;

991 992
unpin_map:
	i915_gem_object_unpin_map(ctx_obj);
993 994
unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
995 996 997 998

	return ret;
}

999 1000
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
1001 1002 1003
{
	int ret = 0;

1004 1005
	if (ctx->engine[engine->id].pin_count++ == 0) {
		ret = intel_lr_context_do_pin(ctx, engine);
1006 1007
		if (ret)
			goto reset_pin_count;
1008 1009

		i915_gem_context_reference(ctx);
1010 1011 1012
	}
	return ret;

1013
reset_pin_count:
1014
	ctx->engine[engine->id].pin_count = 0;
1015 1016 1017
	return ret;
}

1018 1019
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
1020
{
1021
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1022

1023
	WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1024
	if (--ctx->engine[engine->id].pin_count == 0) {
1025
		i915_gem_object_unpin_map(ctx_obj);
1026
		intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1027
		i915_gem_object_ggtt_unpin(ctx_obj);
1028 1029 1030
		ctx->engine[engine->id].lrc_vma = NULL;
		ctx->engine[engine->id].lrc_desc = 0;
		ctx->engine[engine->id].lrc_reg_state = NULL;
1031 1032

		i915_gem_context_unreference(ctx);
1033 1034 1035
	}
}

1036
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1037 1038
{
	int ret, i;
1039
	struct intel_engine_cs *engine = req->engine;
1040
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1041
	struct drm_device *dev = engine->dev;
1042 1043 1044
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1045
	if (w->count == 0)
1046 1047
		return 0;

1048
	engine->gpu_caches_dirty = true;
1049
	ret = logical_ring_flush_all_caches(req);
1050 1051 1052
	if (ret)
		return ret;

1053
	ret = intel_ring_begin(req, w->count * 2 + 2);
1054 1055 1056 1057 1058
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1059
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1060 1061 1062 1063 1064 1065
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1066
	engine->gpu_caches_dirty = true;
1067
	ret = logical_ring_flush_all_caches(req);
1068 1069 1070 1071 1072 1073
	if (ret)
		return ret;

	return 0;
}

1074
#define wa_ctx_emit(batch, index, cmd)					\
1075
	do {								\
1076 1077
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1078 1079
			return -ENOSPC;					\
		}							\
1080
		batch[__index] = (cmd);					\
1081 1082
	} while (0)

V
Ville Syrjälä 已提交
1083
#define wa_ctx_emit_reg(batch, index, reg) \
1084
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1102
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1103 1104 1105
						uint32_t *const batch,
						uint32_t index)
{
1106
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
1107 1108
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1109
	/*
1110
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1111 1112 1113 1114
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1115 1116
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1117 1118
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1119
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1120
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1121
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1122
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1123 1124 1125
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1126
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1137
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1138
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1139
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1140
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1141
	wa_ctx_emit(batch, index, 0);
1142 1143 1144 1145

	return index;
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1184
 *
1185 1186 1187 1188 1189 1190 1191 1192
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1193
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1194 1195 1196 1197
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1198
	uint32_t scratch_addr;
1199 1200
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1201
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1202
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1203

1204
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1205 1206
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1207 1208 1209
		if (rc < 0)
			return rc;
		index = rc;
1210 1211
	}

1212 1213
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1214
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1225

1226 1227
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1228
		wa_ctx_emit(batch, index, MI_NOOP);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1246
 * @batch: page in which WA are loaded
1247 1248 1249 1250 1251 1252 1253 1254 1255
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1256
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1257 1258 1259 1260 1261 1262
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1263
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1264
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1265

1266
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1267 1268 1269 1270

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1271
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1272 1273 1274 1275
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1276
	int ret;
1277
	struct drm_device *dev = engine->dev;
1278 1279
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1280
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1281
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1282
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1283
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1284

1285
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1286
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1287 1288 1289 1290
	if (ret < 0)
		return ret;
	index = ret;

1291 1292 1293 1294 1295 1296 1297
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1298
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1299 1300 1301 1302
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1303
	struct drm_device *dev = engine->dev;
1304 1305
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1306
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1307
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1308
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1309
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1310
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1311 1312 1313 1314 1315
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	/* WaClearTdlStateAckDirtyBits:bxt */
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1335
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1336
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1337
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1338 1339
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1340 1341 1342 1343 1344
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1345
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1346 1347 1348
{
	int ret;

1349 1350 1351
	engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
						   PAGE_ALIGN(size));
	if (!engine->wa_ctx.obj) {
1352 1353 1354 1355
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

1356
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1357 1358 1359
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1360
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1361 1362 1363 1364 1365 1366
		return ret;
	}

	return 0;
}

1367
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1368
{
1369 1370 1371 1372
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1373 1374 1375
	}
}

1376
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1377 1378 1379 1380 1381
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1382
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1383

1384
	WARN_ON(engine->id != RCS);
1385

1386
	/* update this when WA for higher Gen are added */
1387
	if (INTEL_INFO(engine->dev)->gen > 9) {
1388
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1389
			  INTEL_INFO(engine->dev)->gen);
1390
		return 0;
1391
	}
1392

1393
	/* some WA perform writes to scratch page, ensure it is valid */
1394 1395
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1396 1397 1398
		return -EINVAL;
	}

1399
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1400 1401 1402 1403 1404
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1405
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1406 1407 1408
	batch = kmap_atomic(page);
	offset = 0;

1409 1410
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1411 1412 1413 1414 1415 1416
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1417
		ret = gen8_init_perctx_bb(engine,
1418 1419 1420 1421 1422
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1423 1424
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1425 1426 1427 1428 1429 1430
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1431
		ret = gen9_init_perctx_bb(engine,
1432 1433 1434 1435 1436
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1437 1438 1439 1440 1441
	}

out:
	kunmap_atomic(batch);
	if (ret)
1442
		lrc_destroy_wa_ctx_obj(engine);
1443 1444 1445 1446

	return ret;
}

1447 1448 1449 1450 1451 1452 1453 1454 1455
static void lrc_init_hws(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1456
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1457
{
1458
	struct drm_device *dev = engine->dev;
1459
	struct drm_i915_private *dev_priv = dev->dev_private;
1460
	unsigned int next_context_status_buffer_hw;
1461

1462
	lrc_init_hws(engine);
1463

1464 1465 1466
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1467

1468
	I915_WRITE(RING_MODE_GEN7(engine),
1469 1470
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1471
	POSTING_READ(RING_MODE_GEN7(engine));
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1482 1483
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1484
	 */
1485
	next_context_status_buffer_hw =
1486
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1487 1488 1489 1490 1491 1492 1493 1494 1495

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1496 1497
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1498

1499
	intel_engine_init_hangcheck(engine);
1500

1501
	return intel_mocs_init_engine(engine);
1502 1503
}

1504
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1505
{
1506
	struct drm_device *dev = engine->dev;
1507 1508 1509
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1510
	ret = gen8_init_common_ring(engine);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1524
	return init_workarounds_ring(engine);
1525 1526
}

1527
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1528 1529 1530
{
	int ret;

1531
	ret = gen8_init_common_ring(engine);
1532 1533 1534
	if (ret)
		return ret;

1535
	return init_workarounds_ring(engine);
1536 1537
}

1538 1539 1540
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1541
	struct intel_engine_cs *engine = req->engine;
1542 1543 1544 1545
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1546
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1547 1548 1549 1550 1551 1552 1553
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1554 1555
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1556
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1557 1558
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1559 1560 1561 1562 1563 1564 1565 1566 1567
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1568
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1569
			      u64 offset, unsigned dispatch_flags)
1570
{
1571
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1572
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1573 1574
	int ret;

1575 1576 1577 1578
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1579 1580
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1581
	if (req->ctx->ppgtt &&
1582
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1583 1584
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1585 1586 1587 1588
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1589

1590
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1591 1592
	}

1593
	ret = intel_ring_begin(req, 4);
1594 1595 1596 1597
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1598 1599 1600 1601
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1602 1603 1604 1605 1606 1607 1608 1609
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1610
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1611
{
1612
	struct drm_device *dev = engine->dev;
1613 1614 1615
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1616
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1617 1618 1619
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1620 1621 1622 1623
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1624 1625 1626 1627 1628 1629
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1630
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1631
{
1632
	struct drm_device *dev = engine->dev;
1633 1634 1635 1636
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1637 1638 1639
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1640 1641 1642 1643
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1644
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1645 1646 1647
			   u32 invalidate_domains,
			   u32 unused)
{
1648
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1649
	struct intel_engine_cs *engine = ringbuf->engine;
1650
	struct drm_device *dev = engine->dev;
1651 1652 1653 1654
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1655
	ret = intel_ring_begin(request, 4);
1656 1657 1658 1659 1660
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1661 1662 1663 1664 1665 1666 1667 1668 1669
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1670
		if (engine == &dev_priv->engine[VCS])
1671
			cmd |= MI_INVALIDATE_BSD;
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1685
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1686 1687 1688
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1689
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1690
	struct intel_engine_cs *engine = ringbuf->engine;
1691
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1692
	bool vf_flush_wa = false, dc_flush_wa = false;
1693 1694
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1695
	int len;
1696 1697 1698 1699 1700 1701

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1702
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1703
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1716 1717 1718 1719
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1720
		if (IS_GEN9(engine->dev))
1721
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1722 1723 1724 1725

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1726
	}
1727

M
Mika Kuoppala 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1737 1738 1739
	if (ret)
		return ret;

1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

M
Mika Kuoppala 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757
	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1758 1759 1760 1761 1762 1763
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
M
Mika Kuoppala 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

	if (dc_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1774 1775 1776 1777 1778
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1779
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1780
{
1781
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1782 1783
}

1784
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1785
{
1786
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1787 1788
}

1789
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1801
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1802 1803
}

1804
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1805
{
1806
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1807 1808

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1809
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1810 1811
}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1824
static int gen8_emit_request(struct drm_i915_gem_request *request)
1825
{
1826
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1827 1828
	int ret;

1829
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1830 1831 1832
	if (ret)
		return ret;

1833 1834
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1835 1836

	intel_logical_ring_emit(ringbuf,
1837 1838
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1839
				hws_seqno_address(request->engine) |
1840
				MI_FLUSH_DW_USE_GTT);
1841
	intel_logical_ring_emit(ringbuf, 0);
1842
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1843 1844
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1845 1846
	return intel_logical_ring_advance_and_submit(request);
}
1847

1848 1849 1850 1851
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1852

1853
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1854 1855 1856
	if (ret)
		return ret;

1857 1858 1859
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1860 1861 1862 1863
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1864
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1865 1866 1867 1868
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1869
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1870 1871
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1872 1873
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1874
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1875
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1876
	return intel_logical_ring_advance_and_submit(request);
1877 1878
}

1879
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1880 1881 1882 1883
{
	struct render_state so;
	int ret;

1884
	ret = i915_gem_render_state_prepare(req->engine, &so);
1885 1886 1887 1888 1889 1890
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1891
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1892
				       I915_DISPATCH_SECURE);
1893 1894 1895
	if (ret)
		goto out;

1896
	ret = req->engine->emit_bb_start(req,
1897 1898 1899 1900 1901
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1902
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1903 1904 1905 1906 1907 1908

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1909
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1910 1911 1912
{
	int ret;

1913
	ret = intel_logical_ring_workarounds_emit(req);
1914 1915 1916
	if (ret)
		return ret;

1917 1918 1919 1920 1921 1922 1923 1924
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1925
	return intel_lr_context_render_state_init(req);
1926 1927
}

1928 1929 1930 1931 1932 1933
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1934
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1935
{
1936
	struct drm_i915_private *dev_priv;
1937

1938
	if (!intel_engine_initialized(engine))
1939 1940
		return;

1941 1942 1943 1944 1945 1946 1947
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1948
	dev_priv = engine->dev->dev_private;
1949

1950 1951 1952
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1953
	}
1954

1955 1956
	if (engine->cleanup)
		engine->cleanup(engine);
1957

1958 1959
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1960

1961
	if (engine->status_page.obj) {
1962
		i915_gem_object_unpin_map(engine->status_page.obj);
1963
		engine->status_page.obj = NULL;
1964
	}
1965

1966 1967 1968
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1969

1970 1971
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
1972 1973
}

1974 1975
static void
logical_ring_default_vfuncs(struct drm_device *dev,
1976
			    struct intel_engine_cs *engine)
1977 1978
{
	/* Default vfuncs which can be overriden by each engine. */
1979 1980 1981 1982 1983 1984
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1985 1986
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1987
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1988
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1989
		engine->set_seqno = bxt_a_set_seqno;
1990 1991 1992
	}
}

1993
static inline void
1994
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1995
{
1996 1997
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1998 1999
}

2000
static int
2001 2002 2003
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
2004
	void *hws;
2005 2006 2007 2008

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
2009 2010 2011 2012
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2013
	engine->status_page.obj = dctx_obj;
2014 2015

	return 0;
2016 2017
}

2018
static int
2019
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2020
{
2021 2022 2023
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_context *dctx = dev_priv->kernel_context;
	enum forcewake_domains fw_domains;
2024 2025 2026
	int ret;

	/* Intentionally left blank. */
2027
	engine->buffer = NULL;
2028

2029 2030 2031 2032 2033
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
2034

2035 2036 2037 2038
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
	spin_lock_init(&engine->execlist_lock);
2039

2040 2041 2042
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

2043
	logical_ring_init_platform_invariants(engine);
2044

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2059
	ret = i915_cmd_parser_init_ring(engine);
2060
	if (ret)
2061
		goto error;
2062

2063
	ret = intel_lr_context_deferred_alloc(dctx, engine);
2064
	if (ret)
2065
		goto error;
2066 2067

	/* As this is the default context, always pin it */
2068
	ret = intel_lr_context_do_pin(dctx, engine);
2069 2070 2071
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
2072
			engine->name, ret);
2073
		goto error;
2074
	}
2075

2076
	/* And setup the hardware status page. */
2077 2078 2079 2080 2081
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2082

2083 2084 2085
	return 0;

error:
2086
	intel_logical_ring_cleanup(engine);
2087
	return ret;
2088 2089 2090 2091 2092
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2093
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2094
	int ret;
2095

2096 2097 2098 2099 2100
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2101

2102
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2103
	if (HAS_L3_DPF(dev))
2104
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2105

2106
	logical_ring_default_vfuncs(dev, engine);
2107 2108

	/* Override some for render ring. */
2109
	if (INTEL_INFO(dev)->gen >= 9)
2110
		engine->init_hw = gen9_init_render_ring;
2111
	else
2112 2113 2114 2115 2116
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2117

2118
	engine->dev = dev;
2119

2120
	ret = intel_init_pipe_control(engine);
2121 2122 2123
	if (ret)
		return ret;

2124
	ret = intel_init_workaround_bb(engine);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2135
	ret = logical_ring_init(dev, engine);
2136
	if (ret) {
2137
		lrc_destroy_wa_ctx_obj(engine);
2138
	}
2139 2140

	return ret;
2141 2142 2143 2144 2145
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2146
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2147

2148 2149 2150 2151 2152
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2153

2154 2155
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2156

2157
	return logical_ring_init(dev, engine);
2158 2159 2160 2161 2162
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2163
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2164

2165 2166 2167 2168 2169
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2170

2171 2172
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2173

2174
	return logical_ring_init(dev, engine);
2175 2176 2177 2178 2179
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2180
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2181

2182 2183 2184 2185 2186
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2187

2188 2189
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2190

2191
	return logical_ring_init(dev, engine);
2192 2193 2194 2195 2196
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2197
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2198

2199 2200 2201 2202 2203
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2204

2205 2206
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2207

2208
	return logical_ring_init(dev, engine);
2209 2210
}

2211 2212 2213 2214 2215
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2216
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2217 2218 2219 2220
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2257
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2258
cleanup_blt_ring:
2259
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2260
cleanup_bsd_ring:
2261
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2262
cleanup_render_ring:
2263
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2264 2265 2266 2267

	return ret;
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2311
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2312 2313 2314
{
	u32 indirect_ctx_offset;

2315
	switch (INTEL_INFO(engine->dev)->gen) {
2316
	default:
2317
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2332
static int
2333 2334
populate_lr_context(struct intel_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
2335 2336
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2337
{
2338
	struct drm_device *dev = engine->dev;
2339
	struct drm_i915_private *dev_priv = dev->dev_private;
2340
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2341 2342
	void *vaddr;
	u32 *reg_state;
2343 2344
	int ret;

2345 2346 2347
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2348 2349 2350 2351 2352 2353
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2354 2355 2356 2357
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2358 2359
		return ret;
	}
2360
	ctx_obj->dirty = true;
2361 2362 2363

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2364
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2365 2366 2367 2368 2369 2370

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2371
	reg_state[CTX_LRI_HEADER_0] =
2372 2373 2374
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2375 2376
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2377 2378
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2379 2380 2381 2382
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2383 2384 2385
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2386 2387 2388 2389
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2390
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2391 2392 2393 2394 2395 2396
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2397
		       RING_BB_PPGTT);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2413 2414 2415 2416 2417 2418 2419
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2420
				intel_lr_indirect_ctx_offset(engine) << 6;
2421 2422 2423 2424 2425

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2426
	}
2427
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2428 2429
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2430
	/* PDP values well be assigned later if needed */
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2447

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2460
		execlists_update_context_pdps(ppgtt, reg_state);
2461 2462
	}

2463
	if (engine->id == RCS) {
2464
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2465 2466
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2467 2468
	}

2469
	i915_gem_object_unpin_map(ctx_obj);
2470 2471 2472 2473

	return 0;
}

2474 2475 2476 2477 2478 2479 2480 2481
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2482 2483
void intel_lr_context_free(struct intel_context *ctx)
{
2484 2485
	int i;

2486
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2487
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2488
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2489

D
Dave Gordon 已提交
2490 2491
		if (!ctx_obj)
			continue;
2492

D
Dave Gordon 已提交
2493 2494 2495
		if (ctx == ctx->i915->kernel_context) {
			intel_unpin_ringbuffer_obj(ringbuf);
			i915_gem_object_ggtt_unpin(ctx_obj);
2496
			i915_gem_object_unpin_map(ctx_obj);
2497
		}
D
Dave Gordon 已提交
2498 2499 2500 2501

		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2502 2503 2504
	}
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2519
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2520 2521 2522
{
	int ret = 0;

2523
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2524

2525
	switch (engine->id) {
2526
	case RCS:
2527
		if (INTEL_INFO(engine->dev)->gen >= 9)
2528 2529 2530
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2541 2542
}

2543
/**
2544
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2545 2546 2547 2548 2549 2550 2551 2552 2553
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2554
 * Return: non-zero on error.
2555
 */
2556 2557

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2558
				    struct intel_engine_cs *engine)
2559
{
2560
	struct drm_device *dev = engine->dev;
2561 2562
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2563
	struct intel_ringbuffer *ringbuf;
2564 2565
	int ret;

2566
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2567
	WARN_ON(ctx->engine[engine->id].state);
2568

2569
	context_size = round_up(intel_lr_context_size(engine), 4096);
2570

2571 2572 2573
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2574
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2575 2576 2577
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2578 2579
	}

2580
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2581 2582
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2583
		goto error_deref_obj;
2584 2585
	}

2586
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2587 2588
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2589
		goto error_ringbuf;
2590 2591
	}

2592 2593
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2594

2595
	if (ctx != ctx->i915->kernel_context && engine->init_context) {
2596
		struct drm_i915_gem_request *req;
2597

2598
		req = i915_gem_request_alloc(engine, ctx);
2599 2600 2601
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
			DRM_ERROR("ring create req: %d\n", ret);
2602
			goto error_ringbuf;
2603 2604
		}

2605
		ret = engine->init_context(req);
2606
		i915_add_request_no_flush(req);
2607 2608 2609 2610 2611
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			goto error_ringbuf;
		}
2612
	}
2613
	return 0;
2614

2615 2616
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2617
error_deref_obj:
2618
	drm_gem_object_unreference(&ctx_obj->base);
2619 2620
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2621
	return ret;
2622
}
2623

2624 2625
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
			    struct intel_context *ctx)
2626
{
2627
	struct intel_engine_cs *engine;
2628

2629
	for_each_engine(engine, dev_priv) {
2630
		struct drm_i915_gem_object *ctx_obj =
2631
				ctx->engine[engine->id].state;
2632
		struct intel_ringbuffer *ringbuf =
2633
				ctx->engine[engine->id].ringbuf;
2634
		void *vaddr;
2635 2636 2637 2638 2639
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2640 2641
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2642
			continue;
2643 2644 2645

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2646 2647 2648 2649

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2650
		i915_gem_object_unpin_map(ctx_obj);
2651 2652 2653 2654 2655

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}