i915_gem_execbuffer.c 70.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60 61
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
62 63

#define BATCH_OFFSET_BIAS (256*1024)
64

65 66
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

190
struct i915_execbuffer {
191 192 193 194
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
195 196
	struct i915_vma **vma;
	unsigned int *flags;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
219
	struct reloc_cache {
220 221 222
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
223
		unsigned int gen; /** Cached value of INTEL_GEN */
224
		bool use_64bit_reloc : 1;
225 226 227
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
228 229 230 231

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
232
	} reloc_cache;
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
248 249
};

250
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

271
static int eb_create(struct i915_execbuffer *eb)
272
{
273 274
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
275

276 277 278 279 280 281 282 283 284 285 286
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
287
		do {
288 289 290 291 292 293 294 295 296 297 298 299
			unsigned int flags;

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
			flags = GFP_TEMPORARY;
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

300
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
301
					      flags);
302 303 304 305
			if (eb->buckets)
				break;
		} while (--size);

306 307
		if (unlikely(!size))
			return -ENOMEM;
308

309
		eb->lut_size = size;
310
	} else {
311
		eb->lut_size = -eb->buffer_count;
312
	}
313

314
	return 0;
315 316
}

317 318
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
319 320
		 const struct i915_vma *vma,
		 unsigned int flags)
321 322 323 324 325 326 327
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

328
	if (flags & EXEC_OBJECT_PINNED &&
329 330 331
	    vma->node.start != entry->offset)
		return true;

332
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
333 334 335
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

336
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
337 338 339 340 341 342
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

343
static inline bool
344
eb_pin_vma(struct i915_execbuffer *eb,
345
	   const struct drm_i915_gem_exec_object2 *entry,
346 347
	   struct i915_vma *vma)
{
348 349
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
350

351
	if (vma->node.size)
352
		pin_flags = vma->node.start;
353
	else
354
		pin_flags = entry->offset & PIN_OFFSET_MASK;
355

356 357 358
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
359

360 361
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
362

363
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
364 365
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
366
			return false;
367 368 369
		}

		if (i915_vma_pin_fence(vma))
370
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
371 372
	}

373 374
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
375 376
}

377
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
378
{
379
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
380

381
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
382 383
		i915_vma_unpin_fence(vma);

384
	__i915_vma_unpin(vma);
385 386
}

387
static inline void
388
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
389
{
390
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
391
		return;
392

393 394
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
395 396
}

397 398 399 400
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
401
{
402 403
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
404

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
422 423
	}

424
	if (unlikely(vma->exec_flags)) {
425 426 427 428 429 430 431 432 433 434 435 436
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

437 438 439 440 441 442 443 444 445 446 447 448
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

449
	return 0;
450 451
}

452
static int
453
eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
454
{
455
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
456 457 458 459 460 461 462 463
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
464 465
	}

466
	if (eb->lut_size > 0) {
467
		vma->exec_handle = entry->handle;
468
		hlist_add_head(&vma->exec_node,
469 470
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
471
	}
472

473 474 475 476 477 478 479 480 481
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
482
	eb->vma[i] = vma;
483
	eb->flags[i] = entry->flags;
484
	vma->exec_flags = &eb->flags[i];
485 486

	err = 0;
487
	if (eb_pin_vma(eb, entry, vma)) {
488 489 490 491
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
492 493 494 495 496 497
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
498 499 500 501 502 503 504 505 506 507
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

508 509 510 511 512
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
513 514 515 516 517 518 519 520 521

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
522 523 524
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
525 526
	int err;

527 528 529
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
530 531 532 533 534

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
535 536
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
537

538 539
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
540

541 542 543 544 545
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
546 547
	}

548 549 550
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
551 552 553 554 555 556 557 558
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

559
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
560 561 562 563 564 565 566
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
567
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
568 569
	}

570 571
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
572

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
613 614
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
615

616 617
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
618 619
				continue;

620
			eb_unreserve_vma(vma, &eb->flags[i]);
621

622
			if (flags & EXEC_OBJECT_PINNED)
623
				list_add(&vma->exec_link, &eb->unbound);
624
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
646
}
647

648 649
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
650 651 652 653
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
654 655 656 657 658 659 660
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
661 662
	if (unlikely(!ctx))
		return -ENOENT;
663

664
	eb->ctx = ctx;
665 666 667 668 669 670 671 672 673 674
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
675
{
676
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
677
	struct drm_i915_gem_object *uninitialized_var(obj);
678 679
	unsigned int i;
	int err;
680

681 682 683 684 685 686
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

687 688
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
689

690 691
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
692
		struct i915_lut_handle *lut;
693
		struct i915_vma *vma;
694

695 696
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
697
			goto add_vma;
698

699
		obj = i915_gem_object_lookup(eb->file, handle);
700
		if (unlikely(!obj)) {
701
			err = -ENOENT;
702
			goto err_vma;
703 704
		}

705
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
706
		if (unlikely(IS_ERR(vma))) {
707
			err = PTR_ERR(vma);
708
			goto err_obj;
709 710
		}

711 712 713 714 715 716 717 718 719 720
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
			kfree(lut);
			goto err_obj;
721
		}
722

723 724 725 726 727 728 729 730
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

		/* transfer ref to ctx */
		obj = NULL;

731
add_vma:
732
		err = eb_add_vma(eb, i, vma);
733
		if (unlikely(err))
734
			goto err_obj;
735

736 737
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
738 739
	}

740 741
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
742 743
	eb->batch = eb->vma[i];
	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
744

745
	/*
746 747 748 749 750 751 752
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
753
	 */
754 755
	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
756
	if (eb->reloc_cache.has_fence)
757
		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
758

759 760 761
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

762 763 764 765 766
err_obj:
	if (obj)
		i915_gem_object_put(obj);
err_vma:
	eb->vma[i] = NULL;
767
	return err;
768 769
}

770
static struct i915_vma *
771
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
772
{
773 774
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
775
			return NULL;
776
		return eb->vma[handle];
777 778
	} else {
		struct hlist_head *head;
779
		struct i915_vma *vma;
780

781
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
782
		hlist_for_each_entry(vma, head, exec_node) {
783 784
			if (vma->exec_handle == handle)
				return vma;
785 786 787
		}
		return NULL;
	}
788 789
}

790
static void eb_release_vmas(const struct i915_execbuffer *eb)
791
{
792 793 794 795
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
796 797
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
798

799
		if (!vma)
800
			break;
801

802 803 804
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
805

806 807
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
808

809
		if (flags & __EXEC_OBJECT_HAS_REF)
810
			i915_vma_put(vma);
811
	}
812 813
}

814
static void eb_reset_vmas(const struct i915_execbuffer *eb)
815
{
816
	eb_release_vmas(eb);
817
	if (eb->lut_size > 0)
818 819
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
820 821
}

822
static void eb_destroy(const struct i915_execbuffer *eb)
823
{
824 825
	GEM_BUG_ON(eb->reloc_cache.rq);

826
	if (eb->lut_size > 0)
827
		kfree(eb->buckets);
828 829
}

830
static inline u64
831
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
832
		  const struct i915_vma *target)
833
{
834
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
835 836
}

837 838
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
839
{
840
	cache->page = -1;
841
	cache->vaddr = 0;
842
	/* Must be a variable in the struct to allow GCC to unroll. */
843
	cache->gen = INTEL_GEN(i915);
844
	cache->has_llc = HAS_LLC(i915);
845
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
846 847
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
848
	cache->node.allocated = false;
849 850
	cache->rq = NULL;
	cache->rq_size = 0;
851
}
852

853 854 855 856 857 858 859 860
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
861 862
}

863 864
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

865 866 867 868 869 870 871
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

872 873 874 875 876 877 878 879 880 881 882
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

883
static void reloc_cache_reset(struct reloc_cache *cache)
884
{
885
	void *vaddr;
886

887 888 889
	if (cache->rq)
		reloc_gpu_flush(cache);

890 891
	if (!cache->vaddr)
		return;
892

893 894 895 896
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
897

898 899 900
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
901
		wmb();
902
		io_mapping_unmap_atomic((void __iomem *)vaddr);
903
		if (cache->node.allocated) {
904
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
905 906 907

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
908
					       cache->node.size);
909 910 911
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
912
		}
913
	}
914 915 916

	cache->vaddr = 0;
	cache->page = -1;
917 918 919 920
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
921
			unsigned long page)
922
{
923 924 925 926 927 928
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
929
		int err;
930

931 932 933
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
934 935 936

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
937

938 939 940 941
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
942 943
	}

944 945
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
946
	cache->page = page;
947

948
	return vaddr;
949 950
}

951 952
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
953
			 unsigned long page)
954
{
955
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
956
	unsigned long offset;
957
	void *vaddr;
958

959
	if (cache->vaddr) {
960
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
961 962
	} else {
		struct i915_vma *vma;
963
		int err;
964

965
		if (use_cpu_reloc(cache, obj))
966
			return NULL;
967

968 969 970
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
971

972 973
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
974 975
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
976
			err = drm_mm_insert_node_in_range
977
				(&ggtt->base.mm, &cache->node,
978
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
979
				 0, ggtt->mappable_end,
980
				 DRM_MM_INSERT_LOW);
981
			if (err) /* no inactive aperture space, use cpu reloc */
982
				return NULL;
983
		} else {
984 985
			err = i915_vma_put_fence(vma);
			if (err) {
986
				i915_vma_unpin(vma);
987
				return ERR_PTR(err);
988
			}
989

990 991
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
992
		}
993
	}
994

995 996
	offset = cache->node.start;
	if (cache->node.allocated) {
997
		wmb();
998 999 1000 1001 1002
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1003 1004
	}

1005 1006
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1007 1008
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1009

1010
	return vaddr;
1011 1012
}

1013 1014
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1015
			 unsigned long page)
1016
{
1017
	void *vaddr;
1018

1019 1020 1021 1022 1023 1024 1025 1026
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1027 1028
	}

1029
	return vaddr;
1030 1031
}

1032
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1033
{
1034 1035 1036 1037 1038
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1039

1040
		*addr = value;
1041

1042 1043
		/*
		 * Writes to the same cacheline are serialised by the CPU
1044 1045 1046 1047 1048 1049 1050 1051 1052
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
				      cache->has_llc ? I915_MAP_WB : I915_MAP_WC);
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		goto err_request;

	err = i915_switch_context(rq);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1116
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1117
	i915_vma_move_to_active(batch, rq, 0);
1118 1119 1120
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1121 1122
	i915_vma_unpin(batch);

1123
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1124 1125 1126
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1170 1171
static u64
relocate_entry(struct i915_vma *vma,
1172
	       const struct drm_i915_gem_relocation_entry *reloc,
1173 1174
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1175
{
1176
	u64 offset = reloc->offset;
1177 1178
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1179
	void *vaddr;
1180

1181 1182
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1183 1184 1185
	     !reservation_object_test_signaled_rcu(vma->resv, true)) &&
	    __intel_engine_can_store_dword(eb->reloc_cache.gen,
					   eb->engine->class)) {
1186 1187 1188 1189 1190 1191 1192 1193 1194
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1195
		else
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1242
repeat:
1243
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1244 1245 1246 1247 1248
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1249
			eb->reloc_cache.vaddr);
1250 1251 1252 1253 1254 1255

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1256 1257
	}

1258
out:
1259
	return target->node.start | UPDATE;
1260 1261
}

1262 1263 1264 1265
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1266
{
1267
	struct i915_vma *target;
1268
	int err;
1269

1270
	/* we've already hold a reference to all valid objects */
1271 1272
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1273
		return -ENOENT;
1274

1275
	/* Validate that the target is in a valid r/w GPU domain */
1276
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1277
		DRM_DEBUG("reloc with multiple write domains: "
1278
			  "target %d offset %d "
1279
			  "read %08x write %08x",
1280
			  reloc->target_handle,
1281 1282 1283
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1284
		return -EINVAL;
1285
	}
1286 1287
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1288
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1289
			  "target %d offset %d "
1290
			  "read %08x write %08x",
1291
			  reloc->target_handle,
1292 1293 1294
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1295
		return -EINVAL;
1296 1297
	}

1298
	if (reloc->write_domain) {
1299
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1315
	}
1316

1317 1318
	/*
	 * If the relocation already has the right value in it, no
1319 1320
	 * more work needs to be done.
	 */
1321 1322
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1323
		return 0;
1324 1325

	/* Check that the relocation address is valid... */
1326
	if (unlikely(reloc->offset >
1327
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1328
		DRM_DEBUG("Relocation beyond object bounds: "
1329 1330 1331 1332
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1333
		return -EINVAL;
1334
	}
1335
	if (unlikely(reloc->offset & 3)) {
1336
		DRM_DEBUG("Relocation not 4-byte aligned: "
1337 1338 1339
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1340
		return -EINVAL;
1341 1342
	}

1343 1344 1345 1346 1347 1348
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1349
	 * out of our synchronisation.
1350
	 */
1351
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1352

1353
	/* and update the user's relocation entry */
1354
	return relocate_entry(vma, reloc, eb, target);
1355 1356
}

1357
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1358
{
1359
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1360 1361
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1362
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1363
	unsigned int remain;
1364

1365
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1366
	remain = entry->relocation_count;
1367 1368
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1369

1370 1371 1372 1373 1374
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1375
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1376 1377 1378 1379 1380 1381 1382
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1383

1384 1385
		/*
		 * This is the fast path and we cannot handle a pagefault
1386 1387 1388 1389 1390 1391 1392
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1393
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1394
		pagefault_enable();
1395 1396
		if (unlikely(copied)) {
			remain = -EFAULT;
1397 1398
			goto out;
		}
1399

1400
		remain -= count;
1401
		do {
1402
			u64 offset = eb_relocate_entry(eb, vma, r);
1403

1404 1405 1406
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1407
				goto out;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1433
			}
1434 1435 1436
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1437
out:
1438
	reloc_cache_reset(&eb->reloc_cache);
1439
	return remain;
1440 1441 1442
}

static int
1443
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1444
{
1445
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1446 1447 1448 1449
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1450 1451

	for (i = 0; i < entry->relocation_count; i++) {
1452
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1453

1454 1455 1456 1457
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1458
	}
1459 1460 1461 1462
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1463 1464
}

1465
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1466
{
1467 1468 1469
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1470

1471 1472 1473
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1474

1475 1476
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1477

1478 1479 1480 1481
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1482

1483 1484 1485 1486 1487
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1488
	}
1489
	return __get_user(c, end - 1);
1490
}
1491

1492
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1493
{
1494 1495 1496
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1497

1498 1499 1500 1501 1502 1503
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1504

1505 1506
		if (nreloc == 0)
			continue;
1507

1508 1509 1510
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1511

1512 1513
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1514

1515 1516 1517 1518 1519 1520
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1535

1536 1537
			copied += len;
		} while (copied < size);
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1556

1557 1558
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1559

1560
	return 0;
1561

1562 1563 1564 1565 1566 1567 1568 1569
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1570 1571
}

1572
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1573
{
1574 1575
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1576

1577 1578
	if (unlikely(i915.prefault_disable))
		return 0;
1579

1580 1581
	for (i = 0; i < count; i++) {
		int err;
1582

1583 1584 1585 1586
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1587

1588
	return 0;
1589 1590
}

1591
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1592
{
1593
	struct drm_device *dev = &eb->i915->drm;
1594
	bool have_copy = false;
1595
	struct i915_vma *vma;
1596 1597 1598 1599 1600 1601 1602
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1603

1604
	/* We may process another execbuffer during the unlock... */
1605
	eb_reset_vmas(eb);
1606 1607
	mutex_unlock(&dev->struct_mutex);

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1629
	}
1630 1631 1632
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1633 1634
	}

1635 1636 1637
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1638 1639
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1640
		mutex_lock(&dev->struct_mutex);
1641
		goto out;
1642 1643
	}

1644
	/* reacquire the objects */
1645 1646
	err = eb_lookup_vmas(eb);
	if (err)
1647
		goto err;
1648

1649 1650
	GEM_BUG_ON(!eb->batch);

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1663 1664
	}

1665 1666
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1667 1668 1669 1670 1671 1672
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1694
	return err;
1695 1696
}

1697
static int eb_relocate(struct i915_execbuffer *eb)
1698
{
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1718
static void eb_export_fence(struct i915_vma *vma,
1719 1720 1721
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1722
	struct reservation_object *resv = vma->resv;
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1742

1743
	for (i = 0; i < count; i++) {
1744 1745
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1746
		struct drm_i915_gem_object *obj = vma->obj;
1747

1748
		if (flags & EXEC_OBJECT_CAPTURE) {
1749 1750 1751 1752 1753 1754
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1755
			capture->next = eb->request->capture_list;
1756
			capture->vma = eb->vma[i];
1757
			eb->request->capture_list = capture;
1758 1759
		}

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1773
			if (i915_gem_clflush_object(obj, 0))
1774
				flags &= ~EXEC_OBJECT_ASYNC;
1775 1776
		}

1777 1778
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1779

1780
		err = i915_gem_request_await_object
1781
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1782 1783 1784 1785 1786
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1787 1788 1789 1790 1791
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1792

1793 1794 1795 1796
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1797
			i915_vma_put(vma);
1798
	}
1799
	eb->exec = NULL;
1800

1801
	/* Unconditionally flush any chipset caches (for streaming writes). */
1802
	i915_gem_chipset_flush(eb->i915);
1803

1804
	/* Unconditionally invalidate GPU caches and TLBs. */
1805
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1806 1807
}

1808
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1809
{
1810
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1811 1812
		return false;

C
Chris Wilson 已提交
1813
	/* Kernel clipping was a DRI1 misfeature */
1814 1815 1816 1817
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1830 1831
}

1832 1833 1834 1835 1836 1837 1838
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1839
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1840 1841
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1842 1843
	/*
	 * Add a reference if we're newly entering the active list.
1844 1845 1846 1847 1848 1849
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1850 1851 1852 1853 1854
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1855

1856
	obj->base.write_domain = 0;
1857
	if (flags & EXEC_OBJECT_WRITE) {
1858 1859
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1860 1861
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1862

1863
		obj->base.read_domains = 0;
1864
	}
1865
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1866

1867 1868
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1869 1870
}

1871
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1872
{
1873 1874
	u32 *cs;
	int i;
1875

1876
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1877 1878 1879
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1880

1881
	cs = intel_ring_begin(req, 4 * 2 + 2);
1882 1883
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1884

1885
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1886
	for (i = 0; i < 4; i++) {
1887 1888
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1889
	}
1890
	*cs++ = MI_NOOP;
1891
	intel_ring_advance(req, cs);
1892 1893 1894 1895

	return 0;
}

1896
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1897 1898
{
	struct drm_i915_gem_object *shadow_batch_obj;
1899
	struct i915_vma *vma;
1900
	int err;
1901

1902 1903
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1904
	if (IS_ERR(shadow_batch_obj))
1905
		return ERR_CAST(shadow_batch_obj);
1906

1907
	err = intel_engine_cmd_parser(eb->engine,
1908
				      eb->batch->obj,
1909
				      shadow_batch_obj,
1910 1911
				      eb->batch_start_offset,
				      eb->batch_len,
1912
				      is_master);
1913 1914
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1915 1916
			vma = NULL;
		else
1917
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1918 1919
		goto out;
	}
1920

C
Chris Wilson 已提交
1921 1922 1923
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1924

1925 1926 1927 1928 1929
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1930

C
Chris Wilson 已提交
1931
out:
C
Chris Wilson 已提交
1932
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1933
	return vma;
1934
}
1935

1936
static void
1937
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1938 1939 1940 1941 1942
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1943
static int eb_submit(struct i915_execbuffer *eb)
1944
{
1945
	int err;
1946

1947 1948 1949
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1950

1951 1952 1953
	err = i915_switch_context(eb->request);
	if (err)
		return err;
1954

1955
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1956 1957 1958
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1959 1960
	}

1961
	err = eb->engine->emit_bb_start(eb->request,
1962 1963 1964
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1965 1966 1967
					eb->batch_flags);
	if (err)
		return err;
1968

C
Chris Wilson 已提交
1969
	return 0;
1970 1971
}

1972 1973
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
1974
 * The engine index is returned.
1975
 */
1976
static unsigned int
1977 1978
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1979 1980 1981
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1982
	/* Check whether the file_priv has already selected one ring. */
1983 1984 1985
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
1986

1987
	return file_priv->bsd_engine;
1988 1989
}

1990 1991
#define I915_USER_RINGS (4)

1992
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1993 1994 1995 1996 1997 1998 1999
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2000 2001 2002 2003
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2004 2005
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2006
	struct intel_engine_cs *engine;
2007 2008 2009

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2010
		return NULL;
2011 2012 2013 2014 2015 2016
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2017
		return NULL;
2018 2019 2020 2021 2022 2023
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2024
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2025 2026
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2027
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2028 2029 2030 2031
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2032
			return NULL;
2033 2034
		}

2035
		engine = dev_priv->engine[_VCS(bsd_idx)];
2036
	} else {
2037
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2038 2039
	}

2040
	if (!engine) {
2041
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2042
		return NULL;
2043 2044
	}

2045
	return engine;
2046 2047
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
	const unsigned int nfences = args->num_cliprects;
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
	unsigned int n;
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

	if (nfences > SIZE_MAX / sizeof(*fences))
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(VERIFY_READ, user, nfences * 2 * sizeof(u32)))
		return ERR_PTR(-EFAULT);

	fences = kvmalloc_array(args->num_cliprects, sizeof(*fences),
				__GFP_NOWARN | GFP_TEMPORARY);
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

		rcu_read_lock();
		fence = dma_fence_get_rcu_safe(&syncobj->fence);
		rcu_read_unlock();
		if (!fence)
			return -EINVAL;

		err = i915_gem_request_await_dma_fence(eb->request, fence);
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2167
static int
2168
i915_gem_do_execbuffer(struct drm_device *dev,
2169 2170
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2171 2172
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2173
{
2174
	struct i915_execbuffer eb;
2175 2176 2177
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2178
	int err;
2179

2180 2181
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2182

2183 2184 2185
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2186
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2187
		args->flags |= __EXEC_HAS_RELOC;
2188

2189
	eb.exec = exec;
2190 2191
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2192 2193
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2194 2195 2196
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2197 2198
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2199
	eb.buffer_count = args->buffer_count;
2200 2201 2202
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2203
	eb.batch_flags = 0;
2204
	if (args->flags & I915_EXEC_SECURE) {
2205
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2206 2207
		    return -EPERM;

2208
		eb.batch_flags |= I915_DISPATCH_SECURE;
2209
	}
2210
	if (args->flags & I915_EXEC_IS_PINNED)
2211
		eb.batch_flags |= I915_DISPATCH_PINNED;
2212

2213 2214
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2215 2216
		return -EINVAL;

2217
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2218
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2219 2220 2221
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2222
		if (eb.engine->id != RCS) {
2223
			DRM_DEBUG("RS is not available on %s\n",
2224
				 eb.engine->name);
2225 2226 2227
			return -EINVAL;
		}

2228
		eb.batch_flags |= I915_DISPATCH_RS;
2229 2230
	}

2231 2232
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2233 2234
		if (!in_fence)
			return -EINVAL;
2235 2236 2237 2238 2239
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2240
			err = out_fence_fd;
2241
			goto err_in_fence;
2242 2243 2244
		}
	}

2245 2246 2247 2248 2249
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2250

2251 2252 2253 2254
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2255 2256
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2257 2258 2259 2260 2261
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2262
	intel_runtime_pm_get(eb.i915);
2263

2264 2265 2266
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2267

2268
	err = eb_relocate(&eb);
2269
	if (err) {
2270 2271 2272 2273 2274 2275 2276 2277 2278
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2279
	}
2280

2281
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2282
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2283 2284
		err = -EINVAL;
		goto err_vma;
2285
	}
2286 2287
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2288
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2289 2290
		err = -EINVAL;
		goto err_vma;
2291
	}
2292

2293
	if (eb.engine->needs_cmd_parser && eb.batch_len) {
2294 2295
		struct i915_vma *vma;

2296
		vma = eb_parse(&eb, drm_is_current_master(file));
2297
		if (IS_ERR(vma)) {
2298 2299
			err = PTR_ERR(vma);
			goto err_vma;
2300
		}
2301

2302
		if (vma) {
2303 2304 2305 2306 2307 2308 2309 2310 2311
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2312
			eb.batch_flags |= I915_DISPATCH_SECURE;
2313 2314
			eb.batch_start_offset = 0;
			eb.batch = vma;
2315
		}
2316 2317
	}

2318 2319
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2320

2321 2322
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2323
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2324
	 * hsw should have this fixed, but bdw mucks it up again. */
2325
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2326
		struct i915_vma *vma;
2327

2328 2329 2330 2331 2332 2333
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2334
		 *   so we don't really have issues with multiple objects not
2335 2336 2337
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2338
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2339
		if (IS_ERR(vma)) {
2340 2341
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2342
		}
2343

2344
		eb.batch = vma;
2345
	}
2346

2347 2348 2349
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2350
	/* Allocate a request for this batch buffer nice and early. */
2351 2352
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2353
		err = PTR_ERR(eb.request);
2354
		goto err_batch_unpin;
2355
	}
2356

2357
	if (in_fence) {
2358 2359
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2360 2361 2362
			goto err_request;
	}

2363 2364 2365 2366 2367 2368
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2369
	if (out_fence_fd != -1) {
2370
		out_fence = sync_file_create(&eb.request->fence);
2371
		if (!out_fence) {
2372
			err = -ENOMEM;
2373 2374 2375 2376
			goto err_request;
		}
	}

2377 2378
	/*
	 * Whilst this request exists, batch_obj will be on the
2379 2380 2381 2382 2383
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2384
	eb.request->batch = eb.batch;
2385

2386 2387
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2388
err_request:
2389
	__i915_add_request(eb.request, err == 0);
2390
	add_to_client(eb.request, file);
2391

2392 2393 2394
	if (fences)
		signal_fence_array(&eb, fences);

2395
	if (out_fence) {
2396
		if (err == 0) {
2397 2398 2399 2400 2401 2402 2403 2404
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2405

2406
err_batch_unpin:
2407
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2408
		i915_vma_unpin(eb.batch);
2409 2410 2411
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2412
	mutex_unlock(&dev->struct_mutex);
2413
err_rpm:
2414
	intel_runtime_pm_put(eb.i915);
2415 2416
	i915_gem_context_put(eb.ctx);
err_destroy:
2417
	eb_destroy(&eb);
2418
err_out_fence:
2419 2420
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2421
err_in_fence:
2422
	dma_fence_put(in_fence);
2423
	return err;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2434 2435 2436
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2437 2438 2439 2440
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2441 2442
	unsigned int i;
	int err;
2443

2444 2445
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2446 2447 2448
		return -EINVAL;
	}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2463
	/* Copy in the exec list from userland */
2464 2465 2466 2467
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2468
	if (exec_list == NULL || exec2_list == NULL) {
2469
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2470
			  args->buffer_count);
M
Michal Hocko 已提交
2471 2472
		kvfree(exec_list);
		kvfree(exec2_list);
2473 2474
		return -ENOMEM;
	}
2475
	err = copy_from_user(exec_list,
2476
			     u64_to_user_ptr(args->buffers_ptr),
2477
			     sizeof(*exec_list) * args->buffer_count);
2478
	if (err) {
2479
		DRM_DEBUG("copy %d exec entries failed %d\n",
2480
			  args->buffer_count, err);
M
Michal Hocko 已提交
2481 2482
		kvfree(exec_list);
		kvfree(exec2_list);
2483 2484 2485 2486 2487 2488 2489 2490 2491
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2492
		if (INTEL_GEN(to_i915(dev)) < 4)
2493 2494 2495 2496 2497
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2498
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2499
	if (exec2.flags & __EXEC_HAS_RELOC) {
2500
		struct drm_i915_gem_exec_object __user *user_exec_list =
2501
			u64_to_user_ptr(args->buffers_ptr);
2502

2503
		/* Copy the new buffer offsets back to the user's exec list. */
2504
		for (i = 0; i < args->buffer_count; i++) {
2505 2506 2507
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2508
			exec2_list[i].offset =
2509 2510 2511 2512 2513
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2514
				break;
2515 2516 2517
		}
	}

M
Michal Hocko 已提交
2518 2519
	kvfree(exec_list);
	kvfree(exec2_list);
2520
	return err;
2521 2522 2523 2524 2525 2526
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2527 2528 2529
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2530
	struct drm_i915_gem_execbuffer2 *args = data;
2531
	struct drm_i915_gem_exec_object2 *exec2_list;
2532
	struct drm_syncobj **fences = NULL;
2533
	int err;
2534

2535
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2536
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2537 2538 2539
		return -EINVAL;
	}

2540 2541 2542 2543 2544 2545
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2546
	if (exec2_list == NULL) {
2547
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2548 2549 2550
			  args->buffer_count);
		return -ENOMEM;
	}
2551 2552 2553 2554
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2555
		kvfree(exec2_list);
2556 2557 2558
		return -EFAULT;
	}

2559 2560 2561 2562 2563 2564 2565 2566 2567
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2568 2569 2570 2571 2572 2573 2574 2575

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2576
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2577 2578
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2579

2580 2581
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2582
		for (i = 0; i < args->buffer_count; i++) {
2583 2584 2585
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2586
			exec2_list[i].offset =
2587 2588 2589 2590
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2591
		}
2592 2593
end_user:
		user_access_end();
2594 2595
	}

2596
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2597
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2598
	kvfree(exec2_list);
2599
	return err;
2600
}