i915_gem_execbuffer.c 68.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34 35
#include <drm/drmP.h>
#include <drm/i915_drm.h>
36

37
#include "i915_drv.h"
38
#include "i915_gem_clflush.h"
39 40
#include "i915_trace.h"
#include "intel_drv.h"
41
#include "intel_frontbuffer.h"
42

43 44 45 46 47 48
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
49

50 51 52 53 54 55
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
56 57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
61 62

#define BATCH_OFFSET_BIAS (256*1024)
63

64 65
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

189
struct i915_execbuffer {
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
216
	struct reloc_cache {
217 218 219
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
220
		unsigned int gen; /** Cached value of INTEL_GEN */
221
		bool use_64bit_reloc : 1;
222 223 224
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
225 226 227 228

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
229
	} reloc_cache;
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
245 246
};

247 248 249 250 251 252 253 254
/*
 * As an alternative to creating a hashtable of handle-to-vma for a batch,
 * we used the last available reserved field in the execobject[] and stash
 * a link from the execobj to its vma.
 */
#define __exec_to_vma(ee) (ee)->rsvd2
#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee))

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

274
static int eb_create(struct i915_execbuffer *eb)
275
{
276 277
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
278

279 280 281 282 283 284 285 286 287 288 289
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
290
		do {
291 292 293 294 295 296 297 298 299 300 301 302
			unsigned int flags;

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
			flags = GFP_TEMPORARY;
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

303
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
304
					      flags);
305 306 307 308
			if (eb->buckets)
				break;
		} while (--size);

309 310
		if (unlikely(!size))
			return -ENOMEM;
311

312
		eb->lut_size = size;
313
	} else {
314
		eb->lut_size = -eb->buffer_count;
315
	}
316

317
	return 0;
318 319
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
		 const struct i915_vma *vma)
{
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return true;

	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

	if (entry->flags & EXEC_OBJECT_PINNED &&
	    vma->node.start != entry->offset)
		return true;

	if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

static inline void
eb_pin_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
{
	u64 flags;

355 356 357 358 359 360
	if (vma->node.size)
		flags = vma->node.start;
	else
		flags = entry->offset & PIN_OFFSET_MASK;

	flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
361 362
	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT))
		flags |= PIN_GLOBAL;
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	if (unlikely(i915_vma_pin(vma, 0, 0, flags)))
		return;

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
			return;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
}

380 381 382 383
static inline void
__eb_unreserve_vma(struct i915_vma *vma,
		   const struct drm_i915_gem_exec_object2 *entry)
{
384 385
	GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN));

386 387 388
	if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE))
		i915_vma_unpin_fence(vma);

389
	__i915_vma_unpin(vma);
390 391
}

392 393 394
static inline void
eb_unreserve_vma(struct i915_vma *vma,
		 struct drm_i915_gem_exec_object2 *entry)
395
{
396 397
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return;
398 399

	__eb_unreserve_vma(vma, entry);
400
	entry->flags &= ~__EXEC_OBJECT_RESERVED;
401 402
}

403 404 405 406
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
407
{
408 409
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
428 429
	}

430 431 432 433 434 435 436 437 438 439 440 441 442 443
	if (unlikely(vma->exec_entry)) {
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

	return 0;
444 445
}

446 447 448 449
static int
eb_add_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
450
{
451 452 453 454 455 456 457 458
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
459 460
	}

461
	if (eb->lut_size > 0) {
462
		vma->exec_handle = entry->handle;
463
		hlist_add_head(&vma->exec_node,
464 465
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
466
	}
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
	vma->exec_entry = entry;
490
	__exec_to_vma(entry) = (uintptr_t)vma;
491 492

	err = 0;
493
	eb_pin_vma(eb, entry, vma);
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	if (eb_vma_misplaced(entry, vma)) {
		eb_unreserve_vma(vma, entry);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
	} else {
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

515 516 517 518 519
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	u64 flags;
	int err;

	flags = PIN_USER | PIN_NONBLOCK;
	if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
		flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		flags |= PIN_ZONE_4G;

	if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
		flags |= PIN_MAPPABLE;

	if (entry->flags & EXEC_OBJECT_PINNED) {
		flags |= entry->offset | PIN_OFFSET_FIXED;
		flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */
	} else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) {
		flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
	}

	err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags);
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

574 575 576
	entry->flags |= __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma));

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];

			if (entry->flags & EXEC_OBJECT_PINNED &&
			    entry->flags & __EXEC_OBJECT_HAS_PIN)
				continue;

			vma = exec_to_vma(entry);
			eb_unreserve_vma(vma, entry);

			if (entry->flags & EXEC_OBJECT_PINNED)
				list_add(&vma->exec_link, &eb->unbound);
			else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
650
}
651

652
static inline struct hlist_head *
653
ht_head(const  struct i915_gem_context_vma_lut *lut, u32 handle)
654
{
655
	return &lut->ht[hash_32(handle, lut->ht_bits)];
656 657 658
}

static inline bool
659
ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
660
{
661 662
	return (4*lut->ht_count > 3*lut->ht_size ||
		4*lut->ht_count + 1 < lut->ht_size);
663 664
}

665 666
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
667 668 669 670
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
671 672 673 674 675 676 677
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
678 679
	if (unlikely(!ctx))
		return -ENOENT;
680 681 682 683

	if (unlikely(i915_gem_context_is_banned(ctx))) {
		DRM_DEBUG("Context %u tried to submit while banned\n",
			  ctx->user_handle);
684
		i915_gem_context_put(ctx);
685 686 687
		return -EIO;
	}

688
	eb->ctx = ctx;
689 690 691 692 693 694 695 696 697 698
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
699
{
700
#define INTERMEDIATE BIT(0)
701 702
	const unsigned int count = eb->buffer_count;
	struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
703
	struct i915_vma *vma;
704 705
	struct idr *idr;
	unsigned int i;
706
	int slow_pass = -1;
707
	int err;
708

709 710
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
711

712 713 714
	if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
		flush_work(&lut->resize);
	GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
715 716 717 718 719

	for (i = 0; i < count; i++) {
		__exec_to_vma(&eb->exec[i]) = 0;

		hlist_for_each_entry(vma,
720
				     ht_head(lut, eb->exec[i].handle),
721 722 723 724
				     ctx_node) {
			if (vma->ctx_handle != eb->exec[i].handle)
				continue;

725 726 727
			err = eb_add_vma(eb, &eb->exec[i], vma);
			if (unlikely(err))
				return err;
728 729 730 731 732 733 734 735 736 737

			goto next_vma;
		}

		if (slow_pass < 0)
			slow_pass = i;
next_vma: ;
	}

	if (slow_pass < 0)
738
		goto out;
739

740
	spin_lock(&eb->file->table_lock);
741 742 743 744 745
	/*
	 * Grab a reference to the object and release the lock so we can lookup
	 * or create the VMA without using GFP_ATOMIC
	 */
	idr = &eb->file->object_idr;
746 747
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
748

749 750 751
		if (__exec_to_vma(&eb->exec[i]))
			continue;

752
		obj = to_intel_bo(idr_find(idr, eb->exec[i].handle));
753
		if (unlikely(!obj)) {
754
			spin_unlock(&eb->file->table_lock);
755 756
			DRM_DEBUG("Invalid object handle %d at index %d\n",
				  eb->exec[i].handle, i);
757 758
			err = -ENOENT;
			goto err;
759 760
		}

761
		__exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj;
762
	}
763
	spin_unlock(&eb->file->table_lock);
764

765 766
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
767

768
		if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE))
769
			continue;
770

771 772 773 774 775 776 777 778
		/*
		 * NOTE: We can leak any vmas created here when something fails
		 * later on. But that's no issue since vma_unbind can deal with
		 * vmas which are not actually bound. And since only
		 * lookup_or_create exists as an interface to get at the vma
		 * from the (obj, vm) we don't run the risk of creating
		 * duplicated vmas for the same vm.
		 */
779
		obj = u64_to_ptr(typeof(*obj),
780
				 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE);
781
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
782
		if (unlikely(IS_ERR(vma))) {
783
			DRM_DEBUG("Failed to lookup VMA\n");
784 785
			err = PTR_ERR(vma);
			goto err;
786 787
		}

788 789 790 791 792
		/* First come, first served */
		if (!vma->ctx) {
			vma->ctx = eb->ctx;
			vma->ctx_handle = eb->exec[i].handle;
			hlist_add_head(&vma->ctx_node,
793 794 795
				       ht_head(lut, eb->exec[i].handle));
			lut->ht_count++;
			lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
796 797 798 799
			if (i915_vma_is_ggtt(vma)) {
				GEM_BUG_ON(obj->vma_hashed);
				obj->vma_hashed = vma;
			}
800 801

			i915_vma_get(vma);
802
		}
803

804 805 806
		err = eb_add_vma(eb, &eb->exec[i], vma);
		if (unlikely(err))
			goto err;
807 808 809 810 811 812

		/* Only after we validated the user didn't use our bits */
		if (vma->ctx != eb->ctx) {
			i915_vma_get(vma);
			eb->exec[i].flags |= __EXEC_OBJECT_HAS_REF;
		}
813 814
	}

815 816 817 818 819
	if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
		if (ht_needs_resize(lut))
			queue_work(system_highpri_wq, &lut->resize);
		else
			lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
820 821
	}

822 823 824 825
out:
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
	eb->batch = exec_to_vma(&eb->exec[i]);
826

827
	/*
828 829 830 831 832 833 834
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
835
	 */
836 837 838 839
	if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED))
		eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS;
	if (eb->reloc_cache.has_fence)
		eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE;
840

841 842 843 844 845 846 847 848 849 850 851
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

err:
	for (i = slow_pass; i < count; i++) {
		if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)
			__exec_to_vma(&eb->exec[i]) = 0;
	}
	lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
	return err;
#undef INTERMEDIATE
852 853
}

854
static struct i915_vma *
855
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
856
{
857 858
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
859
			return NULL;
860
		return exec_to_vma(&eb->exec[handle]);
861 862
	} else {
		struct hlist_head *head;
863
		struct i915_vma *vma;
864

865
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
866
		hlist_for_each_entry(vma, head, exec_node) {
867 868
			if (vma->exec_handle == handle)
				return vma;
869 870 871
		}
		return NULL;
	}
872 873
}

874
static void eb_release_vmas(const struct i915_execbuffer *eb)
875
{
876 877 878 879 880 881
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
882

883
		if (!vma)
884
			continue;
885

886
		GEM_BUG_ON(vma->exec_entry != entry);
887
		vma->exec_entry = NULL;
888
		__exec_to_vma(entry) = 0;
889

890 891 892 893 894
		if (entry->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, entry);

		if (entry->flags & __EXEC_OBJECT_HAS_REF)
			i915_vma_put(vma);
895

896 897
		entry->flags &=
			~(__EXEC_OBJECT_RESERVED | __EXEC_OBJECT_HAS_REF);
898
	}
899 900
}

901
static void eb_reset_vmas(const struct i915_execbuffer *eb)
902
{
903
	eb_release_vmas(eb);
904
	if (eb->lut_size > 0)
905 906
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
907 908
}

909
static void eb_destroy(const struct i915_execbuffer *eb)
910
{
911 912
	GEM_BUG_ON(eb->reloc_cache.rq);

913
	if (eb->lut_size > 0)
914
		kfree(eb->buckets);
915 916
}

917
static inline u64
918
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
919
		  const struct i915_vma *target)
920
{
921
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
922 923
}

924 925
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
926
{
927
	cache->page = -1;
928
	cache->vaddr = 0;
929
	/* Must be a variable in the struct to allow GCC to unroll. */
930
	cache->gen = INTEL_GEN(i915);
931
	cache->has_llc = HAS_LLC(i915);
932
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
933 934
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
935
	cache->node.allocated = false;
936 937
	cache->rq = NULL;
	cache->rq_size = 0;
938
}
939

940 941 942 943 944 945 946 947
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
948 949
}

950 951
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

952 953 954 955 956 957 958
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

959 960 961 962 963 964 965 966 967 968 969
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

970
static void reloc_cache_reset(struct reloc_cache *cache)
971
{
972
	void *vaddr;
973

974 975 976
	if (cache->rq)
		reloc_gpu_flush(cache);

977 978
	if (!cache->vaddr)
		return;
979

980 981 982 983
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
984

985 986 987
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
988
		wmb();
989
		io_mapping_unmap_atomic((void __iomem *)vaddr);
990
		if (cache->node.allocated) {
991
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
992 993 994

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
995
					       cache->node.size);
996 997 998
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
999
		}
1000
	}
1001 1002 1003

	cache->vaddr = 0;
	cache->page = -1;
1004 1005 1006 1007
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1008
			unsigned long page)
1009
{
1010 1011 1012 1013 1014 1015
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1016
		int err;
1017

1018 1019 1020
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
1021 1022 1023

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1024

1025 1026 1027 1028
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1029 1030
	}

1031 1032
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1033
	cache->page = page;
1034

1035
	return vaddr;
1036 1037
}

1038 1039
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1040
			 unsigned long page)
1041
{
1042
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1043
	unsigned long offset;
1044
	void *vaddr;
1045

1046
	if (cache->vaddr) {
1047
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1048 1049
	} else {
		struct i915_vma *vma;
1050
		int err;
1051

1052
		if (use_cpu_reloc(cache, obj))
1053
			return NULL;
1054

1055 1056 1057
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1058

1059 1060
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
1061 1062
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1063
			err = drm_mm_insert_node_in_range
1064
				(&ggtt->base.mm, &cache->node,
1065
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1066
				 0, ggtt->mappable_end,
1067
				 DRM_MM_INSERT_LOW);
1068
			if (err) /* no inactive aperture space, use cpu reloc */
1069
				return NULL;
1070
		} else {
1071 1072
			err = i915_vma_put_fence(vma);
			if (err) {
1073
				i915_vma_unpin(vma);
1074
				return ERR_PTR(err);
1075
			}
1076

1077 1078
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1079
		}
1080
	}
1081

1082 1083
	offset = cache->node.start;
	if (cache->node.allocated) {
1084
		wmb();
1085 1086 1087 1088 1089
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1090 1091
	}

1092 1093
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1094 1095
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1096

1097
	return vaddr;
1098 1099
}

1100 1101
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1102
			 unsigned long page)
1103
{
1104
	void *vaddr;
1105

1106 1107 1108 1109 1110 1111 1112 1113
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1114 1115
	}

1116
	return vaddr;
1117 1118
}

1119
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1120
{
1121 1122 1123 1124 1125
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1126

1127
		*addr = value;
1128

1129 1130
		/*
		 * Writes to the same cacheline are serialised by the CPU
1131 1132 1133 1134 1135 1136 1137 1138 1139
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
				      cache->has_llc ? I915_MAP_WB : I915_MAP_WC);
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		goto err_request;

	err = i915_switch_context(rq);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1203
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1204
	i915_vma_move_to_active(batch, rq, 0);
1205 1206 1207
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1208 1209
	i915_vma_unpin(batch);

1210
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1211 1212 1213
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1257 1258
static u64
relocate_entry(struct i915_vma *vma,
1259
	       const struct drm_i915_gem_relocation_entry *reloc,
1260 1261
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1262
{
1263
	u64 offset = reloc->offset;
1264 1265
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1266
	void *vaddr;
1267

1268 1269
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1270
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
		else if (gen >= 3)
			len = 3;
		else /* On gen2 MI_STORE_DWORD_IMM uses a physical address */
			goto repeat;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1329
repeat:
1330
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1331 1332 1333 1334 1335
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1336
			eb->reloc_cache.vaddr);
1337 1338 1339 1340 1341 1342

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1343 1344
	}

1345
out:
1346
	return target->node.start | UPDATE;
1347 1348
}

1349 1350 1351 1352
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1353
{
1354
	struct i915_vma *target;
1355
	int err;
1356

1357
	/* we've already hold a reference to all valid objects */
1358 1359
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1360
		return -ENOENT;
1361

1362
	/* Validate that the target is in a valid r/w GPU domain */
1363
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1364
		DRM_DEBUG("reloc with multiple write domains: "
1365
			  "target %d offset %d "
1366
			  "read %08x write %08x",
1367
			  reloc->target_handle,
1368 1369 1370
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1371
		return -EINVAL;
1372
	}
1373 1374
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1375
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1376
			  "target %d offset %d "
1377
			  "read %08x write %08x",
1378
			  reloc->target_handle,
1379 1380 1381
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1382
		return -EINVAL;
1383 1384
	}

1385
	if (reloc->write_domain) {
1386 1387
		target->exec_entry->flags |= EXEC_OBJECT_WRITE;

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1402
	}
1403

1404 1405
	/*
	 * If the relocation already has the right value in it, no
1406 1407
	 * more work needs to be done.
	 */
1408 1409
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1410
		return 0;
1411 1412

	/* Check that the relocation address is valid... */
1413
	if (unlikely(reloc->offset >
1414
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1415
		DRM_DEBUG("Relocation beyond object bounds: "
1416 1417 1418 1419
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1420
		return -EINVAL;
1421
	}
1422
	if (unlikely(reloc->offset & 3)) {
1423
		DRM_DEBUG("Relocation not 4-byte aligned: "
1424 1425 1426
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1427
		return -EINVAL;
1428 1429
	}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
	 * of our synchronisation.
	 */
	vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;

1440
	/* and update the user's relocation entry */
1441
	return relocate_entry(vma, reloc, eb, target);
1442 1443
}

1444
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1445
{
1446
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1447 1448 1449 1450
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	unsigned int remain;
1451

1452
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1453
	remain = entry->relocation_count;
1454 1455
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1456

1457 1458 1459 1460 1461
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1462
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1463 1464 1465 1466 1467 1468 1469
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1470

1471 1472
		/*
		 * This is the fast path and we cannot handle a pagefault
1473 1474 1475 1476 1477 1478 1479
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1480
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1481
		pagefault_enable();
1482 1483
		if (unlikely(copied)) {
			remain = -EFAULT;
1484 1485
			goto out;
		}
1486

1487
		remain -= count;
1488
		do {
1489
			u64 offset = eb_relocate_entry(eb, vma, r);
1490

1491 1492 1493
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1494
				goto out;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1520
			}
1521 1522 1523
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1524
out:
1525
	reloc_cache_reset(&eb->reloc_cache);
1526
	return remain;
1527 1528 1529
}

static int
1530
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1531
{
1532
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1533 1534 1535 1536
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1537 1538

	for (i = 0; i < entry->relocation_count; i++) {
1539
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1540

1541 1542 1543 1544
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1545
	}
1546 1547 1548 1549
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1550 1551
}

1552
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1553
{
1554 1555 1556
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1557

1558 1559 1560
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1561

1562 1563
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1564

1565 1566 1567 1568
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1569

1570 1571 1572 1573 1574
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1575
	}
1576
	return __get_user(c, end - 1);
1577
}
1578

1579
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1580
{
1581 1582 1583
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1584

1585 1586 1587 1588 1589 1590
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1591

1592 1593
		if (nreloc == 0)
			continue;
1594

1595 1596 1597
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1598

1599 1600
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1601

1602 1603 1604 1605 1606 1607
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1622

1623 1624
			copied += len;
		} while (copied < size);
1625

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1643

1644 1645
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1646

1647
	return 0;
1648

1649 1650 1651 1652 1653 1654 1655 1656
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1657 1658
}

1659
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1660
{
1661 1662
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1663

1664 1665
	if (unlikely(i915.prefault_disable))
		return 0;
1666

1667 1668
	for (i = 0; i < count; i++) {
		int err;
1669

1670 1671 1672 1673
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1674

1675
	return 0;
1676 1677
}

1678
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1679
{
1680
	struct drm_device *dev = &eb->i915->drm;
1681
	bool have_copy = false;
1682
	struct i915_vma *vma;
1683 1684 1685 1686 1687 1688 1689
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1690

1691
	/* We may process another execbuffer during the unlock... */
1692
	eb_reset_vmas(eb);
1693 1694
	mutex_unlock(&dev->struct_mutex);

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1716
	}
1717 1718 1719
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1720 1721
	}

1722 1723 1724
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1725 1726
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1727
		mutex_lock(&dev->struct_mutex);
1728
		goto out;
1729 1730
	}

1731
	/* reacquire the objects */
1732 1733
	err = eb_lookup_vmas(eb);
	if (err)
1734
		goto err;
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1748 1749
	}

1750 1751
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1752 1753 1754 1755 1756 1757
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1779
	return err;
1780 1781
}

1782
static int eb_relocate(struct i915_execbuffer *eb)
1783
{
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1803
static void eb_export_fence(struct i915_vma *vma,
1804 1805 1806
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1807
	struct reservation_object *resv = vma->resv;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1827

1828
	for (i = 0; i < count; i++) {
1829
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1830
		struct i915_vma *vma = exec_to_vma(entry);
1831
		struct drm_i915_gem_object *obj = vma->obj;
1832

1833
		if (entry->flags & EXEC_OBJECT_CAPTURE) {
1834 1835 1836 1837 1838 1839
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1840
			capture->next = eb->request->capture_list;
1841
			capture->vma = vma;
1842
			eb->request->capture_list = capture;
1843 1844
		}

1845 1846 1847 1848 1849
		if (unlikely(obj->cache_dirty && !obj->cache_coherent)) {
			if (i915_gem_clflush_object(obj, 0))
				entry->flags &= ~EXEC_OBJECT_ASYNC;
		}

1850 1851
		if (entry->flags & EXEC_OBJECT_ASYNC)
			goto skip_flushes;
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		err = i915_gem_request_await_object
			(eb->request, obj, entry->flags & EXEC_OBJECT_WRITE);
		if (err)
			return err;

skip_flushes:
		i915_vma_move_to_active(vma, eb->request, entry->flags);
		__eb_unreserve_vma(vma, entry);
		vma->exec_entry = NULL;
	}

	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);

1868
		eb_export_fence(vma, eb->request, entry->flags);
1869 1870
		if (unlikely(entry->flags & __EXEC_OBJECT_HAS_REF))
			i915_vma_put(vma);
1871
	}
1872
	eb->exec = NULL;
1873

1874
	/* Unconditionally flush any chipset caches (for streaming writes). */
1875
	i915_gem_chipset_flush(eb->i915);
1876

1877
	/* Unconditionally invalidate GPU caches and TLBs. */
1878
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1879 1880
}

1881
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1882
{
1883
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1884 1885
		return false;

C
Chris Wilson 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	/* Kernel clipping was a DRI1 misfeature */
	if (exec->num_cliprects || exec->cliprects_ptr)
		return false;

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1901 1902
}

1903 1904 1905 1906 1907 1908 1909
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1910
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1911 1912
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1913 1914
	/*
	 * Add a reference if we're newly entering the active list.
1915 1916 1917 1918 1919 1920
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1921 1922 1923 1924 1925
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1926

1927
	obj->base.write_domain = 0;
1928
	if (flags & EXEC_OBJECT_WRITE) {
1929 1930
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1931 1932
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1933

1934
		obj->base.read_domains = 0;
1935
	}
1936
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1937

1938 1939
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1940 1941
}

1942
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1943
{
1944 1945
	u32 *cs;
	int i;
1946

1947
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1948 1949 1950
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1951

1952
	cs = intel_ring_begin(req, 4 * 2 + 2);
1953 1954
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1955

1956
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1957
	for (i = 0; i < 4; i++) {
1958 1959
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1960
	}
1961
	*cs++ = MI_NOOP;
1962
	intel_ring_advance(req, cs);
1963 1964 1965 1966

	return 0;
}

1967
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1968 1969
{
	struct drm_i915_gem_object *shadow_batch_obj;
1970
	struct i915_vma *vma;
1971
	int err;
1972

1973 1974
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1975
	if (IS_ERR(shadow_batch_obj))
1976
		return ERR_CAST(shadow_batch_obj);
1977

1978
	err = intel_engine_cmd_parser(eb->engine,
1979
				      eb->batch->obj,
1980
				      shadow_batch_obj,
1981 1982
				      eb->batch_start_offset,
				      eb->batch_len,
1983
				      is_master);
1984 1985
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1986 1987
			vma = NULL;
		else
1988
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1989 1990
		goto out;
	}
1991

C
Chris Wilson 已提交
1992 1993 1994
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1995

1996
	vma->exec_entry =
1997 1998
		memset(&eb->exec[eb->buffer_count++],
		       0, sizeof(*vma->exec_entry));
1999
	vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2000
	__exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma);
2001

C
Chris Wilson 已提交
2002
out:
C
Chris Wilson 已提交
2003
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
2004
	return vma;
2005
}
2006

2007
static void
2008
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
2009 2010 2011 2012 2013
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

2014
static int eb_submit(struct i915_execbuffer *eb)
2015
{
2016
	int err;
2017

2018 2019 2020
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2021

2022 2023 2024
	err = i915_switch_context(eb->request);
	if (err)
		return err;
2025

2026
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2027 2028 2029
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2030 2031
	}

2032
	err = eb->engine->emit_bb_start(eb->request,
2033 2034 2035
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2036 2037 2038
					eb->batch_flags);
	if (err)
		return err;
2039

C
Chris Wilson 已提交
2040
	return 0;
2041 2042
}

2043 2044
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
2045
 * The engine index is returned.
2046
 */
2047
static unsigned int
2048 2049
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2050 2051 2052
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2053
	/* Check whether the file_priv has already selected one ring. */
2054 2055 2056
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2057

2058
	return file_priv->bsd_engine;
2059 2060
}

2061 2062
#define I915_USER_RINGS (4)

2063
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2064 2065 2066 2067 2068 2069 2070
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2071 2072 2073 2074
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2075 2076
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2077
	struct intel_engine_cs *engine;
2078 2079 2080

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2081
		return NULL;
2082 2083 2084 2085 2086 2087
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2088
		return NULL;
2089 2090 2091 2092 2093 2094
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2095
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2096 2097
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2098
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2099 2100 2101 2102
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2103
			return NULL;
2104 2105
		}

2106
		engine = dev_priv->engine[_VCS(bsd_idx)];
2107
	} else {
2108
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2109 2110
	}

2111
	if (!engine) {
2112
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2113
		return NULL;
2114 2115
	}

2116
	return engine;
2117 2118
}

2119
static int
2120
i915_gem_do_execbuffer(struct drm_device *dev,
2121 2122
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2123
		       struct drm_i915_gem_exec_object2 *exec)
2124
{
2125
	struct i915_execbuffer eb;
2126 2127 2128
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2129
	int err;
2130

2131 2132
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2133

2134 2135 2136
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2137
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2138
		args->flags |= __EXEC_HAS_RELOC;
2139
	eb.exec = exec;
2140 2141 2142
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2143 2144
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2145
	eb.buffer_count = args->buffer_count;
2146 2147 2148
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2149
	eb.batch_flags = 0;
2150
	if (args->flags & I915_EXEC_SECURE) {
2151
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2152 2153
		    return -EPERM;

2154
		eb.batch_flags |= I915_DISPATCH_SECURE;
2155
	}
2156
	if (args->flags & I915_EXEC_IS_PINNED)
2157
		eb.batch_flags |= I915_DISPATCH_PINNED;
2158

2159 2160
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2161 2162
		return -EINVAL;

2163
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2164
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2165 2166 2167
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2168
		if (eb.engine->id != RCS) {
2169
			DRM_DEBUG("RS is not available on %s\n",
2170
				 eb.engine->name);
2171 2172 2173
			return -EINVAL;
		}

2174
		eb.batch_flags |= I915_DISPATCH_RS;
2175 2176
	}

2177 2178
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2179 2180
		if (!in_fence)
			return -EINVAL;
2181 2182 2183 2184 2185
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2186
			err = out_fence_fd;
2187
			goto err_in_fence;
2188 2189 2190
		}
	}

2191 2192 2193 2194 2195
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2196

2197 2198 2199 2200
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2201 2202
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2203 2204 2205 2206 2207
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2208
	intel_runtime_pm_get(eb.i915);
2209

2210 2211 2212
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2213

2214
	err = eb_relocate(&eb);
2215
	if (err) {
2216 2217 2218 2219 2220 2221 2222 2223 2224
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2225
	}
2226

2227
	if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) {
2228
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2229 2230
		err = -EINVAL;
		goto err_vma;
2231
	}
2232 2233
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2234
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2235 2236
		err = -EINVAL;
		goto err_vma;
2237
	}
2238

2239
	if (eb.engine->needs_cmd_parser && eb.batch_len) {
2240 2241
		struct i915_vma *vma;

2242
		vma = eb_parse(&eb, drm_is_current_master(file));
2243
		if (IS_ERR(vma)) {
2244 2245
			err = PTR_ERR(vma);
			goto err_vma;
2246
		}
2247

2248
		if (vma) {
2249 2250 2251 2252 2253 2254 2255 2256 2257
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2258
			eb.batch_flags |= I915_DISPATCH_SECURE;
2259 2260
			eb.batch_start_offset = 0;
			eb.batch = vma;
2261
		}
2262 2263
	}

2264 2265
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2266

2267 2268
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2269
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2270
	 * hsw should have this fixed, but bdw mucks it up again. */
2271
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2272
		struct i915_vma *vma;
2273

2274 2275 2276 2277 2278 2279
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2280
		 *   so we don't really have issues with multiple objects not
2281 2282 2283
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2284
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2285
		if (IS_ERR(vma)) {
2286 2287
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2288
		}
2289

2290
		eb.batch = vma;
2291
	}
2292

2293 2294 2295
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2296
	/* Allocate a request for this batch buffer nice and early. */
2297 2298
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2299
		err = PTR_ERR(eb.request);
2300
		goto err_batch_unpin;
2301
	}
2302

2303
	if (in_fence) {
2304 2305
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2306 2307 2308 2309
			goto err_request;
	}

	if (out_fence_fd != -1) {
2310
		out_fence = sync_file_create(&eb.request->fence);
2311
		if (!out_fence) {
2312
			err = -ENOMEM;
2313 2314 2315 2316
			goto err_request;
		}
	}

2317 2318
	/*
	 * Whilst this request exists, batch_obj will be on the
2319 2320 2321 2322 2323
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2324
	eb.request->batch = eb.batch;
2325

2326 2327
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2328
err_request:
2329
	__i915_add_request(eb.request, err == 0);
2330
	add_to_client(eb.request, file);
2331

2332
	if (out_fence) {
2333
		if (err == 0) {
2334 2335 2336 2337 2338 2339 2340 2341
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2342

2343
err_batch_unpin:
2344
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2345
		i915_vma_unpin(eb.batch);
2346 2347 2348
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2349
	mutex_unlock(&dev->struct_mutex);
2350
err_rpm:
2351
	intel_runtime_pm_put(eb.i915);
2352 2353
	i915_gem_context_put(eb.ctx);
err_destroy:
2354
	eb_destroy(&eb);
2355
err_out_fence:
2356 2357
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2358
err_in_fence:
2359
	dma_fence_put(in_fence);
2360
	return err;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2371
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2372 2373 2374 2375
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2376 2377
	unsigned int i;
	int err;
2378

2379 2380
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2381 2382 2383
		return -EINVAL;
	}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2398
	/* Copy in the exec list from userland */
2399 2400 2401 2402
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2403
	if (exec_list == NULL || exec2_list == NULL) {
2404
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2405
			  args->buffer_count);
M
Michal Hocko 已提交
2406 2407
		kvfree(exec_list);
		kvfree(exec2_list);
2408 2409
		return -ENOMEM;
	}
2410
	err = copy_from_user(exec_list,
2411
			     u64_to_user_ptr(args->buffers_ptr),
2412
			     sizeof(*exec_list) * args->buffer_count);
2413
	if (err) {
2414
		DRM_DEBUG("copy %d exec entries failed %d\n",
2415
			  args->buffer_count, err);
M
Michal Hocko 已提交
2416 2417
		kvfree(exec_list);
		kvfree(exec2_list);
2418 2419 2420 2421 2422 2423 2424 2425 2426
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2427
		if (INTEL_GEN(to_i915(dev)) < 4)
2428 2429 2430 2431 2432
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2433 2434
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
	if (exec2.flags & __EXEC_HAS_RELOC) {
2435
		struct drm_i915_gem_exec_object __user *user_exec_list =
2436
			u64_to_user_ptr(args->buffers_ptr);
2437

2438
		/* Copy the new buffer offsets back to the user's exec list. */
2439
		for (i = 0; i < args->buffer_count; i++) {
2440 2441 2442
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2443
			exec2_list[i].offset =
2444 2445 2446 2447 2448
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2449
				break;
2450 2451 2452
		}
	}

M
Michal Hocko 已提交
2453 2454
	kvfree(exec_list);
	kvfree(exec2_list);
2455
	return err;
2456 2457 2458 2459 2460 2461
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2462
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2463
	struct drm_i915_gem_execbuffer2 *args = data;
2464 2465
	struct drm_i915_gem_exec_object2 *exec2_list;
	int err;
2466

2467
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2468
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2469 2470 2471
		return -EINVAL;
	}

2472 2473 2474 2475 2476 2477
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2478
	if (exec2_list == NULL) {
2479
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2480 2481 2482
			  args->buffer_count);
		return -ENOMEM;
	}
2483 2484 2485 2486
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2487
		kvfree(exec2_list);
2488 2489 2490
		return -EFAULT;
	}

2491 2492 2493 2494 2495 2496 2497 2498 2499
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2500
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2501 2502
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2503

2504 2505
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2506
		for (i = 0; i < args->buffer_count; i++) {
2507 2508 2509
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2510
			exec2_list[i].offset =
2511 2512 2513 2514
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2515
		}
2516 2517
end_user:
		user_access_end();
2518 2519
	}

2520
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
2521
	kvfree(exec2_list);
2522
	return err;
2523
}