i915_gem_execbuffer.c 70.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

191
struct i915_execbuffer {
192 193 194 195
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
196 197
	struct i915_vma **vma;
	unsigned int *flags;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
220
	struct reloc_cache {
221 222 223
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
224
		unsigned int gen; /** Cached value of INTEL_GEN */
225
		bool use_64bit_reloc : 1;
226 227 228
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
229 230 231 232

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
233
	} reloc_cache;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
249 250
};

251
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

272 273 274 275 276
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
	return eb->engine->needs_cmd_parser && eb->batch_len;
}

277
static int eb_create(struct i915_execbuffer *eb)
278
{
279 280
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
281

282 283 284 285 286 287 288 289 290 291 292
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
293
		do {
294
			gfp_t flags;
295 296 297 298 299 300 301

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
302
			flags = GFP_KERNEL;
303 304 305
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

306
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
307
					      flags);
308 309 310 311
			if (eb->buckets)
				break;
		} while (--size);

312 313
		if (unlikely(!size))
			return -ENOMEM;
314

315
		eb->lut_size = size;
316
	} else {
317
		eb->lut_size = -eb->buffer_count;
318
	}
319

320
	return 0;
321 322
}

323 324
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
325 326
		 const struct i915_vma *vma,
		 unsigned int flags)
327 328 329 330 331 332 333
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

334
	if (flags & EXEC_OBJECT_PINNED &&
335 336 337
	    vma->node.start != entry->offset)
		return true;

338
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
339 340 341
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

342
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
343 344 345 346 347 348
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

349
static inline bool
350
eb_pin_vma(struct i915_execbuffer *eb,
351
	   const struct drm_i915_gem_exec_object2 *entry,
352 353
	   struct i915_vma *vma)
{
354 355
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
356

357
	if (vma->node.size)
358
		pin_flags = vma->node.start;
359
	else
360
		pin_flags = entry->offset & PIN_OFFSET_MASK;
361

362 363 364
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
365

366 367
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
368

369
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
370
		if (unlikely(i915_vma_pin_fence(vma))) {
371
			i915_vma_unpin(vma);
372
			return false;
373 374
		}

375
		if (vma->fence)
376
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
377 378
	}

379 380
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
381 382
}

383
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
384
{
385
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
386

387
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
388
		__i915_vma_unpin_fence(vma);
389

390
	__i915_vma_unpin(vma);
391 392
}

393
static inline void
394
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
395
{
396
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
397
		return;
398

399 400
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
401 402
}

403 404 405 406
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
407
{
408 409
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
428 429
	}

430
	if (unlikely(vma->exec_flags)) {
431 432 433 434 435 436 437 438 439 440 441 442
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

443 444 445 446 447 448 449 450 451 452 453 454
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

455
	return 0;
456 457
}

458
static int
459
eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
460
{
461
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
462 463 464 465 466 467 468 469
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
470 471
	}

472
	if (eb->lut_size > 0) {
473
		vma->exec_handle = entry->handle;
474
		hlist_add_head(&vma->exec_node,
475 476
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
477
	}
478

479 480 481 482 483 484 485 486 487
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
488
	eb->vma[i] = vma;
489
	eb->flags[i] = entry->flags;
490
	vma->exec_flags = &eb->flags[i];
491 492

	err = 0;
493
	if (eb_pin_vma(eb, entry, vma)) {
494 495 496 497
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
498 499 500 501 502 503
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
504 505 506 507 508 509 510 511 512 513
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

514 515 516 517 518
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
519 520 521 522 523 524 525 526 527

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
528 529 530
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
531 532
	int err;

533 534 535
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
536 537 538 539 540

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
541 542
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
543

544 545
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
546

547 548 549 550 551
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
552 553
	}

554 555 556
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
557 558 559 560 561 562 563 564
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

565
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
566
		err = i915_vma_pin_fence(vma);
567 568 569 570 571
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

572
		if (vma->fence)
573
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
574 575
	}

576 577
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
619 620
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
621

622 623
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
624 625
				continue;

626
			eb_unreserve_vma(vma, &eb->flags[i]);
627

628
			if (flags & EXEC_OBJECT_PINNED)
629
				list_add(&vma->exec_link, &eb->unbound);
630
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
652
}
653

654 655
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
656 657 658 659
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
660 661 662 663 664 665 666
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
667 668
	if (unlikely(!ctx))
		return -ENOENT;
669

670
	eb->ctx = ctx;
671 672 673 674 675 676 677 678 679 680
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
681
{
682
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
683
	struct drm_i915_gem_object *obj;
684 685
	unsigned int i;
	int err;
686

687 688 689 690 691 692
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

693 694
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
695

696 697
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
698
		struct i915_lut_handle *lut;
699
		struct i915_vma *vma;
700

701 702
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
703
			goto add_vma;
704

705
		obj = i915_gem_object_lookup(eb->file, handle);
706
		if (unlikely(!obj)) {
707
			err = -ENOENT;
708
			goto err_vma;
709 710
		}

711
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
712
		if (unlikely(IS_ERR(vma))) {
713
			err = PTR_ERR(vma);
714
			goto err_obj;
715 716
		}

717 718 719 720 721 722 723 724 725 726
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
			kfree(lut);
			goto err_obj;
727
		}
728

729
		/* transfer ref to ctx */
730
		vma->open_count++;
731 732 733 734 735
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

736
add_vma:
737
		err = eb_add_vma(eb, i, vma);
738
		if (unlikely(err))
739
			goto err_vma;
740

741 742
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
743 744
	}

745 746
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
747 748
	eb->batch = eb->vma[i];
	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
749

750
	/*
751 752 753 754 755 756 757
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
758
	 */
759 760
	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
761
	if (eb->reloc_cache.has_fence)
762
		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
763

764 765 766
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

767
err_obj:
768
	i915_gem_object_put(obj);
769 770
err_vma:
	eb->vma[i] = NULL;
771
	return err;
772 773
}

774
static struct i915_vma *
775
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
776
{
777 778
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
779
			return NULL;
780
		return eb->vma[handle];
781 782
	} else {
		struct hlist_head *head;
783
		struct i915_vma *vma;
784

785
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
786
		hlist_for_each_entry(vma, head, exec_node) {
787 788
			if (vma->exec_handle == handle)
				return vma;
789 790 791
		}
		return NULL;
	}
792 793
}

794
static void eb_release_vmas(const struct i915_execbuffer *eb)
795
{
796 797 798 799
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
800 801
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
802

803
		if (!vma)
804
			break;
805

806 807 808
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
809

810 811
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
812

813
		if (flags & __EXEC_OBJECT_HAS_REF)
814
			i915_vma_put(vma);
815
	}
816 817
}

818
static void eb_reset_vmas(const struct i915_execbuffer *eb)
819
{
820
	eb_release_vmas(eb);
821
	if (eb->lut_size > 0)
822 823
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
824 825
}

826
static void eb_destroy(const struct i915_execbuffer *eb)
827
{
828 829
	GEM_BUG_ON(eb->reloc_cache.rq);

830
	if (eb->lut_size > 0)
831
		kfree(eb->buckets);
832 833
}

834
static inline u64
835
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
836
		  const struct i915_vma *target)
837
{
838
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
839 840
}

841 842
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
843
{
844
	cache->page = -1;
845
	cache->vaddr = 0;
846
	/* Must be a variable in the struct to allow GCC to unroll. */
847
	cache->gen = INTEL_GEN(i915);
848
	cache->has_llc = HAS_LLC(i915);
849
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
850 851
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
852
	cache->node.allocated = false;
853 854
	cache->rq = NULL;
	cache->rq_size = 0;
855
}
856

857 858 859 860 861 862 863 864
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
865 866
}

867 868
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

869 870 871 872 873 874 875
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

876 877 878 879 880 881 882 883 884 885 886
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

887
static void reloc_cache_reset(struct reloc_cache *cache)
888
{
889
	void *vaddr;
890

891 892 893
	if (cache->rq)
		reloc_gpu_flush(cache);

894 895
	if (!cache->vaddr)
		return;
896

897 898 899 900
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
901

902 903 904
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
905
		wmb();
906
		io_mapping_unmap_atomic((void __iomem *)vaddr);
907
		if (cache->node.allocated) {
908
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
909 910 911

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
912
					       cache->node.size);
913 914 915
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
916
		}
917
	}
918 919 920

	cache->vaddr = 0;
	cache->page = -1;
921 922 923 924
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
925
			unsigned long page)
926
{
927 928 929 930 931 932
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
933
		int err;
934

935 936 937
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
938 939 940

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
941

942 943 944 945
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
946 947
	}

948 949
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
950
	cache->page = page;
951

952
	return vaddr;
953 954
}

955 956
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
957
			 unsigned long page)
958
{
959
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
960
	unsigned long offset;
961
	void *vaddr;
962

963
	if (cache->vaddr) {
964
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
965 966
	} else {
		struct i915_vma *vma;
967
		int err;
968

969
		if (use_cpu_reloc(cache, obj))
970
			return NULL;
971

972 973 974
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
975

976
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
977 978 979
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
980 981
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
982
			err = drm_mm_insert_node_in_range
983
				(&ggtt->base.mm, &cache->node,
984
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
985
				 0, ggtt->mappable_end,
986
				 DRM_MM_INSERT_LOW);
987
			if (err) /* no inactive aperture space, use cpu reloc */
988
				return NULL;
989
		} else {
990 991
			err = i915_vma_put_fence(vma);
			if (err) {
992
				i915_vma_unpin(vma);
993
				return ERR_PTR(err);
994
			}
995

996 997
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
998
		}
999
	}
1000

1001 1002
	offset = cache->node.start;
	if (cache->node.allocated) {
1003
		wmb();
1004 1005 1006 1007 1008
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1009 1010
	}

1011 1012
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1013 1014
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1015

1016
	return vaddr;
1017 1018
}

1019 1020
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1021
			 unsigned long page)
1022
{
1023
	void *vaddr;
1024

1025 1026 1027 1028 1029 1030 1031 1032
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1033 1034
	}

1035
	return vaddr;
1036 1037
}

1038
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1039
{
1040 1041 1042 1043 1044
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1045

1046
		*addr = value;
1047

1048 1049
		/*
		 * Writes to the same cacheline are serialised by the CPU
1050 1051 1052 1053 1054 1055 1056 1057 1058
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1079 1080 1081
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		goto err_request;

	err = i915_switch_context(rq);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1124
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1125
	i915_vma_move_to_active(batch, rq, 0);
1126 1127 1128
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1129 1130
	i915_vma_unpin(batch);

1131
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1132 1133 1134
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1167 1168 1169 1170
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1171 1172 1173
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1185 1186
static u64
relocate_entry(struct i915_vma *vma,
1187
	       const struct drm_i915_gem_relocation_entry *reloc,
1188 1189
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1190
{
1191
	u64 offset = reloc->offset;
1192 1193
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1194
	void *vaddr;
1195

1196 1197
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1198
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1199 1200 1201 1202 1203 1204 1205 1206 1207
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1208
		else
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1255
repeat:
1256
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1257 1258 1259 1260 1261
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1262
			eb->reloc_cache.vaddr);
1263 1264 1265 1266 1267 1268

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1269 1270
	}

1271
out:
1272
	return target->node.start | UPDATE;
1273 1274
}

1275 1276 1277 1278
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1279
{
1280
	struct i915_vma *target;
1281
	int err;
1282

1283
	/* we've already hold a reference to all valid objects */
1284 1285
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1286
		return -ENOENT;
1287

1288
	/* Validate that the target is in a valid r/w GPU domain */
1289
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1290
		DRM_DEBUG("reloc with multiple write domains: "
1291
			  "target %d offset %d "
1292
			  "read %08x write %08x",
1293
			  reloc->target_handle,
1294 1295 1296
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1297
		return -EINVAL;
1298
	}
1299 1300
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1301
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1302
			  "target %d offset %d "
1303
			  "read %08x write %08x",
1304
			  reloc->target_handle,
1305 1306 1307
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1308
		return -EINVAL;
1309 1310
	}

1311
	if (reloc->write_domain) {
1312
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1328
	}
1329

1330 1331
	/*
	 * If the relocation already has the right value in it, no
1332 1333
	 * more work needs to be done.
	 */
1334 1335
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1336
		return 0;
1337 1338

	/* Check that the relocation address is valid... */
1339
	if (unlikely(reloc->offset >
1340
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1341
		DRM_DEBUG("Relocation beyond object bounds: "
1342 1343 1344 1345
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1346
		return -EINVAL;
1347
	}
1348
	if (unlikely(reloc->offset & 3)) {
1349
		DRM_DEBUG("Relocation not 4-byte aligned: "
1350 1351 1352
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1353
		return -EINVAL;
1354 1355
	}

1356 1357 1358 1359 1360 1361
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1362
	 * out of our synchronisation.
1363
	 */
1364
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1365

1366
	/* and update the user's relocation entry */
1367
	return relocate_entry(vma, reloc, eb, target);
1368 1369
}

1370
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1371
{
1372
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1373 1374
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1375
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1376
	unsigned int remain;
1377

1378
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1379
	remain = entry->relocation_count;
1380 1381
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1382

1383 1384 1385 1386 1387
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1388
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1389 1390 1391 1392 1393 1394 1395
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1396

1397 1398
		/*
		 * This is the fast path and we cannot handle a pagefault
1399 1400 1401 1402 1403 1404 1405
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1406
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1407
		pagefault_enable();
1408 1409
		if (unlikely(copied)) {
			remain = -EFAULT;
1410 1411
			goto out;
		}
1412

1413
		remain -= count;
1414
		do {
1415
			u64 offset = eb_relocate_entry(eb, vma, r);
1416

1417 1418 1419
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1420
				goto out;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1446
			}
1447 1448 1449
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1450
out:
1451
	reloc_cache_reset(&eb->reloc_cache);
1452
	return remain;
1453 1454 1455
}

static int
1456
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1457
{
1458
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1459 1460 1461 1462
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1463 1464

	for (i = 0; i < entry->relocation_count; i++) {
1465
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1466

1467 1468 1469 1470
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1471
	}
1472 1473 1474 1475
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1476 1477
}

1478
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1479
{
1480 1481 1482
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1483

1484 1485 1486
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1487

1488 1489
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1490

1491 1492 1493 1494
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1495

1496 1497 1498 1499 1500
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1501
	}
1502
	return __get_user(c, end - 1);
1503
}
1504

1505
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1506
{
1507 1508 1509
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1510

1511 1512 1513 1514 1515 1516
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1517

1518 1519
		if (nreloc == 0)
			continue;
1520

1521 1522 1523
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1524

1525 1526
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1527

1528
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1529 1530 1531 1532 1533
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1534

1535 1536 1537 1538 1539 1540 1541
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1542
					     (char __user *)urelocs + copied,
1543 1544 1545 1546 1547
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1548

1549 1550
			copied += len;
		} while (copied < size);
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1569

1570 1571
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1572

1573
	return 0;
1574

1575 1576 1577 1578 1579 1580 1581 1582
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1583 1584
}

1585
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1586
{
1587 1588
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1589

1590
	if (unlikely(i915_modparams.prefault_disable))
1591
		return 0;
1592

1593 1594
	for (i = 0; i < count; i++) {
		int err;
1595

1596 1597 1598 1599
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1600

1601
	return 0;
1602 1603
}

1604
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1605
{
1606
	struct drm_device *dev = &eb->i915->drm;
1607
	bool have_copy = false;
1608
	struct i915_vma *vma;
1609 1610 1611 1612 1613 1614 1615
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1616

1617
	/* We may process another execbuffer during the unlock... */
1618
	eb_reset_vmas(eb);
1619 1620
	mutex_unlock(&dev->struct_mutex);

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1642
	}
1643 1644 1645
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1646 1647
	}

1648 1649 1650
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1651 1652
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1653
		mutex_lock(&dev->struct_mutex);
1654
		goto out;
1655 1656
	}

1657
	/* reacquire the objects */
1658 1659
	err = eb_lookup_vmas(eb);
	if (err)
1660
		goto err;
1661

1662 1663
	GEM_BUG_ON(!eb->batch);

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1676 1677
	}

1678 1679
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1680 1681 1682 1683 1684 1685
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1707
	return err;
1708 1709
}

1710
static int eb_relocate(struct i915_execbuffer *eb)
1711
{
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1731
static void eb_export_fence(struct i915_vma *vma,
1732 1733 1734
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1735
	struct reservation_object *resv = vma->resv;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1755

1756
	for (i = 0; i < count; i++) {
1757 1758
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1759
		struct drm_i915_gem_object *obj = vma->obj;
1760

1761
		if (flags & EXEC_OBJECT_CAPTURE) {
1762 1763 1764 1765 1766 1767
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1768
			capture->next = eb->request->capture_list;
1769
			capture->vma = eb->vma[i];
1770
			eb->request->capture_list = capture;
1771 1772
		}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1786
			if (i915_gem_clflush_object(obj, 0))
1787
				flags &= ~EXEC_OBJECT_ASYNC;
1788 1789
		}

1790 1791
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1792

1793
		err = i915_gem_request_await_object
1794
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1795 1796 1797 1798 1799
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1800 1801 1802 1803 1804
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1805

1806 1807 1808 1809
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1810
			i915_vma_put(vma);
1811
	}
1812
	eb->exec = NULL;
1813

1814
	/* Unconditionally flush any chipset caches (for streaming writes). */
1815
	i915_gem_chipset_flush(eb->i915);
1816

1817
	/* Unconditionally invalidate GPU caches and TLBs. */
1818
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1819 1820
}

1821
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1822
{
1823
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1824 1825
		return false;

C
Chris Wilson 已提交
1826
	/* Kernel clipping was a DRI1 misfeature */
1827 1828 1829 1830
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1843 1844
}

1845 1846 1847 1848 1849 1850 1851
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1852
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1853 1854
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1855 1856
	/*
	 * Add a reference if we're newly entering the active list.
1857 1858 1859 1860 1861 1862
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1863 1864 1865 1866 1867
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1868

1869
	obj->base.write_domain = 0;
1870
	if (flags & EXEC_OBJECT_WRITE) {
1871 1872
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1873 1874
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1875

1876
		obj->base.read_domains = 0;
1877
	}
1878
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1879

1880 1881
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1882 1883
}

1884
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1885
{
1886 1887
	u32 *cs;
	int i;
1888

1889
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1890 1891 1892
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1893

1894
	cs = intel_ring_begin(req, 4 * 2 + 2);
1895 1896
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1897

1898
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1899
	for (i = 0; i < 4; i++) {
1900 1901
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1902
	}
1903
	*cs++ = MI_NOOP;
1904
	intel_ring_advance(req, cs);
1905 1906 1907 1908

	return 0;
}

1909
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1910 1911
{
	struct drm_i915_gem_object *shadow_batch_obj;
1912
	struct i915_vma *vma;
1913
	int err;
1914

1915 1916
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1917
	if (IS_ERR(shadow_batch_obj))
1918
		return ERR_CAST(shadow_batch_obj);
1919

1920
	err = intel_engine_cmd_parser(eb->engine,
1921
				      eb->batch->obj,
1922
				      shadow_batch_obj,
1923 1924
				      eb->batch_start_offset,
				      eb->batch_len,
1925
				      is_master);
1926 1927
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1928 1929
			vma = NULL;
		else
1930
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1931 1932
		goto out;
	}
1933

C
Chris Wilson 已提交
1934 1935 1936
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1937

1938 1939 1940 1941 1942
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1943

C
Chris Wilson 已提交
1944
out:
C
Chris Wilson 已提交
1945
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1946
	return vma;
1947
}
1948

1949
static void
1950
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1951 1952 1953 1954 1955
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1956
static int eb_submit(struct i915_execbuffer *eb)
1957
{
1958
	int err;
1959

1960 1961 1962
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1963

1964 1965 1966
	err = i915_switch_context(eb->request);
	if (err)
		return err;
1967

1968
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1969 1970 1971
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1972 1973
	}

1974
	err = eb->engine->emit_bb_start(eb->request,
1975 1976 1977
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1978 1979 1980
					eb->batch_flags);
	if (err)
		return err;
1981

C
Chris Wilson 已提交
1982
	return 0;
1983 1984
}

1985 1986
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
1987
 * The engine index is returned.
1988
 */
1989
static unsigned int
1990 1991
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1992 1993 1994
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1995
	/* Check whether the file_priv has already selected one ring. */
1996 1997 1998
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1999

2000
	return file_priv->bsd_engine;
2001 2002
}

2003 2004
#define I915_USER_RINGS (4)

2005
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2006 2007 2008 2009 2010 2011 2012
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2013 2014 2015 2016
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2017 2018
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2019
	struct intel_engine_cs *engine;
2020 2021 2022

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2023
		return NULL;
2024 2025 2026 2027 2028 2029
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2030
		return NULL;
2031 2032 2033 2034 2035 2036
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2037
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2038 2039
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2040
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2041 2042 2043 2044
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2045
			return NULL;
2046 2047
		}

2048
		engine = dev_priv->engine[_VCS(bsd_idx)];
2049
	} else {
2050
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2051 2052
	}

2053
	if (!engine) {
2054
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2055
		return NULL;
2056 2057
	}

2058
	return engine;
2059 2060
}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
	const unsigned int nfences = args->num_cliprects;
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
	unsigned int n;
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

	if (nfences > SIZE_MAX / sizeof(*fences))
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(VERIFY_READ, user, nfences * 2 * sizeof(u32)))
		return ERR_PTR(-EFAULT);

	fences = kvmalloc_array(args->num_cliprects, sizeof(*fences),
2090
				__GFP_NOWARN | GFP_KERNEL);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2145
		fence = drm_syncobj_fence_get(syncobj);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
		if (!fence)
			return -EINVAL;

		err = i915_gem_request_await_dma_fence(eb->request, fence);
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2178
static int
2179
i915_gem_do_execbuffer(struct drm_device *dev,
2180 2181
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2182 2183
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2184
{
2185
	struct i915_execbuffer eb;
2186 2187 2188
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2189
	int err;
2190

2191
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2192 2193
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2194

2195 2196 2197
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2198
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2199
		args->flags |= __EXEC_HAS_RELOC;
2200

2201
	eb.exec = exec;
2202 2203
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2204 2205
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2206 2207 2208
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2209 2210
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2211
	eb.buffer_count = args->buffer_count;
2212 2213 2214
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2215
	eb.batch_flags = 0;
2216
	if (args->flags & I915_EXEC_SECURE) {
2217
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2218 2219
		    return -EPERM;

2220
		eb.batch_flags |= I915_DISPATCH_SECURE;
2221
	}
2222
	if (args->flags & I915_EXEC_IS_PINNED)
2223
		eb.batch_flags |= I915_DISPATCH_PINNED;
2224

2225 2226
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2227 2228
		return -EINVAL;

2229
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2230
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2231 2232 2233
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2234
		if (eb.engine->id != RCS) {
2235
			DRM_DEBUG("RS is not available on %s\n",
2236
				 eb.engine->name);
2237 2238 2239
			return -EINVAL;
		}

2240
		eb.batch_flags |= I915_DISPATCH_RS;
2241 2242
	}

2243 2244
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2245 2246
		if (!in_fence)
			return -EINVAL;
2247 2248 2249 2250 2251
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2252
			err = out_fence_fd;
2253
			goto err_in_fence;
2254 2255 2256
		}
	}

2257 2258 2259 2260 2261
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2262

2263 2264 2265 2266
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2267 2268
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2269 2270 2271 2272 2273
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2274
	intel_runtime_pm_get(eb.i915);
2275

2276 2277 2278
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2279

2280
	err = eb_relocate(&eb);
2281
	if (err) {
2282 2283 2284 2285 2286 2287 2288 2289 2290
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2291
	}
2292

2293
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2294
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2295 2296
		err = -EINVAL;
		goto err_vma;
2297
	}
2298 2299
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2300
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2301 2302
		err = -EINVAL;
		goto err_vma;
2303
	}
2304

2305
	if (eb_use_cmdparser(&eb)) {
2306 2307
		struct i915_vma *vma;

2308
		vma = eb_parse(&eb, drm_is_current_master(file));
2309
		if (IS_ERR(vma)) {
2310 2311
			err = PTR_ERR(vma);
			goto err_vma;
2312
		}
2313

2314
		if (vma) {
2315 2316 2317 2318 2319 2320 2321 2322 2323
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2324
			eb.batch_flags |= I915_DISPATCH_SECURE;
2325 2326
			eb.batch_start_offset = 0;
			eb.batch = vma;
2327
		}
2328 2329
	}

2330 2331
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2332

2333 2334
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2335
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2336
	 * hsw should have this fixed, but bdw mucks it up again. */
2337
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2338
		struct i915_vma *vma;
2339

2340 2341 2342 2343 2344 2345
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2346
		 *   so we don't really have issues with multiple objects not
2347 2348 2349
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2350
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2351
		if (IS_ERR(vma)) {
2352 2353
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2354
		}
2355

2356
		eb.batch = vma;
2357
	}
2358

2359 2360 2361
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2362
	/* Allocate a request for this batch buffer nice and early. */
2363 2364
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2365
		err = PTR_ERR(eb.request);
2366
		goto err_batch_unpin;
2367
	}
2368

2369
	if (in_fence) {
2370 2371
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2372 2373 2374
			goto err_request;
	}

2375 2376 2377 2378 2379 2380
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2381
	if (out_fence_fd != -1) {
2382
		out_fence = sync_file_create(&eb.request->fence);
2383
		if (!out_fence) {
2384
			err = -ENOMEM;
2385 2386 2387 2388
			goto err_request;
		}
	}

2389 2390
	/*
	 * Whilst this request exists, batch_obj will be on the
2391 2392 2393 2394 2395
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2396
	eb.request->batch = eb.batch;
2397

2398 2399
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2400
err_request:
2401
	__i915_add_request(eb.request, err == 0);
2402
	add_to_client(eb.request, file);
2403

2404 2405 2406
	if (fences)
		signal_fence_array(&eb, fences);

2407
	if (out_fence) {
2408
		if (err == 0) {
2409 2410 2411 2412 2413 2414 2415 2416
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2417

2418
err_batch_unpin:
2419
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2420
		i915_vma_unpin(eb.batch);
2421 2422 2423
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2424
	mutex_unlock(&dev->struct_mutex);
2425
err_rpm:
2426
	intel_runtime_pm_put(eb.i915);
2427 2428
	i915_gem_context_put(eb.ctx);
err_destroy:
2429
	eb_destroy(&eb);
2430
err_out_fence:
2431 2432
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2433
err_in_fence:
2434
	dma_fence_put(in_fence);
2435
	return err;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2446 2447 2448
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2449 2450 2451 2452
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2453 2454
	unsigned int i;
	int err;
2455

2456 2457
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2458 2459 2460
		return -EINVAL;
	}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2475
	/* Copy in the exec list from userland */
2476
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
2477
				   __GFP_NOWARN | GFP_KERNEL);
2478
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2479
				    __GFP_NOWARN | GFP_KERNEL);
2480
	if (exec_list == NULL || exec2_list == NULL) {
2481
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2482
			  args->buffer_count);
M
Michal Hocko 已提交
2483 2484
		kvfree(exec_list);
		kvfree(exec2_list);
2485 2486
		return -ENOMEM;
	}
2487
	err = copy_from_user(exec_list,
2488
			     u64_to_user_ptr(args->buffers_ptr),
2489
			     sizeof(*exec_list) * args->buffer_count);
2490
	if (err) {
2491
		DRM_DEBUG("copy %d exec entries failed %d\n",
2492
			  args->buffer_count, err);
M
Michal Hocko 已提交
2493 2494
		kvfree(exec_list);
		kvfree(exec2_list);
2495 2496 2497 2498 2499 2500 2501 2502 2503
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2504
		if (INTEL_GEN(to_i915(dev)) < 4)
2505 2506 2507 2508 2509
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2510
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2511
	if (exec2.flags & __EXEC_HAS_RELOC) {
2512
		struct drm_i915_gem_exec_object __user *user_exec_list =
2513
			u64_to_user_ptr(args->buffers_ptr);
2514

2515
		/* Copy the new buffer offsets back to the user's exec list. */
2516
		for (i = 0; i < args->buffer_count; i++) {
2517 2518 2519
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2520
			exec2_list[i].offset =
2521 2522 2523 2524 2525
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2526
				break;
2527 2528 2529
		}
	}

M
Michal Hocko 已提交
2530 2531
	kvfree(exec_list);
	kvfree(exec2_list);
2532
	return err;
2533 2534 2535 2536 2537 2538
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2539 2540 2541
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2542
	struct drm_i915_gem_execbuffer2 *args = data;
2543
	struct drm_i915_gem_exec_object2 *exec2_list;
2544
	struct drm_syncobj **fences = NULL;
2545
	int err;
2546

2547
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2548
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2549 2550 2551
		return -EINVAL;
	}

2552 2553 2554 2555 2556
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
2557
				    __GFP_NOWARN | GFP_KERNEL);
2558
	if (exec2_list == NULL) {
2559
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2560 2561 2562
			  args->buffer_count);
		return -ENOMEM;
	}
2563 2564 2565 2566
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2567
		kvfree(exec2_list);
2568 2569 2570
		return -EFAULT;
	}

2571 2572 2573 2574 2575 2576 2577 2578 2579
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2580 2581 2582 2583 2584 2585 2586 2587

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2588
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2589 2590
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2591

2592 2593
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2594
		for (i = 0; i < args->buffer_count; i++) {
2595 2596 2597
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2598
			exec2_list[i].offset =
2599 2600 2601 2602
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2603
		}
2604 2605
end_user:
		user_access_end();
2606 2607
	}

2608
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2609
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2610
	kvfree(exec2_list);
2611
	return err;
2612
}