sched_fair.c 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27 28 29 30
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
31 32 33 34
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35
 * Targeted preemption latency for CPU-bound tasks:
36
 */
37 38 39 40 41 42 43
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
44 45 46 47 48

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
49
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50

51 52 53 54 55 56 57 58
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

59 60
/*
 * SCHED_BATCH wake-up granularity.
61
 * (default: 25 msec, units: nanoseconds)
62 63 64 65 66
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
67
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68 69 70 71 72 73 74 75 76

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
77
const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78 79 80 81 82 83 84 85 86

unsigned int sysctl_sched_runtime_limit __read_mostly;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

98
#else	/* CONFIG_FAIR_GROUP_SCHED */
99

100 101 102
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

119 120 121 122 123 124 125 126 127 128
static inline u64
max_vruntime(u64 min_vruntime, u64 vruntime)
{
	if ((vruntime > min_vruntime) ||
	    (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
		min_vruntime = vruntime;

	return min_vruntime;
}

I
Ingo Molnar 已提交
129 130 131 132 133 134
static inline void
set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
{
	struct sched_entity *se;

	cfs_rq->rb_leftmost = leftmost;
135
	if (leftmost)
I
Ingo Molnar 已提交
136 137 138
		se = rb_entry(leftmost, struct sched_entity, run_node);
}

139 140
static inline s64
entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141
{
142
	return se->vruntime - cfs_rq->min_vruntime;
143 144
}

145 146 147
/*
 * Enqueue an entity into the rb-tree:
 */
148
static void
149 150 151 152 153
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
154
	s64 key = entity_key(cfs_rq, se);
155 156 157 158 159 160 161 162 163 164 165 166
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
167
		if (key < entity_key(cfs_rq, entry)) {
168 169 170 171 172 173 174 175 176 177 178 179
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
180
		set_leftmost(cfs_rq, &se->run_node);
181 182 183 184 185

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

186
static void
187 188 189
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
190 191
		set_leftmost(cfs_rq, rb_next(&se->run_node));

192 193 194 195 196 197 198 199 200 201 202 203 204
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

220 221 222 223
/**************************************************************
 * Scheduling class statistics methods:
 */

224 225 226 227 228 229 230 231 232 233 234 235 236 237
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
	unsigned long nr_latency =
		sysctl_sched_latency / sysctl_sched_min_granularity;

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

P
Peter Zijlstra 已提交
238
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
239
{
P
Peter Zijlstra 已提交
240
	u64 period = __sched_period(cfs_rq->nr_running);
241

P
Peter Zijlstra 已提交
242 243
	period *= se->load.weight;
	do_div(period, cfs_rq->load.weight);
244

P
Peter Zijlstra 已提交
245
	return period;
246 247 248 249 250 251 252
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
253 254
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
255
{
256
	unsigned long delta_exec_weighted;
257
	u64 next_vruntime, min_vruntime;
258

259
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
260 261

	curr->sum_exec_runtime += delta_exec;
262
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
263 264 265 266 267 268
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
		next_vruntime = __pick_next_entity(cfs_rq)->vruntime;

		/* min_vruntime() := !max_vruntime() */
		min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
		if (min_vruntime == next_vruntime)
			min_vruntime = curr->vruntime;
		else
			min_vruntime = next_vruntime;
	} else
		min_vruntime = curr->vruntime;

	cfs_rq->min_vruntime =
		max_vruntime(cfs_rq->min_vruntime, min_vruntime);
288 289
}

290
static void update_curr(struct cfs_rq *cfs_rq)
291
{
292
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
293
	u64 now = rq_of(cfs_rq)->clock;
294 295 296 297 298 299 300 301 302 303
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
304
	delta_exec = (unsigned long)(now - curr->exec_start);
305

I
Ingo Molnar 已提交
306 307
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
308 309 310
}

static inline void
311
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
312
{
313
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
314 315 316
}

static inline unsigned long
I
Ingo Molnar 已提交
317
calc_weighted(unsigned long delta, struct sched_entity *se)
318
{
I
Ingo Molnar 已提交
319
	unsigned long weight = se->load.weight;
320

I
Ingo Molnar 已提交
321 322 323 324
	if (unlikely(weight != NICE_0_LOAD))
		return (u64)delta * se->load.weight >> NICE_0_SHIFT;
	else
		return delta;
325 326 327 328 329
}

/*
 * Task is being enqueued - update stats:
 */
330
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
331 332 333 334 335
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
336
	if (se != cfs_rq->curr)
337
		update_stats_wait_start(cfs_rq, se);
338 339 340
}

static void
341
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
342
{
343 344
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
I
Ingo Molnar 已提交
345
	schedstat_set(se->wait_start, 0);
346 347 348
}

static inline void
349
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
350
{
351
	update_curr(cfs_rq);
352 353 354 355
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
356
	if (se != cfs_rq->curr)
357
		update_stats_wait_end(cfs_rq, se);
358 359 360 361 362 363
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
364
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
365 366 367 368
{
	/*
	 * We are starting a new run period:
	 */
369
	se->exec_start = rq_of(cfs_rq)->clock;
370 371 372 373 374 375
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
376
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
377 378 379 380 381 382 383 384
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

401
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
402 403 404
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
405
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
406 407 408 409 410 411 412 413 414 415 416

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
417
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
418 419 420 421 422 423 424 425 426

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
427 428 429 430 431 432 433

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
434 435
			struct task_struct *tsk = task_of(se);

I
Ingo Molnar 已提交
436 437 438
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
439 440 441 442
	}
#endif
}

443 444 445 446 447 448
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
	u64 min_runtime, latency;

	min_runtime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461

	if (sched_feat(USE_TREE_AVG)) {
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
			min_runtime = __pick_next_entity(cfs_rq)->vruntime;
			min_runtime += last->vruntime;
			min_runtime >>= 1;
		}
	} else if (sched_feat(APPROX_AVG))
		min_runtime += sysctl_sched_latency/2;

	if (initial && sched_feat(START_DEBIT))
		min_runtime += sched_slice(cfs_rq, se);
462 463 464 465 466 467 468 469 470 471 472 473

	if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
		latency = sysctl_sched_latency;
		if (min_runtime > latency)
			min_runtime -= latency;
		else
			min_runtime = 0;
	}

	se->vruntime = max(se->vruntime, min_runtime);
}

474
static void
475
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
476 477 478 479
{
	/*
	 * Update the fair clock.
	 */
480
	update_curr(cfs_rq);
481

I
Ingo Molnar 已提交
482
	if (wakeup) {
483
		place_entity(cfs_rq, se, 0);
484
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
485
	}
486

487
	update_stats_enqueue(cfs_rq, se);
488 489
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
490
	account_entity_enqueue(cfs_rq, se);
491 492 493
}

static void
494
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
495
{
496
	update_stats_dequeue(cfs_rq, se);
497
#ifdef CONFIG_SCHEDSTATS
498
	if (sleep) {
499 500 501 502
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
503
				se->sleep_start = rq_of(cfs_rq)->clock;
504
			if (tsk->state & TASK_UNINTERRUPTIBLE)
505
				se->block_start = rq_of(cfs_rq)->clock;
506 507
		}
	}
508
#endif
509
	if (se != cfs_rq->curr)
510 511
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
512 513 514 515 516
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
517
static void
I
Ingo Molnar 已提交
518
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
519
{
520 521
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
522
	ideal_runtime = sched_slice(cfs_rq, curr);
523 524
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
525 526 527
		resched_task(rq_of(cfs_rq)->curr);
}

528
static void
529
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
530
{
531 532 533 534 535 536 537 538 539 540 541
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

542
	update_stats_curr_start(cfs_rq, se);
543
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
544 545 546 547 548 549
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
550
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
551 552 553 554
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
555
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
556 557
}

558
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
559 560 561
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

562
	set_next_entity(cfs_rq, se);
563 564 565 566

	return se;
}

567
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
568 569 570 571 572 573
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
574
		update_curr(cfs_rq);
575

576
	update_stats_curr_end(cfs_rq, prev);
577

578
	if (prev->on_rq) {
579
		update_stats_wait_start(cfs_rq, prev);
580 581 582
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
583
	cfs_rq->curr = NULL;
584 585 586 587 588
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
589
	 * Update run-time statistics of the 'current'.
590
	 */
591
	update_curr(cfs_rq);
592

I
Ingo Molnar 已提交
593 594
	if (cfs_rq->nr_running > 1)
		check_preempt_tick(cfs_rq, curr);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
629
	return cfs_rq->tg->cfs_rq[this_cpu];
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
689
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
690 691 692 693 694 695 696 697
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
698
		enqueue_entity(cfs_rq, se, wakeup);
699 700 701 702 703 704 705 706
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
707
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
708 709 710 711 712 713
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
714
		dequeue_entity(cfs_rq, se, sleep);
715 716 717 718 719 720 721
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
722 723 724
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
725
 */
726
static void yield_task_fair(struct rq *rq)
727
{
728
	struct cfs_rq *cfs_rq = &rq->cfs;
729
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
730
	struct sched_entity *rightmost, *se = &rq->curr->se;
731
	struct rb_node *parent;
732 733

	/*
734 735 736 737 738 739 740 741 742 743 744
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
745
		dequeue_entity(cfs_rq, se, 0);
746
		enqueue_entity(cfs_rq, se, 0);
747 748 749 750 751

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
752
	 */
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
768
	se->vruntime = rightmost->vruntime + 1;
769 770 771 772 773 774 775 776 777

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
778 779 780 781 782
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
783
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
784 785 786 787 788
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
789
		update_rq_clock(rq);
790
		update_curr(cfs_rq);
791 792 793
		resched_task(curr);
		return;
	}
I
Ingo Molnar 已提交
794 795
	if (is_same_group(curr, p)) {
		s64 delta = curr->se.vruntime - p->se.vruntime;
796

I
Ingo Molnar 已提交
797 798 799
		if (delta > (s64)sysctl_sched_wakeup_granularity)
			resched_task(curr);
	}
800 801
}

802
static struct task_struct *pick_next_task_fair(struct rq *rq)
803 804 805 806 807 808 809 810
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
811
		se = pick_next_entity(cfs_rq);
812 813 814 815 816 817 818 819 820
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
821
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
822 823 824 825 826 827
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
828
		put_prev_entity(cfs_rq, se);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

871
#ifdef CONFIG_FAIR_GROUP_SCHED
872 873 874 875 876 877 878 879 880 881 882 883 884
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
885
#endif
886

P
Peter Williams 已提交
887
static unsigned long
888
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
889 890 891
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
892 893 894 895 896 897 898 899 900 901
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
902
#ifdef CONFIG_FAIR_GROUP_SCHED
903
		struct cfs_rq *this_cfs_rq;
904
		long imbalance;
905 906 907 908
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

909
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
910 911 912 913 914 915 916 917
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

918 919
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
920
# define maxload rem_load_move
921
#endif
922 923 924 925 926 927
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
928
				&load_moved, this_best_prio, &cfs_rq_iterator);
929 930 931 932 933 934 935 936 937

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
938
	return max_load_move - rem_load_move;
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

955 956
#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)

957 958 959 960 961 962 963
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
964
static void task_new_fair(struct rq *rq, struct task_struct *p)
965 966
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
967
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
968 969 970

	sched_info_queued(p);

971
	update_curr(cfs_rq);
972
	place_entity(cfs_rq, se, 1);
973 974 975

	if (sysctl_sched_child_runs_first &&
			curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
976
		/*
977 978 979
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
980 981
		swap(curr->vruntime, se->vruntime);
	}
982

I
Ingo Molnar 已提交
983
	update_stats_enqueue(cfs_rq, se);
984
	__enqueue_entity(cfs_rq, se);
985
	account_entity_enqueue(cfs_rq, se);
986
	resched_task(rq->curr);
987 988
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

1002 1003 1004 1005 1006 1007 1008 1009
/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1010
	.check_preempt_curr	= check_preempt_wakeup,
1011 1012 1013 1014 1015 1016

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

1017
	.set_curr_task          = set_curr_task_fair,
1018 1019 1020 1021 1022
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1023
static void print_cfs_stats(struct seq_file *m, int cpu)
1024 1025 1026
{
	struct cfs_rq *cfs_rq;

1027
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1028
		print_cfs_rq(m, cpu, cfs_rq);
1029 1030
}
#endif