i915_gem_execbuffer.c 38.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
34
#include <linux/dma_remapping.h>
35 36 37 38 39

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
40
	uint32_t flips;
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

190 191 192
	if (obj->base.pending_write_domain)
		cd->flips |= atomic_read(&obj->pending_flip);

193 194 195 196 197 198 199 200 201 202 203 204
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
205
		cd->flush_rings |= intel_ring_flag(obj->ring);
206
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
207
		cd->flush_rings |= intel_ring_flag(ring);
208 209
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

268 269 270 271 272 273
static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
{
	return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
		obj->cache_level != I915_CACHE_NONE);
}

274 275
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
276
				   struct eb_objects *eb,
277 278 279 280
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
281
	struct drm_i915_gem_object *target_i915_obj;
282 283 284
	uint32_t target_offset;
	int ret = -EINVAL;

285 286 287
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
288 289
		return -ENOENT;

290 291
	target_i915_obj = to_intel_bo(target_obj);
	target_offset = target_i915_obj->gtt_offset;
292

293 294 295 296 297 298 299 300 301 302
	/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
	 * pipe_control writes because the gpu doesn't properly redirect them
	 * through the ppgtt for non_secure batchbuffers. */
	if (unlikely(IS_GEN6(dev) &&
	    reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
	    !target_i915_obj->has_global_gtt_mapping)) {
		i915_gem_gtt_bind_object(target_i915_obj,
					 target_i915_obj->cache_level);
	}

303 304 305
	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
306
	if (unlikely(target_offset == 0)) {
307
		DRM_DEBUG("No GTT space found for object %d\n",
308
			  reloc->target_handle);
309
		return ret;
310 311 312
	}

	/* Validate that the target is in a valid r/w GPU domain */
313
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
314
		DRM_DEBUG("reloc with multiple write domains: "
315 316 317 318 319 320
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
321
		return ret;
322
	}
323 324
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
325
		DRM_DEBUG("reloc with read/write non-GPU domains: "
326 327 328 329 330 331
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
332
		return ret;
333
	}
334 335
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
336
		DRM_DEBUG("Write domain conflict: "
337 338 339 340 341 342
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
343
		return ret;
344 345 346 347 348 349 350 351 352
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
353
		return 0;
354 355

	/* Check that the relocation address is valid... */
356
	if (unlikely(reloc->offset > obj->base.size - 4)) {
357
		DRM_DEBUG("Relocation beyond object bounds: "
358 359 360 361
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
362
		return ret;
363
	}
364
	if (unlikely(reloc->offset & 3)) {
365
		DRM_DEBUG("Relocation not 4-byte aligned: "
366 367 368
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
369
		return ret;
370 371
	}

372 373 374 375
	/* We can't wait for rendering with pagefaults disabled */
	if (obj->active && in_atomic())
		return -EFAULT;

376
	reloc->delta += target_offset;
377
	if (use_cpu_reloc(obj)) {
378 379 380
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

381 382 383 384
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
			return ret;

385 386 387 388 389 390 391 392
		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

393 394 395 396 397
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;

		ret = i915_gem_object_put_fence(obj);
398
		if (ret)
399
			return ret;
400 401 402 403 404 405 406 407 408 409 410 411 412 413

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

414
	return 0;
415 416 417 418
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
419
				    struct eb_objects *eb)
420
{
421 422
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
	struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
423
	struct drm_i915_gem_relocation_entry __user *user_relocs;
424
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
425
	int remain, ret;
426 427 428

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;

429 430 431 432 433 434 435 436 437
	remain = entry->relocation_count;
	while (remain) {
		struct drm_i915_gem_relocation_entry *r = stack_reloc;
		int count = remain;
		if (count > ARRAY_SIZE(stack_reloc))
			count = ARRAY_SIZE(stack_reloc);
		remain -= count;

		if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
438 439
			return -EFAULT;

440 441
		do {
			u64 offset = r->presumed_offset;
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456
			ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
			if (ret)
				return ret;

			if (r->presumed_offset != offset &&
			    __copy_to_user_inatomic(&user_relocs->presumed_offset,
						    &r->presumed_offset,
						    sizeof(r->presumed_offset))) {
				return -EFAULT;
			}

			user_relocs++;
			r++;
		} while (--count);
457 458 459
	}

	return 0;
460
#undef N_RELOC
461 462 463 464
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
465
					 struct eb_objects *eb,
466 467
					 struct drm_i915_gem_relocation_entry *relocs)
{
468
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
469 470 471
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
472
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
473 474 475 476 477 478 479 480 481
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
482
			     struct eb_objects *eb,
483
			     struct list_head *objects)
484
{
485
	struct drm_i915_gem_object *obj;
486 487 488 489 490 491 492 493 494 495
	int ret = 0;

	/* This is the fast path and we cannot handle a pagefault whilst
	 * holding the struct mutex lest the user pass in the relocations
	 * contained within a mmaped bo. For in such a case we, the page
	 * fault handler would call i915_gem_fault() and we would try to
	 * acquire the struct mutex again. Obviously this is bad and so
	 * lockdep complains vehemently.
	 */
	pagefault_disable();
496
	list_for_each_entry(obj, objects, exec_list) {
497
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
498
		if (ret)
499
			break;
500
	}
501
	pagefault_enable();
502

503
	return ret;
504 505
}

506 507
#define  __EXEC_OBJECT_HAS_FENCE (1<<31)

508 509 510 511 512 513 514
static int
need_reloc_mappable(struct drm_i915_gem_object *obj)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	return entry->relocation_count && !use_cpu_reloc(obj);
}

515 516 517 518 519 520 521 522 523 524 525 526 527
static int
pin_and_fence_object(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *ring)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
	bool need_fence, need_mappable;
	int ret;

	need_fence =
		has_fenced_gpu_access &&
		entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
		obj->tiling_mode != I915_TILING_NONE;
528
	need_mappable = need_fence || need_reloc_mappable(obj);
529 530 531 532 533 534 535

	ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
	if (ret)
		return ret;

	if (has_fenced_gpu_access) {
		if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
536
			ret = i915_gem_object_get_fence(obj);
537 538
			if (ret)
				goto err_unpin;
539

540
			if (i915_gem_object_pin_fence(obj))
541
				entry->flags |= __EXEC_OBJECT_HAS_FENCE;
542

543
			obj->pending_fenced_gpu_access = true;
544 545 546 547 548 549 550 551 552 553 554
		}
	}

	entry->offset = obj->gtt_offset;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
	return ret;
}

555
static int
556
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
557
			    struct drm_file *file,
558
			    struct list_head *objects)
559
{
560
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
561 562
	struct drm_i915_gem_object *obj;
	int ret, retry;
563
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
580
		need_mappable = need_fence || need_reloc_mappable(obj);
581 582 583 584 585

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
586 587 588

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
589 590
	}
	list_splice(&ordered_objects, objects);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
609
		list_for_each_entry(obj, objects, exec_list) {
610
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
611
			bool need_fence, need_mappable;
612

613
			if (!obj->gtt_space)
614 615 616
				continue;

			need_fence =
617
				has_fenced_gpu_access &&
618 619
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
620
			need_mappable = need_fence || need_reloc_mappable(obj);
621 622 623 624 625

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
626
				ret = pin_and_fence_object(obj, ring);
627
			if (ret)
628 629 630 631
				goto err;
		}

		/* Bind fresh objects */
632
		list_for_each_entry(obj, objects, exec_list) {
633 634
			if (obj->gtt_space)
				continue;
635

636 637 638 639 640 641 642 643 644 645 646 647 648 649
			ret = pin_and_fence_object(obj, ring);
			if (ret) {
				int ret_ignore;

				/* This can potentially raise a harmless
				 * -EINVAL if we failed to bind in the above
				 * call. It cannot raise -EINTR since we know
				 * that the bo is freshly bound and so will
				 * not need to be flushed or waited upon.
				 */
				ret_ignore = i915_gem_object_unbind(obj);
				(void)ret_ignore;
				WARN_ON(obj->gtt_space);
				break;
650 651 652
			}
		}

653 654
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
655 656 657 658 659 660 661 662 663 664 665 666
			struct drm_i915_gem_exec_object2 *entry;

			if (!obj->gtt_space)
				continue;

			entry = obj->exec_entry;
			if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
				i915_gem_object_unpin_fence(obj);
				entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
			}

			i915_gem_object_unpin(obj);
667 668 669 670 671 672 673 674

			/* ... and ensure ppgtt mapping exist if needed. */
			if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
				i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
						       obj, obj->cache_level);

				obj->has_aliasing_ppgtt_mapping = 1;
			}
675 676 677 678 679 680 681 682
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
683
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
684 685 686 687 688
		if (ret)
			return ret;

		retry++;
	} while (1);
689 690

err:
691 692 693 694 695 696 697 698 699 700 701
	list_for_each_entry_continue_reverse(obj, objects, exec_list) {
		struct drm_i915_gem_exec_object2 *entry;

		if (!obj->gtt_space)
			continue;

		entry = obj->exec_entry;
		if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
			i915_gem_object_unpin_fence(obj);
			entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
		}
702

703
		i915_gem_object_unpin(obj);
704 705 706
	}

	return ret;
707 708 709 710 711
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
712
				  struct intel_ring_buffer *ring,
713
				  struct list_head *objects,
714
				  struct eb_objects *eb,
715
				  struct drm_i915_gem_exec_object2 *exec,
716 717 718
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
719
	struct drm_i915_gem_object *obj;
720
	int *reloc_offset;
721 722
	int i, total, ret;

723
	/* We may process another execbuffer during the unlock... */
724
	while (!list_empty(objects)) {
725 726 727 728 729 730 731
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

732 733 734 735
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
736
		total += exec[i].relocation_count;
737

738
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
739
	reloc = drm_malloc_ab(total, sizeof(*reloc));
740 741 742
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
743 744 745 746 747 748 749 750
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

751
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
752 753

		if (copy_from_user(reloc+total, user_relocs,
754
				   exec[i].relocation_count * sizeof(*reloc))) {
755 756 757 758 759
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

760
		reloc_offset[i] = total;
761
		total += exec[i].relocation_count;
762 763 764 765 766 767 768 769
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

770 771 772 773 774
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
775
		if (&obj->base == NULL) {
776
			DRM_DEBUG("Invalid object handle %d at index %d\n",
777 778 779 780 781 782 783
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
784
		obj->exec_entry = &exec[i];
785 786 787
		eb_add_object(eb, obj);
	}

788
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
789 790 791
	if (ret)
		goto err;

792
	list_for_each_entry(obj, objects, exec_list) {
793
		int offset = obj->exec_entry - exec;
794
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
795
							       reloc + reloc_offset[offset]);
796 797 798 799 800 801 802 803 804 805 806 807
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
808
	drm_free_large(reloc_offset);
809 810 811
	return ret;
}

812
static void
813 814
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
815
			  uint32_t flush_domains)
816 817 818 819
{
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

820 821
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();
822 823
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
{
	u32 plane, flip_mask;
	int ret;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */

	for (plane = 0; flips >> plane; plane++) {
		if (((flips >> plane) & 1) == 0)
			continue;

		if (plane)
			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
		else
			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
	}

	return 0;
}


857
static int
858 859
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
860
{
861
	struct drm_i915_gem_object *obj;
862
	struct change_domains cd;
863
	int ret;
864

865
	memset(&cd, 0, sizeof(cd));
866 867
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
868 869

	if (cd.invalidate_domains | cd.flush_domains) {
870 871 872
		i915_gem_execbuffer_flush(ring->dev,
					  cd.invalidate_domains,
					  cd.flush_domains);
873 874
	}

875 876 877 878 879 880
	if (cd.flips) {
		ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
		if (ret)
			return ret;
	}

881
	list_for_each_entry(obj, objects, exec_list) {
882
		ret = i915_gem_object_sync(obj, ring);
883 884
		if (ret)
			return ret;
885 886
	}

887 888 889 890 891 892
	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
	ret = i915_gem_flush_ring(ring,
				  I915_GEM_GPU_DOMAINS,
				  ring->gpu_caches_dirty ? I915_GEM_GPU_DOMAINS : 0);
893 894 895
	if (ret)
		return ret;

896
	ring->gpu_caches_dirty = false;
897 898 899
	return 0;
}

900 901
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
902
{
903
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

930
		if (fault_in_multipages_readable(ptr, length))
931 932 933 934 935 936
			return -EFAULT;
	}

	return 0;
}

937 938
static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
939 940
				   struct intel_ring_buffer *ring,
				   u32 seqno)
941 942 943 944
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
C
Chris Wilson 已提交
945 946 947 948
		  u32 old_read = obj->base.read_domains;
		  u32 old_write = obj->base.write_domain;


949 950 951 952
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

953
		i915_gem_object_move_to_active(obj, ring, seqno);
954 955
		if (obj->base.write_domain) {
			obj->dirty = 1;
956
			obj->pending_gpu_write = true;
957 958
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
959 960
			if (obj->pin_count) /* check for potential scanout */
				intel_mark_busy(ring->dev, obj);
961 962
		}

C
Chris Wilson 已提交
963
		trace_i915_gem_object_change_domain(obj, old_read, old_write);
964
	}
965 966

	intel_mark_busy(ring->dev, NULL);
967 968
}

969 970
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
971
				    struct drm_file *file,
972 973
				    struct intel_ring_buffer *ring)
{
974
	struct drm_i915_gem_request *request;
975

976 977
	/* Unconditionally force add_request to emit a full flush. */
	ring->gpu_caches_dirty = true;
978

979 980
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
C
Chris Wilson 已提交
981
	if (request == NULL || i915_add_request(ring, file, request)) {
982 983 984
		kfree(request);
	}
}
985

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret, i;

	if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
		return 0;

	ret = intel_ring_begin(ring, 4 * 3);
	if (ret)
		return ret;

	for (i = 0; i < 4; i++) {
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
		intel_ring_emit(ring, 0);
	}

	intel_ring_advance(ring);

	return 0;
}

1011 1012 1013 1014
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1015
		       struct drm_i915_gem_exec_object2 *exec)
1016 1017
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1018
	struct list_head objects;
1019
	struct eb_objects *eb;
1020 1021 1022
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
1023
	u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1024
	u32 exec_start, exec_len;
1025
	u32 seqno;
1026
	u32 mask;
1027
	int ret, mode, i;
1028

1029
	if (!i915_gem_check_execbuffer(args)) {
1030
		DRM_DEBUG("execbuf with invalid offset/length\n");
1031 1032 1033 1034
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
1035 1036 1037 1038 1039 1040
	if (ret)
		return ret;

	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
1041
		ring = &dev_priv->ring[RCS];
1042 1043
		break;
	case I915_EXEC_BSD:
1044
		ring = &dev_priv->ring[VCS];
1045 1046 1047 1048 1049
		if (ctx_id != 0) {
			DRM_DEBUG("Ring %s doesn't support contexts\n",
				  ring->name);
			return -EPERM;
		}
1050 1051
		break;
	case I915_EXEC_BLT:
1052
		ring = &dev_priv->ring[BCS];
1053 1054 1055 1056 1057
		if (ctx_id != 0) {
			DRM_DEBUG("Ring %s doesn't support contexts\n",
				  ring->name);
			return -EPERM;
		}
1058 1059
		break;
	default:
1060
		DRM_DEBUG("execbuf with unknown ring: %d\n",
1061 1062 1063
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}
1064 1065 1066 1067 1068
	if (!intel_ring_initialized(ring)) {
		DRM_DEBUG("execbuf with invalid ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}
1069

1070
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1071
	mask = I915_EXEC_CONSTANTS_MASK;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;
1084 1085 1086 1087

			/* The HW changed the meaning on this bit on gen6 */
			if (INTEL_INFO(dev)->gen >= 6)
				mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1088 1089 1090
		}
		break;
	default:
1091
		DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1092 1093 1094
		return -EINVAL;
	}

1095
	if (args->buffer_count < 1) {
1096
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1097 1098 1099 1100
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1101
		if (ring != &dev_priv->ring[RCS]) {
1102
			DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1103 1104 1105
			return -EINVAL;
		}

1106 1107 1108 1109 1110
		if (INTEL_INFO(dev)->gen >= 5) {
			DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
			return -EINVAL;
		}

1111 1112 1113 1114 1115
		if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
			DRM_DEBUG("execbuf with %u cliprects\n",
				  args->num_cliprects);
			return -EINVAL;
		}
1116

1117
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1118 1119 1120 1121 1122 1123
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1124 1125 1126 1127
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1143 1144 1145 1146 1147 1148 1149
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1150
	/* Look up object handles */
1151
	INIT_LIST_HEAD(&objects);
1152 1153 1154
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1155 1156
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1157
		if (&obj->base == NULL) {
1158
			DRM_DEBUG("Invalid object handle %d at index %d\n",
1159
				   exec[i].handle, i);
1160 1161 1162 1163 1164
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1165
		if (!list_empty(&obj->exec_list)) {
1166
			DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1167
				   obj, exec[i].handle, i);
1168 1169 1170
			ret = -EINVAL;
			goto err;
		}
1171 1172

		list_add_tail(&obj->exec_list, &objects);
1173
		obj->exec_handle = exec[i].handle;
1174
		obj->exec_entry = &exec[i];
1175
		eb_add_object(eb, obj);
1176 1177
	}

1178 1179 1180 1181 1182
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1183
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1184
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1185 1186 1187 1188
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1189
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1190 1191
	if (ret) {
		if (ret == -EFAULT) {
1192
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1193 1194
								&objects, eb,
								exec,
1195 1196 1197 1198 1199 1200 1201 1202 1203
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
1204
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1205 1206 1207 1208 1209
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1210 1211
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1212 1213
		goto err;

C
Chris Wilson 已提交
1214
	seqno = i915_gem_next_request_seqno(ring);
1215
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1216 1217 1218 1219 1220
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
1221
			ret = i915_gpu_idle(dev);
1222 1223
			if (ret)
				goto err;
1224
			i915_gem_retire_requests(dev);
1225 1226 1227 1228 1229

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1230 1231 1232 1233
	ret = i915_switch_context(ring, file, ctx_id);
	if (ret)
		goto err;

1234 1235 1236 1237 1238 1239 1240 1241 1242
	if (ring == &dev_priv->ring[RCS] &&
	    mode != dev_priv->relative_constants_mode) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
				goto err;

		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, INSTPM);
1243
		intel_ring_emit(ring, mask << 16 | mode);
1244 1245 1246 1247 1248
		intel_ring_advance(ring);

		dev_priv->relative_constants_mode = mode;
	}

1249 1250 1251 1252 1253 1254
	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		ret = i915_reset_gen7_sol_offsets(dev, ring);
		if (ret)
			goto err;
	}

C
Chris Wilson 已提交
1255 1256
	trace_i915_gem_ring_dispatch(ring, seqno);

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1276

1277
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1278
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1279 1280

err:
1281
	eb_destroy(eb);
1282 1283 1284 1285 1286 1287 1288 1289
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

	if (args->buffer_count < 1) {
1314
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1315 1316 1317 1318 1319 1320 1321
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
1322
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
1333
		DRM_DEBUG("copy %d exec entries failed %d\n",
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
1361
	i915_execbuffer2_set_context_id(exec2, 0);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1375
			DRM_DEBUG("failed to copy %d exec entries "
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

1394 1395
	if (args->buffer_count < 1 ||
	    args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1396
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1397 1398 1399
		return -EINVAL;
	}

1400 1401 1402 1403 1404
	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (exec2_list == NULL)
		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
					   args->buffer_count);
1405
	if (exec2_list == NULL) {
1406
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1407 1408 1409 1410 1411 1412 1413 1414
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
1415
		DRM_DEBUG("copy %d exec entries failed %d\n",
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1430
			DRM_DEBUG("failed to copy %d exec entries "
1431 1432 1433 1434 1435 1436 1437 1438
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}