i915_gem_execbuffer.c 70.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60 61
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
62 63

#define BATCH_OFFSET_BIAS (256*1024)
64

65 66
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

190
struct i915_execbuffer {
191 192 193 194
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
195 196
	struct i915_vma **vma;
	unsigned int *flags;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
219
	struct reloc_cache {
220 221 222
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
223
		unsigned int gen; /** Cached value of INTEL_GEN */
224
		bool use_64bit_reloc : 1;
225 226 227
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
228 229 230 231

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
232
	} reloc_cache;
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
248 249
};

250
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

271
static int eb_create(struct i915_execbuffer *eb)
272
{
273 274
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
275

276 277 278 279 280 281 282 283 284 285 286
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
287
		do {
288 289 290 291 292 293 294 295 296 297 298 299
			unsigned int flags;

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
			flags = GFP_TEMPORARY;
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

300
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
301
					      flags);
302 303 304 305
			if (eb->buckets)
				break;
		} while (--size);

306 307
		if (unlikely(!size))
			return -ENOMEM;
308

309
		eb->lut_size = size;
310
	} else {
311
		eb->lut_size = -eb->buffer_count;
312
	}
313

314
	return 0;
315 316
}

317 318
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
319 320
		 const struct i915_vma *vma,
		 unsigned int flags)
321 322 323 324 325 326 327
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

328
	if (flags & EXEC_OBJECT_PINNED &&
329 330 331
	    vma->node.start != entry->offset)
		return true;

332
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
333 334 335
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

336
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
337 338 339 340 341 342
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

343
static inline bool
344
eb_pin_vma(struct i915_execbuffer *eb,
345
	   const struct drm_i915_gem_exec_object2 *entry,
346 347
	   struct i915_vma *vma)
{
348 349
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
350

351
	if (vma->node.size)
352
		pin_flags = vma->node.start;
353
	else
354
		pin_flags = entry->offset & PIN_OFFSET_MASK;
355

356 357 358
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
359

360 361
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
362

363
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
364 365
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
366
			return false;
367 368 369
		}

		if (i915_vma_pin_fence(vma))
370
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
371 372
	}

373 374
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
375 376
}

377
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
378
{
379
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
380

381
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
382 383
		i915_vma_unpin_fence(vma);

384
	__i915_vma_unpin(vma);
385 386
}

387
static inline void
388
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
389
{
390
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
391
		return;
392

393 394
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
395 396
}

397 398 399 400
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
401
{
402 403
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
404

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
422 423
	}

424
	if (unlikely(vma->exec_flags)) {
425 426 427 428 429 430 431 432 433 434 435 436
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

437 438 439 440 441 442 443 444 445 446 447 448
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

449
	return 0;
450 451
}

452
static int
453 454 455
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, struct i915_vma *vma,
	   unsigned int flags)
456
{
457
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
458 459 460 461 462 463 464 465
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
466 467
	}

468
	if (eb->lut_size > 0) {
469
		vma->exec_handle = entry->handle;
470
		hlist_add_head(&vma->exec_node,
471 472
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
473
	}
474

475 476 477 478 479 480 481 482 483
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
484
	eb->vma[i] = vma;
485
	eb->flags[i] = entry->flags | flags;
486
	vma->exec_flags = &eb->flags[i];
487 488

	err = 0;
489
	if (eb_pin_vma(eb, entry, vma)) {
490 491 492 493
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
494 495 496 497 498 499
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
500 501 502 503 504 505 506 507 508 509
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

510 511 512 513 514
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
515 516 517 518 519 520 521 522 523

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
524 525 526
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
527 528
	int err;

529 530 531
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
532 533 534 535 536

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
537 538
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
539

540 541
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
542

543 544 545 546 547
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
548 549
	}

550 551 552
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
553 554 555 556 557 558 559 560
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

561
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
562 563 564 565 566 567 568
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
569
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
570 571
	}

572 573
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
615 616
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
617

618 619
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
620 621
				continue;

622
			eb_unreserve_vma(vma, &eb->flags[i]);
623

624
			if (flags & EXEC_OBJECT_PINNED)
625
				list_add(&vma->exec_link, &eb->unbound);
626
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
648
}
649

650
static inline struct hlist_head *
651
ht_head(const  struct i915_gem_context_vma_lut *lut, u32 handle)
652
{
653
	return &lut->ht[hash_32(handle, lut->ht_bits)];
654 655 656
}

static inline bool
657
ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
658
{
659 660
	return (4*lut->ht_count > 3*lut->ht_size ||
		4*lut->ht_count + 1 < lut->ht_size);
661 662
}

663 664
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
665 666 667 668
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
669 670 671 672 673 674 675
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
676 677
	if (unlikely(!ctx))
		return -ENOENT;
678

679
	eb->ctx = ctx;
680 681 682 683 684 685 686 687 688 689
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
690
{
691
	struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
692
	struct drm_i915_gem_object *uninitialized_var(obj);
693 694
	unsigned int i;
	int err;
695

696 697 698 699 700 701
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

702 703
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
704

705 706 707
	if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
		flush_work(&lut->resize);
	GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
708

709 710 711 712 713
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
		struct hlist_head *hl = ht_head(lut, handle);
		unsigned int flags = 0;
		struct i915_vma *vma;
714

715 716
		hlist_for_each_entry(vma, hl, ctx_node) {
			GEM_BUG_ON(vma->ctx != eb->ctx);
717

718 719
			if (vma->ctx_handle != handle)
				continue;
720

721 722
			goto add_vma;
		}
723

724
		obj = i915_gem_object_lookup(eb->file, handle);
725
		if (unlikely(!obj)) {
726
			err = -ENOENT;
727
			goto err_vma;
728 729
		}

730
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
731
		if (unlikely(IS_ERR(vma))) {
732
			err = PTR_ERR(vma);
733
			goto err_obj;
734 735
		}

736 737 738
		/* First come, first served */
		if (!vma->ctx) {
			vma->ctx = eb->ctx;
739 740
			vma->ctx_handle = handle;
			hlist_add_head(&vma->ctx_node, hl);
741 742
			lut->ht_count++;
			lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
743 744 745 746
			if (i915_vma_is_ggtt(vma)) {
				GEM_BUG_ON(obj->vma_hashed);
				obj->vma_hashed = vma;
			}
747

748 749 750 751
			/* transfer ref to ctx */
			obj = NULL;
		} else {
			flags = __EXEC_OBJECT_HAS_REF;
752
		}
753

754 755
add_vma:
		err = eb_add_vma(eb, i, vma, flags);
756
		if (unlikely(err))
757
			goto err_obj;
758

759 760
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
761 762
	}

763 764 765 766 767
	if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
		if (ht_needs_resize(lut))
			queue_work(system_highpri_wq, &lut->resize);
		else
			lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
768 769
	}

770 771
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
772 773
	eb->batch = eb->vma[i];
	GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
774

775
	/*
776 777 778 779 780 781 782
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
783
	 */
784 785
	if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
		eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
786
	if (eb->reloc_cache.has_fence)
787
		eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
788

789 790 791
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

792 793 794 795 796
err_obj:
	if (obj)
		i915_gem_object_put(obj);
err_vma:
	eb->vma[i] = NULL;
797 798
	lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
	return err;
799 800
}

801
static struct i915_vma *
802
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
803
{
804 805
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
806
			return NULL;
807
		return eb->vma[handle];
808 809
	} else {
		struct hlist_head *head;
810
		struct i915_vma *vma;
811

812
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
813
		hlist_for_each_entry(vma, head, exec_node) {
814 815
			if (vma->exec_handle == handle)
				return vma;
816 817 818
		}
		return NULL;
	}
819 820
}

821
static void eb_release_vmas(const struct i915_execbuffer *eb)
822
{
823 824 825 826
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
827 828
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
829

830
		if (!vma)
831
			break;
832

833 834 835
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
836

837 838
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
839

840
		if (flags & __EXEC_OBJECT_HAS_REF)
841
			i915_vma_put(vma);
842
	}
843 844
}

845
static void eb_reset_vmas(const struct i915_execbuffer *eb)
846
{
847
	eb_release_vmas(eb);
848
	if (eb->lut_size > 0)
849 850
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
851 852
}

853
static void eb_destroy(const struct i915_execbuffer *eb)
854
{
855 856
	GEM_BUG_ON(eb->reloc_cache.rq);

857
	if (eb->lut_size > 0)
858
		kfree(eb->buckets);
859 860
}

861
static inline u64
862
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
863
		  const struct i915_vma *target)
864
{
865
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
866 867
}

868 869
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
870
{
871
	cache->page = -1;
872
	cache->vaddr = 0;
873
	/* Must be a variable in the struct to allow GCC to unroll. */
874
	cache->gen = INTEL_GEN(i915);
875
	cache->has_llc = HAS_LLC(i915);
876
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
877 878
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
879
	cache->node.allocated = false;
880 881
	cache->rq = NULL;
	cache->rq_size = 0;
882
}
883

884 885 886 887 888 889 890 891
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
892 893
}

894 895
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

896 897 898 899 900 901 902
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

903 904 905 906 907 908 909 910 911 912 913
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

914
static void reloc_cache_reset(struct reloc_cache *cache)
915
{
916
	void *vaddr;
917

918 919 920
	if (cache->rq)
		reloc_gpu_flush(cache);

921 922
	if (!cache->vaddr)
		return;
923

924 925 926 927
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
928

929 930 931
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
932
		wmb();
933
		io_mapping_unmap_atomic((void __iomem *)vaddr);
934
		if (cache->node.allocated) {
935
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
936 937 938

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
939
					       cache->node.size);
940 941 942
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
943
		}
944
	}
945 946 947

	cache->vaddr = 0;
	cache->page = -1;
948 949 950 951
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
952
			unsigned long page)
953
{
954 955 956 957 958 959
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
960
		int err;
961

962 963 964
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
965 966 967

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
968

969 970 971 972
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
973 974
	}

975 976
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
977
	cache->page = page;
978

979
	return vaddr;
980 981
}

982 983
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
984
			 unsigned long page)
985
{
986
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
987
	unsigned long offset;
988
	void *vaddr;
989

990
	if (cache->vaddr) {
991
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
992 993
	} else {
		struct i915_vma *vma;
994
		int err;
995

996
		if (use_cpu_reloc(cache, obj))
997
			return NULL;
998

999 1000 1001
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1002

1003 1004
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
1005 1006
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1007
			err = drm_mm_insert_node_in_range
1008
				(&ggtt->base.mm, &cache->node,
1009
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1010
				 0, ggtt->mappable_end,
1011
				 DRM_MM_INSERT_LOW);
1012
			if (err) /* no inactive aperture space, use cpu reloc */
1013
				return NULL;
1014
		} else {
1015 1016
			err = i915_vma_put_fence(vma);
			if (err) {
1017
				i915_vma_unpin(vma);
1018
				return ERR_PTR(err);
1019
			}
1020

1021 1022
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1023
		}
1024
	}
1025

1026 1027
	offset = cache->node.start;
	if (cache->node.allocated) {
1028
		wmb();
1029 1030 1031 1032 1033
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1034 1035
	}

1036 1037
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1038 1039
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1040

1041
	return vaddr;
1042 1043
}

1044 1045
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1046
			 unsigned long page)
1047
{
1048
	void *vaddr;
1049

1050 1051 1052 1053 1054 1055 1056 1057
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1058 1059
	}

1060
	return vaddr;
1061 1062
}

1063
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1064
{
1065 1066 1067 1068 1069
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1070

1071
		*addr = value;
1072

1073 1074
		/*
		 * Writes to the same cacheline are serialised by the CPU
1075 1076 1077 1078 1079 1080 1081 1082 1083
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1084 1085
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
				      cache->has_llc ? I915_MAP_WB : I915_MAP_WC);
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		goto err_request;

	err = i915_switch_context(rq);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1147
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1148
	i915_vma_move_to_active(batch, rq, 0);
1149 1150 1151
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1152 1153
	i915_vma_unpin(batch);

1154
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1155 1156 1157
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1201 1202
static u64
relocate_entry(struct i915_vma *vma,
1203
	       const struct drm_i915_gem_relocation_entry *reloc,
1204 1205
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1206
{
1207
	u64 offset = reloc->offset;
1208 1209
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1210
	void *vaddr;
1211

1212 1213
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1214 1215 1216
	     !reservation_object_test_signaled_rcu(vma->resv, true)) &&
	    __intel_engine_can_store_dword(eb->reloc_cache.gen,
					   eb->engine->class)) {
1217 1218 1219 1220 1221 1222 1223 1224 1225
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1226
		else
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1273
repeat:
1274
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1275 1276 1277 1278 1279
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1280
			eb->reloc_cache.vaddr);
1281 1282 1283 1284 1285 1286

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1287 1288
	}

1289
out:
1290
	return target->node.start | UPDATE;
1291 1292
}

1293 1294 1295 1296
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1297
{
1298
	struct i915_vma *target;
1299
	int err;
1300

1301
	/* we've already hold a reference to all valid objects */
1302 1303
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1304
		return -ENOENT;
1305

1306
	/* Validate that the target is in a valid r/w GPU domain */
1307
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1308
		DRM_DEBUG("reloc with multiple write domains: "
1309
			  "target %d offset %d "
1310
			  "read %08x write %08x",
1311
			  reloc->target_handle,
1312 1313 1314
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1315
		return -EINVAL;
1316
	}
1317 1318
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1319
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1320
			  "target %d offset %d "
1321
			  "read %08x write %08x",
1322
			  reloc->target_handle,
1323 1324 1325
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1326
		return -EINVAL;
1327 1328
	}

1329
	if (reloc->write_domain) {
1330
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1346
	}
1347

1348 1349
	/*
	 * If the relocation already has the right value in it, no
1350 1351
	 * more work needs to be done.
	 */
1352 1353
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1354
		return 0;
1355 1356

	/* Check that the relocation address is valid... */
1357
	if (unlikely(reloc->offset >
1358
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1359
		DRM_DEBUG("Relocation beyond object bounds: "
1360 1361 1362 1363
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1364
		return -EINVAL;
1365
	}
1366
	if (unlikely(reloc->offset & 3)) {
1367
		DRM_DEBUG("Relocation not 4-byte aligned: "
1368 1369 1370
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1371
		return -EINVAL;
1372 1373
	}

1374 1375 1376 1377 1378 1379 1380 1381
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
	 * of our synchronisation.
	 */
1382
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1383

1384
	/* and update the user's relocation entry */
1385
	return relocate_entry(vma, reloc, eb, target);
1386 1387
}

1388
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1389
{
1390
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1391 1392
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1393
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1394
	unsigned int remain;
1395

1396
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1397
	remain = entry->relocation_count;
1398 1399
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1400

1401 1402 1403 1404 1405
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1406
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1407 1408 1409 1410 1411 1412 1413
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1414

1415 1416
		/*
		 * This is the fast path and we cannot handle a pagefault
1417 1418 1419 1420 1421 1422 1423
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1424
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1425
		pagefault_enable();
1426 1427
		if (unlikely(copied)) {
			remain = -EFAULT;
1428 1429
			goto out;
		}
1430

1431
		remain -= count;
1432
		do {
1433
			u64 offset = eb_relocate_entry(eb, vma, r);
1434

1435 1436 1437
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1438
				goto out;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1464
			}
1465 1466 1467
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1468
out:
1469
	reloc_cache_reset(&eb->reloc_cache);
1470
	return remain;
1471 1472 1473
}

static int
1474
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1475
{
1476
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1477 1478 1479 1480
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1481 1482

	for (i = 0; i < entry->relocation_count; i++) {
1483
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1484

1485 1486 1487 1488
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1489
	}
1490 1491 1492 1493
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1494 1495
}

1496
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1497
{
1498 1499 1500
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1501

1502 1503 1504
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1505

1506 1507
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1508

1509 1510 1511 1512
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1513

1514 1515 1516 1517 1518
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1519
	}
1520
	return __get_user(c, end - 1);
1521
}
1522

1523
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1524
{
1525 1526 1527
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1528

1529 1530 1531 1532 1533 1534
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1535

1536 1537
		if (nreloc == 0)
			continue;
1538

1539 1540 1541
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1542

1543 1544
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1545

1546 1547 1548 1549 1550 1551
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1566

1567 1568
			copied += len;
		} while (copied < size);
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1587

1588 1589
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1590

1591
	return 0;
1592

1593 1594 1595 1596 1597 1598 1599 1600
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1601 1602
}

1603
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1604
{
1605 1606
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1607

1608 1609
	if (unlikely(i915.prefault_disable))
		return 0;
1610

1611 1612
	for (i = 0; i < count; i++) {
		int err;
1613

1614 1615 1616 1617
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1618

1619
	return 0;
1620 1621
}

1622
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1623
{
1624
	struct drm_device *dev = &eb->i915->drm;
1625
	bool have_copy = false;
1626
	struct i915_vma *vma;
1627 1628 1629 1630 1631 1632 1633
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1634

1635
	/* We may process another execbuffer during the unlock... */
1636
	eb_reset_vmas(eb);
1637 1638
	mutex_unlock(&dev->struct_mutex);

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1660
	}
1661 1662 1663
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1664 1665
	}

1666 1667 1668
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1669 1670
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1671
		mutex_lock(&dev->struct_mutex);
1672
		goto out;
1673 1674
	}

1675
	/* reacquire the objects */
1676 1677
	err = eb_lookup_vmas(eb);
	if (err)
1678
		goto err;
1679

1680 1681
	GEM_BUG_ON(!eb->batch);

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1694 1695
	}

1696 1697
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1698 1699 1700 1701 1702 1703
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1725
	return err;
1726 1727
}

1728
static int eb_relocate(struct i915_execbuffer *eb)
1729
{
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1749
static void eb_export_fence(struct i915_vma *vma,
1750 1751 1752
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1753
	struct reservation_object *resv = vma->resv;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1773

1774
	for (i = 0; i < count; i++) {
1775 1776
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1777
		struct drm_i915_gem_object *obj = vma->obj;
1778

1779
		if (flags & EXEC_OBJECT_CAPTURE) {
1780 1781 1782 1783 1784 1785
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1786
			capture->next = eb->request->capture_list;
1787
			capture->vma = eb->vma[i];
1788
			eb->request->capture_list = capture;
1789 1790
		}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1804
			if (i915_gem_clflush_object(obj, 0))
1805
				flags &= ~EXEC_OBJECT_ASYNC;
1806 1807
		}

1808 1809
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1810

1811
		err = i915_gem_request_await_object
1812
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1813 1814 1815 1816 1817
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1818 1819 1820 1821 1822
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1823

1824 1825 1826 1827
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1828
			i915_vma_put(vma);
1829
	}
1830
	eb->exec = NULL;
1831

1832
	/* Unconditionally flush any chipset caches (for streaming writes). */
1833
	i915_gem_chipset_flush(eb->i915);
1834

1835
	/* Unconditionally invalidate GPU caches and TLBs. */
1836
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1837 1838
}

1839
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1840
{
1841
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1842 1843
		return false;

C
Chris Wilson 已提交
1844
	/* Kernel clipping was a DRI1 misfeature */
1845 1846 1847 1848
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1861 1862
}

1863 1864 1865 1866 1867 1868 1869
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1870
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1871 1872
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1873 1874
	/*
	 * Add a reference if we're newly entering the active list.
1875 1876 1877 1878 1879 1880
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1881 1882 1883 1884 1885
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1886

1887
	obj->base.write_domain = 0;
1888
	if (flags & EXEC_OBJECT_WRITE) {
1889 1890
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1891 1892
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1893

1894
		obj->base.read_domains = 0;
1895
	}
1896
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1897

1898 1899
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1900 1901
}

1902
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1903
{
1904 1905
	u32 *cs;
	int i;
1906

1907
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1908 1909 1910
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1911

1912
	cs = intel_ring_begin(req, 4 * 2 + 2);
1913 1914
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1915

1916
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1917
	for (i = 0; i < 4; i++) {
1918 1919
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1920
	}
1921
	*cs++ = MI_NOOP;
1922
	intel_ring_advance(req, cs);
1923 1924 1925 1926

	return 0;
}

1927
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1928 1929
{
	struct drm_i915_gem_object *shadow_batch_obj;
1930
	struct i915_vma *vma;
1931
	int err;
1932

1933 1934
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1935
	if (IS_ERR(shadow_batch_obj))
1936
		return ERR_CAST(shadow_batch_obj);
1937

1938
	err = intel_engine_cmd_parser(eb->engine,
1939
				      eb->batch->obj,
1940
				      shadow_batch_obj,
1941 1942
				      eb->batch_start_offset,
				      eb->batch_len,
1943
				      is_master);
1944 1945
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1946 1947
			vma = NULL;
		else
1948
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1949 1950
		goto out;
	}
1951

C
Chris Wilson 已提交
1952 1953 1954
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1955

1956 1957 1958 1959 1960
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1961

C
Chris Wilson 已提交
1962
out:
C
Chris Wilson 已提交
1963
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1964
	return vma;
1965
}
1966

1967
static void
1968
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1969 1970 1971 1972 1973
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

1974
static int eb_submit(struct i915_execbuffer *eb)
1975
{
1976
	int err;
1977

1978 1979 1980
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1981

1982 1983 1984
	err = i915_switch_context(eb->request);
	if (err)
		return err;
1985

1986
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1987 1988 1989
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1990 1991
	}

1992
	err = eb->engine->emit_bb_start(eb->request,
1993 1994 1995
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
1996 1997 1998
					eb->batch_flags);
	if (err)
		return err;
1999

C
Chris Wilson 已提交
2000
	return 0;
2001 2002
}

2003 2004
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
2005
 * The engine index is returned.
2006
 */
2007
static unsigned int
2008 2009
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2010 2011 2012
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2013
	/* Check whether the file_priv has already selected one ring. */
2014 2015 2016
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2017

2018
	return file_priv->bsd_engine;
2019 2020
}

2021 2022
#define I915_USER_RINGS (4)

2023
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2024 2025 2026 2027 2028 2029 2030
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2031 2032 2033 2034
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2035 2036
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2037
	struct intel_engine_cs *engine;
2038 2039 2040

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2041
		return NULL;
2042 2043 2044 2045 2046 2047
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2048
		return NULL;
2049 2050 2051 2052 2053 2054
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2055
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2056 2057
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2058
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2059 2060 2061 2062
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2063
			return NULL;
2064 2065
		}

2066
		engine = dev_priv->engine[_VCS(bsd_idx)];
2067
	} else {
2068
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2069 2070
	}

2071
	if (!engine) {
2072
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2073
		return NULL;
2074 2075
	}

2076
	return engine;
2077 2078
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
	const unsigned int nfences = args->num_cliprects;
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
	unsigned int n;
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

	if (nfences > SIZE_MAX / sizeof(*fences))
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(VERIFY_READ, user, nfences * 2 * sizeof(u32)))
		return ERR_PTR(-EFAULT);

	fences = kvmalloc_array(args->num_cliprects, sizeof(*fences),
				__GFP_NOWARN | GFP_TEMPORARY);
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

		rcu_read_lock();
		fence = dma_fence_get_rcu_safe(&syncobj->fence);
		rcu_read_unlock();
		if (!fence)
			return -EINVAL;

		err = i915_gem_request_await_dma_fence(eb->request, fence);
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2198
static int
2199
i915_gem_do_execbuffer(struct drm_device *dev,
2200 2201
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2202 2203
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2204
{
2205
	struct i915_execbuffer eb;
2206 2207 2208
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2209
	int err;
2210

2211 2212
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2213

2214 2215 2216
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2217
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2218
		args->flags |= __EXEC_HAS_RELOC;
2219

2220
	eb.exec = exec;
2221 2222
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2223 2224
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2225 2226 2227
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2228 2229
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2230
	eb.buffer_count = args->buffer_count;
2231 2232 2233
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2234
	eb.batch_flags = 0;
2235
	if (args->flags & I915_EXEC_SECURE) {
2236
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2237 2238
		    return -EPERM;

2239
		eb.batch_flags |= I915_DISPATCH_SECURE;
2240
	}
2241
	if (args->flags & I915_EXEC_IS_PINNED)
2242
		eb.batch_flags |= I915_DISPATCH_PINNED;
2243

2244 2245
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2246 2247
		return -EINVAL;

2248
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2249
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2250 2251 2252
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2253
		if (eb.engine->id != RCS) {
2254
			DRM_DEBUG("RS is not available on %s\n",
2255
				 eb.engine->name);
2256 2257 2258
			return -EINVAL;
		}

2259
		eb.batch_flags |= I915_DISPATCH_RS;
2260 2261
	}

2262 2263
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2264 2265
		if (!in_fence)
			return -EINVAL;
2266 2267 2268 2269 2270
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2271
			err = out_fence_fd;
2272
			goto err_in_fence;
2273 2274 2275
		}
	}

2276 2277 2278 2279 2280
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2281

2282 2283 2284 2285
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2286 2287
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2288 2289 2290 2291 2292
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2293
	intel_runtime_pm_get(eb.i915);
2294

2295 2296 2297
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2298

2299
	err = eb_relocate(&eb);
2300
	if (err) {
2301 2302 2303 2304 2305 2306 2307 2308 2309
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2310
	}
2311

2312
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2313
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2314 2315
		err = -EINVAL;
		goto err_vma;
2316
	}
2317 2318
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2319
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2320 2321
		err = -EINVAL;
		goto err_vma;
2322
	}
2323

2324
	if (eb.engine->needs_cmd_parser && eb.batch_len) {
2325 2326
		struct i915_vma *vma;

2327
		vma = eb_parse(&eb, drm_is_current_master(file));
2328
		if (IS_ERR(vma)) {
2329 2330
			err = PTR_ERR(vma);
			goto err_vma;
2331
		}
2332

2333
		if (vma) {
2334 2335 2336 2337 2338 2339 2340 2341 2342
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2343
			eb.batch_flags |= I915_DISPATCH_SECURE;
2344 2345
			eb.batch_start_offset = 0;
			eb.batch = vma;
2346
		}
2347 2348
	}

2349 2350
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2351

2352 2353
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2354
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2355
	 * hsw should have this fixed, but bdw mucks it up again. */
2356
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2357
		struct i915_vma *vma;
2358

2359 2360 2361 2362 2363 2364
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2365
		 *   so we don't really have issues with multiple objects not
2366 2367 2368
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2369
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2370
		if (IS_ERR(vma)) {
2371 2372
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2373
		}
2374

2375
		eb.batch = vma;
2376
	}
2377

2378 2379 2380
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2381
	/* Allocate a request for this batch buffer nice and early. */
2382 2383
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2384
		err = PTR_ERR(eb.request);
2385
		goto err_batch_unpin;
2386
	}
2387

2388
	if (in_fence) {
2389 2390
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2391 2392 2393
			goto err_request;
	}

2394 2395 2396 2397 2398 2399
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2400
	if (out_fence_fd != -1) {
2401
		out_fence = sync_file_create(&eb.request->fence);
2402
		if (!out_fence) {
2403
			err = -ENOMEM;
2404 2405 2406 2407
			goto err_request;
		}
	}

2408 2409
	/*
	 * Whilst this request exists, batch_obj will be on the
2410 2411 2412 2413 2414
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2415
	eb.request->batch = eb.batch;
2416

2417 2418
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2419
err_request:
2420
	__i915_add_request(eb.request, err == 0);
2421
	add_to_client(eb.request, file);
2422

2423 2424 2425
	if (fences)
		signal_fence_array(&eb, fences);

2426
	if (out_fence) {
2427
		if (err == 0) {
2428 2429 2430 2431 2432 2433 2434 2435
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2436

2437
err_batch_unpin:
2438
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2439
		i915_vma_unpin(eb.batch);
2440 2441 2442
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2443
	mutex_unlock(&dev->struct_mutex);
2444
err_rpm:
2445
	intel_runtime_pm_put(eb.i915);
2446 2447
	i915_gem_context_put(eb.ctx);
err_destroy:
2448
	eb_destroy(&eb);
2449
err_out_fence:
2450 2451
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2452
err_in_fence:
2453
	dma_fence_put(in_fence);
2454
	return err;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2465 2466 2467
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2468 2469 2470 2471
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2472 2473
	unsigned int i;
	int err;
2474

2475 2476
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2477 2478 2479
		return -EINVAL;
	}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2494
	/* Copy in the exec list from userland */
2495 2496 2497 2498
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2499
	if (exec_list == NULL || exec2_list == NULL) {
2500
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2501
			  args->buffer_count);
M
Michal Hocko 已提交
2502 2503
		kvfree(exec_list);
		kvfree(exec2_list);
2504 2505
		return -ENOMEM;
	}
2506
	err = copy_from_user(exec_list,
2507
			     u64_to_user_ptr(args->buffers_ptr),
2508
			     sizeof(*exec_list) * args->buffer_count);
2509
	if (err) {
2510
		DRM_DEBUG("copy %d exec entries failed %d\n",
2511
			  args->buffer_count, err);
M
Michal Hocko 已提交
2512 2513
		kvfree(exec_list);
		kvfree(exec2_list);
2514 2515 2516 2517 2518 2519 2520 2521 2522
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2523
		if (INTEL_GEN(to_i915(dev)) < 4)
2524 2525 2526 2527 2528
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2529
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2530
	if (exec2.flags & __EXEC_HAS_RELOC) {
2531
		struct drm_i915_gem_exec_object __user *user_exec_list =
2532
			u64_to_user_ptr(args->buffers_ptr);
2533

2534
		/* Copy the new buffer offsets back to the user's exec list. */
2535
		for (i = 0; i < args->buffer_count; i++) {
2536 2537 2538
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2539
			exec2_list[i].offset =
2540 2541 2542 2543 2544
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2545
				break;
2546 2547 2548
		}
	}

M
Michal Hocko 已提交
2549 2550
	kvfree(exec_list);
	kvfree(exec2_list);
2551
	return err;
2552 2553 2554 2555 2556 2557
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2558 2559 2560
	const size_t sz = (sizeof(struct drm_i915_gem_exec_object2) +
			   sizeof(struct i915_vma *) +
			   sizeof(unsigned int));
2561
	struct drm_i915_gem_execbuffer2 *args = data;
2562
	struct drm_i915_gem_exec_object2 *exec2_list;
2563
	struct drm_syncobj **fences = NULL;
2564
	int err;
2565

2566
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2567
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2568 2569 2570
		return -EINVAL;
	}

2571 2572 2573 2574 2575 2576
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2577
	if (exec2_list == NULL) {
2578
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2579 2580 2581
			  args->buffer_count);
		return -ENOMEM;
	}
2582 2583 2584 2585
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2586
		kvfree(exec2_list);
2587 2588 2589
		return -EFAULT;
	}

2590 2591 2592 2593 2594 2595 2596 2597 2598
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2599 2600 2601 2602 2603 2604 2605 2606

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2607
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2608 2609
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2610

2611 2612
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2613
		for (i = 0; i < args->buffer_count; i++) {
2614 2615 2616
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2617
			exec2_list[i].offset =
2618 2619 2620 2621
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2622
		}
2623 2624
end_user:
		user_access_end();
2625 2626
	}

2627
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2628
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2629
	kvfree(exec2_list);
2630
	return err;
2631
}