i915_gem_execbuffer.c 68.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34 35
#include <drm/drmP.h>
#include <drm/i915_drm.h>
36

37
#include "i915_drv.h"
38
#include "i915_gem_clflush.h"
39 40
#include "i915_trace.h"
#include "intel_drv.h"
41
#include "intel_frontbuffer.h"
42

43 44 45 46 47 48
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
49

50 51 52 53 54 55
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
56 57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
#define UPDATE			PIN_OFFSET_FIXED
61 62

#define BATCH_OFFSET_BIAS (256*1024)
63

64 65
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

189
struct i915_execbuffer {
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

	struct drm_i915_gem_request *request; /** our request to build */
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
216
	struct reloc_cache {
217 218 219
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
220
		unsigned int gen; /** Cached value of INTEL_GEN */
221
		bool use_64bit_reloc : 1;
222 223 224
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
225 226 227 228

		struct drm_i915_gem_request *rq;
		u32 *rq_cmd;
		unsigned int rq_size;
229
	} reloc_cache;
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
245 246
};

247 248 249 250 251 252 253 254
/*
 * As an alternative to creating a hashtable of handle-to-vma for a batch,
 * we used the last available reserved field in the execobject[] and stash
 * a link from the execobj to its vma.
 */
#define __exec_to_vma(ee) (ee)->rsvd2
#define exec_to_vma(ee) u64_to_ptr(struct i915_vma, __exec_to_vma(ee))

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

274
static int eb_create(struct i915_execbuffer *eb)
275
{
276 277
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
278

279 280 281 282 283 284 285 286 287 288 289
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
290
		do {
291 292 293 294 295 296 297 298 299 300 301 302
			unsigned int flags;

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
			flags = GFP_TEMPORARY;
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

303
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
304
					      flags);
305 306 307 308
			if (eb->buckets)
				break;
		} while (--size);

309 310
		if (unlikely(!size))
			return -ENOMEM;
311

312
		eb->lut_size = size;
313
	} else {
314
		eb->lut_size = -eb->buffer_count;
315
	}
316

317
	return 0;
318 319
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
		 const struct i915_vma *vma)
{
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return true;

	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

	if (entry->flags & EXEC_OBJECT_PINNED &&
	    vma->node.start != entry->offset)
		return true;

	if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

	return false;
}

static inline void
eb_pin_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
{
	u64 flags;

355 356 357 358 359 360
	if (vma->node.size)
		flags = vma->node.start;
	else
		flags = entry->offset & PIN_OFFSET_MASK;

	flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
361 362
	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_GTT))
		flags |= PIN_GLOBAL;
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	if (unlikely(i915_vma_pin(vma, 0, 0, flags)))
		return;

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		if (unlikely(i915_vma_get_fence(vma))) {
			i915_vma_unpin(vma);
			return;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
}

380 381 382 383
static inline void
__eb_unreserve_vma(struct i915_vma *vma,
		   const struct drm_i915_gem_exec_object2 *entry)
{
384 385
	GEM_BUG_ON(!(entry->flags & __EXEC_OBJECT_HAS_PIN));

386 387 388
	if (unlikely(entry->flags & __EXEC_OBJECT_HAS_FENCE))
		i915_vma_unpin_fence(vma);

389
	__i915_vma_unpin(vma);
390 391
}

392 393 394
static inline void
eb_unreserve_vma(struct i915_vma *vma,
		 struct drm_i915_gem_exec_object2 *entry)
395
{
396 397
	if (!(entry->flags & __EXEC_OBJECT_HAS_PIN))
		return;
398 399

	__eb_unreserve_vma(vma, entry);
400
	entry->flags &= ~__EXEC_OBJECT_RESERVED;
401 402
}

403 404 405 406
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
407
{
408 409
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
428 429
	}

430 431 432 433 434 435 436 437 438 439 440 441 442 443
	if (unlikely(vma->exec_entry)) {
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

	return 0;
444 445
}

446 447 448 449
static int
eb_add_vma(struct i915_execbuffer *eb,
	   struct drm_i915_gem_exec_object2 *entry,
	   struct i915_vma *vma)
450
{
451 452 453 454 455 456 457 458
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
459 460
	}

461
	if (eb->lut_size > 0) {
462
		vma->exec_handle = entry->handle;
463
		hlist_add_head(&vma->exec_node,
464 465
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
466
	}
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
	vma->exec_entry = entry;
490
	__exec_to_vma(entry) = (uintptr_t)vma;
491 492

	err = 0;
493
	eb_pin_vma(eb, entry, vma);
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	if (eb_vma_misplaced(entry, vma)) {
		eb_unreserve_vma(vma, entry);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
	} else {
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

515 516 517 518 519
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
	struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	u64 flags;
	int err;

	flags = PIN_USER | PIN_NONBLOCK;
	if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
		flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		flags |= PIN_ZONE_4G;

	if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
		flags |= PIN_MAPPABLE;

	if (entry->flags & EXEC_OBJECT_PINNED) {
		flags |= entry->offset | PIN_OFFSET_FIXED;
		flags &= ~PIN_NONBLOCK; /* force overlapping PINNED checks */
	} else if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS) {
		flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
	}

	err = i915_vma_pin(vma, entry->pad_to_size, entry->alignment, flags);
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

	entry->flags |= __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma));

	if (unlikely(entry->flags & EXEC_OBJECT_NEEDS_FENCE)) {
		err = i915_vma_get_fence(vma);
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

		if (i915_vma_pin_fence(vma))
			entry->flags |= __EXEC_OBJECT_HAS_FENCE;
	}

	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];

			if (entry->flags & EXEC_OBJECT_PINNED &&
			    entry->flags & __EXEC_OBJECT_HAS_PIN)
				continue;

			vma = exec_to_vma(entry);
			eb_unreserve_vma(vma, entry);

			if (entry->flags & EXEC_OBJECT_PINNED)
				list_add(&vma->exec_link, &eb->unbound);
			else if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
650
}
651

652
static inline struct hlist_head *
653
ht_head(const  struct i915_gem_context_vma_lut *lut, u32 handle)
654
{
655
	return &lut->ht[hash_32(handle, lut->ht_bits)];
656 657 658
}

static inline bool
659
ht_needs_resize(const struct i915_gem_context_vma_lut *lut)
660
{
661 662
	return (4*lut->ht_count > 3*lut->ht_size ||
		4*lut->ht_count + 1 < lut->ht_size);
663 664
}

665 666
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
667 668 669 670
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
671 672 673 674 675 676 677
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
678 679
	if (unlikely(!ctx))
		return -ENOENT;
680 681 682 683

	if (unlikely(i915_gem_context_is_banned(ctx))) {
		DRM_DEBUG("Context %u tried to submit while banned\n",
			  ctx->user_handle);
684
		i915_gem_context_put(ctx);
685 686 687
		return -EIO;
	}

688
	eb->ctx = ctx;
689 690 691 692 693 694 695 696 697 698
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
699
{
700
#define INTERMEDIATE BIT(0)
701 702
	const unsigned int count = eb->buffer_count;
	struct i915_gem_context_vma_lut *lut = &eb->ctx->vma_lut;
703
	struct i915_vma *vma;
704 705
	struct idr *idr;
	unsigned int i;
706
	int slow_pass = -1;
707
	int err;
708

709 710
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
711

712 713 714
	if (unlikely(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS))
		flush_work(&lut->resize);
	GEM_BUG_ON(lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS);
715 716 717 718 719

	for (i = 0; i < count; i++) {
		__exec_to_vma(&eb->exec[i]) = 0;

		hlist_for_each_entry(vma,
720
				     ht_head(lut, eb->exec[i].handle),
721 722 723 724
				     ctx_node) {
			if (vma->ctx_handle != eb->exec[i].handle)
				continue;

725 726 727
			err = eb_add_vma(eb, &eb->exec[i], vma);
			if (unlikely(err))
				return err;
728 729 730 731 732 733 734 735 736 737

			goto next_vma;
		}

		if (slow_pass < 0)
			slow_pass = i;
next_vma: ;
	}

	if (slow_pass < 0)
738
		goto out;
739

740
	spin_lock(&eb->file->table_lock);
741 742 743 744 745
	/*
	 * Grab a reference to the object and release the lock so we can lookup
	 * or create the VMA without using GFP_ATOMIC
	 */
	idr = &eb->file->object_idr;
746 747
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
748

749 750 751
		if (__exec_to_vma(&eb->exec[i]))
			continue;

752
		obj = to_intel_bo(idr_find(idr, eb->exec[i].handle));
753
		if (unlikely(!obj)) {
754
			spin_unlock(&eb->file->table_lock);
755 756
			DRM_DEBUG("Invalid object handle %d at index %d\n",
				  eb->exec[i].handle, i);
757 758
			err = -ENOENT;
			goto err;
759 760
		}

761
		__exec_to_vma(&eb->exec[i]) = INTERMEDIATE | (uintptr_t)obj;
762
	}
763
	spin_unlock(&eb->file->table_lock);
764

765 766
	for (i = slow_pass; i < count; i++) {
		struct drm_i915_gem_object *obj;
767

768
		if (!(__exec_to_vma(&eb->exec[i]) & INTERMEDIATE))
769
			continue;
770

771 772 773 774 775 776 777 778
		/*
		 * NOTE: We can leak any vmas created here when something fails
		 * later on. But that's no issue since vma_unbind can deal with
		 * vmas which are not actually bound. And since only
		 * lookup_or_create exists as an interface to get at the vma
		 * from the (obj, vm) we don't run the risk of creating
		 * duplicated vmas for the same vm.
		 */
779
		obj = u64_to_ptr(typeof(*obj),
780
				 __exec_to_vma(&eb->exec[i]) & ~INTERMEDIATE);
781
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
782
		if (unlikely(IS_ERR(vma))) {
783
			DRM_DEBUG("Failed to lookup VMA\n");
784 785
			err = PTR_ERR(vma);
			goto err;
786 787
		}

788 789 790 791 792
		/* First come, first served */
		if (!vma->ctx) {
			vma->ctx = eb->ctx;
			vma->ctx_handle = eb->exec[i].handle;
			hlist_add_head(&vma->ctx_node,
793 794 795
				       ht_head(lut, eb->exec[i].handle));
			lut->ht_count++;
			lut->ht_size |= I915_CTX_RESIZE_IN_PROGRESS;
796 797 798 799
			if (i915_vma_is_ggtt(vma)) {
				GEM_BUG_ON(obj->vma_hashed);
				obj->vma_hashed = vma;
			}
800 801

			i915_vma_get(vma);
802
		}
803

804 805 806
		err = eb_add_vma(eb, &eb->exec[i], vma);
		if (unlikely(err))
			goto err;
807 808 809 810 811 812

		/* Only after we validated the user didn't use our bits */
		if (vma->ctx != eb->ctx) {
			i915_vma_get(vma);
			eb->exec[i].flags |= __EXEC_OBJECT_HAS_REF;
		}
813 814
	}

815 816 817 818 819
	if (lut->ht_size & I915_CTX_RESIZE_IN_PROGRESS) {
		if (ht_needs_resize(lut))
			queue_work(system_highpri_wq, &lut->resize);
		else
			lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
820 821
	}

822 823 824 825
out:
	/* take note of the batch buffer before we might reorder the lists */
	i = eb_batch_index(eb);
	eb->batch = exec_to_vma(&eb->exec[i]);
826

827
	/*
828 829 830 831 832 833 834
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
835
	 */
836 837 838 839
	if (!(eb->exec[i].flags & EXEC_OBJECT_PINNED))
		eb->exec[i].flags |= __EXEC_OBJECT_NEEDS_BIAS;
	if (eb->reloc_cache.has_fence)
		eb->exec[i].flags |= EXEC_OBJECT_NEEDS_FENCE;
840

841 842 843 844 845 846 847 848 849 850 851
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

err:
	for (i = slow_pass; i < count; i++) {
		if (__exec_to_vma(&eb->exec[i]) & INTERMEDIATE)
			__exec_to_vma(&eb->exec[i]) = 0;
	}
	lut->ht_size &= ~I915_CTX_RESIZE_IN_PROGRESS;
	return err;
#undef INTERMEDIATE
852 853
}

854
static struct i915_vma *
855
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
856
{
857 858
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
859
			return NULL;
860
		return exec_to_vma(&eb->exec[handle]);
861 862
	} else {
		struct hlist_head *head;
863
		struct i915_vma *vma;
864

865
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
866
		hlist_for_each_entry(vma, head, exec_node) {
867 868
			if (vma->exec_handle == handle)
				return vma;
869 870 871
		}
		return NULL;
	}
872 873
}

874
static void eb_release_vmas(const struct i915_execbuffer *eb)
875
{
876 877 878 879 880 881
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
882

883
		if (!vma)
884
			continue;
885

886
		GEM_BUG_ON(vma->exec_entry != entry);
887
		vma->exec_entry = NULL;
888
		__exec_to_vma(entry) = 0;
889

890 891 892 893 894
		if (entry->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, entry);

		if (entry->flags & __EXEC_OBJECT_HAS_REF)
			i915_vma_put(vma);
895

896 897
		entry->flags &=
			~(__EXEC_OBJECT_RESERVED | __EXEC_OBJECT_HAS_REF);
898
	}
899 900
}

901
static void eb_reset_vmas(const struct i915_execbuffer *eb)
902
{
903
	eb_release_vmas(eb);
904
	if (eb->lut_size > 0)
905 906
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
907 908
}

909
static void eb_destroy(const struct i915_execbuffer *eb)
910
{
911 912
	GEM_BUG_ON(eb->reloc_cache.rq);

913
	if (eb->lut_size > 0)
914
		kfree(eb->buckets);
915 916
}

917
static inline u64
918
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
919
		  const struct i915_vma *target)
920
{
921
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
922 923
}

924 925
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
926
{
927
	cache->page = -1;
928
	cache->vaddr = 0;
929
	/* Must be a variable in the struct to allow GCC to unroll. */
930
	cache->gen = INTEL_GEN(i915);
931
	cache->has_llc = HAS_LLC(i915);
932
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
933 934
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
935
	cache->node.allocated = false;
936 937
	cache->rq = NULL;
	cache->rq_size = 0;
938
}
939

940 941 942 943 944 945 946 947
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
948 949
}

950 951
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

952 953 954 955 956 957 958
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

959 960 961 962 963 964 965 966 967 968 969
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

	__i915_add_request(cache->rq, true);
	cache->rq = NULL;
}

970
static void reloc_cache_reset(struct reloc_cache *cache)
971
{
972
	void *vaddr;
973

974 975 976
	if (cache->rq)
		reloc_gpu_flush(cache);

977 978
	if (!cache->vaddr)
		return;
979

980 981 982 983
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
984

985 986 987
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
988
		wmb();
989
		io_mapping_unmap_atomic((void __iomem *)vaddr);
990
		if (cache->node.allocated) {
991
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
992 993 994

			ggtt->base.clear_range(&ggtt->base,
					       cache->node.start,
995
					       cache->node.size);
996 997 998
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
999
		}
1000
	}
1001 1002 1003

	cache->vaddr = 0;
	cache->page = -1;
1004 1005 1006 1007
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1008
			unsigned long page)
1009
{
1010 1011 1012 1013 1014 1015
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1016
		int err;
1017

1018 1019 1020
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
1021 1022 1023

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1024

1025 1026 1027 1028
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1029 1030
	}

1031 1032
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1033
	cache->page = page;
1034

1035
	return vaddr;
1036 1037
}

1038 1039
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1040
			 unsigned long page)
1041
{
1042
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1043
	unsigned long offset;
1044
	void *vaddr;
1045

1046
	if (cache->vaddr) {
1047
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1048 1049
	} else {
		struct i915_vma *vma;
1050
		int err;
1051

1052
		if (use_cpu_reloc(cache, obj))
1053
			return NULL;
1054

1055 1056 1057
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1058

1059 1060
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE | PIN_NONBLOCK);
1061 1062
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1063
			err = drm_mm_insert_node_in_range
1064
				(&ggtt->base.mm, &cache->node,
1065
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1066
				 0, ggtt->mappable_end,
1067
				 DRM_MM_INSERT_LOW);
1068
			if (err) /* no inactive aperture space, use cpu reloc */
1069
				return NULL;
1070
		} else {
1071 1072
			err = i915_vma_put_fence(vma);
			if (err) {
1073
				i915_vma_unpin(vma);
1074
				return ERR_PTR(err);
1075
			}
1076

1077 1078
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1079
		}
1080
	}
1081

1082 1083
	offset = cache->node.start;
	if (cache->node.allocated) {
1084
		wmb();
1085 1086 1087 1088 1089
		ggtt->base.insert_page(&ggtt->base,
				       i915_gem_object_get_dma_address(obj, page),
				       offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
1090 1091
	}

1092 1093
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->mappable,
							 offset);
1094 1095
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1096

1097
	return vaddr;
1098 1099
}

1100 1101
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1102
			 unsigned long page)
1103
{
1104
	void *vaddr;
1105

1106 1107 1108 1109 1110 1111 1112 1113
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1114 1115
	}

1116
	return vaddr;
1117 1118
}

1119
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1120
{
1121 1122 1123 1124 1125
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1126

1127
		*addr = value;
1128

1129 1130
		/*
		 * Writes to the same cacheline are serialised by the CPU
1131 1132 1133 1134 1135 1136 1137 1138 1139
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1140 1141
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_request *rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
				      cache->has_llc ? I915_MAP_WB : I915_MAP_WC);
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

	rq = i915_gem_request_alloc(eb->engine, eb->ctx);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

	err = i915_gem_request_await_object(rq, vma->obj, true);
	if (err)
		goto err_request;

	err = eb->engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		goto err_request;

	err = i915_switch_context(rq);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1203
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1204
	i915_vma_move_to_active(batch, rq, 0);
1205 1206 1207
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1208 1209
	i915_vma_unpin(batch);

1210
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1211 1212 1213
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
	i915_add_request(rq);
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1257 1258
static u64
relocate_entry(struct i915_vma *vma,
1259
	       const struct drm_i915_gem_relocation_entry *reloc,
1260 1261
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1262
{
1263
	u64 offset = reloc->offset;
1264 1265
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1266
	void *vaddr;
1267

1268 1269
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1270
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
		else if (gen >= 3)
			len = 3;
		else /* On gen2 MI_STORE_DWORD_IMM uses a physical address */
			goto repeat;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1329
repeat:
1330
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1331 1332 1333 1334 1335
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1336
			eb->reloc_cache.vaddr);
1337 1338 1339 1340 1341 1342

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1343 1344
	}

1345
out:
1346
	return target->node.start | UPDATE;
1347 1348
}

1349 1350 1351 1352
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1353
{
1354
	struct i915_vma *target;
1355
	int err;
1356

1357
	/* we've already hold a reference to all valid objects */
1358 1359
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1360
		return -ENOENT;
1361

1362
	/* Validate that the target is in a valid r/w GPU domain */
1363
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1364
		DRM_DEBUG("reloc with multiple write domains: "
1365
			  "target %d offset %d "
1366
			  "read %08x write %08x",
1367
			  reloc->target_handle,
1368 1369 1370
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1371
		return -EINVAL;
1372
	}
1373 1374
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1375
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1376
			  "target %d offset %d "
1377
			  "read %08x write %08x",
1378
			  reloc->target_handle,
1379 1380 1381
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1382
		return -EINVAL;
1383 1384
	}

1385
	if (reloc->write_domain) {
1386 1387
		target->exec_entry->flags |= EXEC_OBJECT_WRITE;

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1402
	}
1403

1404 1405
	/*
	 * If the relocation already has the right value in it, no
1406 1407
	 * more work needs to be done.
	 */
1408 1409
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1410
		return 0;
1411 1412

	/* Check that the relocation address is valid... */
1413
	if (unlikely(reloc->offset >
1414
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1415
		DRM_DEBUG("Relocation beyond object bounds: "
1416 1417 1418 1419
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1420
		return -EINVAL;
1421
	}
1422
	if (unlikely(reloc->offset & 3)) {
1423
		DRM_DEBUG("Relocation not 4-byte aligned: "
1424 1425 1426
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1427
		return -EINVAL;
1428 1429
	}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
	 * of our synchronisation.
	 */
	vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;

1440
	/* and update the user's relocation entry */
1441
	return relocate_entry(vma, reloc, eb, target);
1442 1443
}

1444
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1445
{
1446
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1447 1448 1449 1450
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
	unsigned int remain;
1451

1452
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1453
	remain = entry->relocation_count;
1454 1455
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1456

1457 1458 1459 1460 1461
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1462
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1463 1464 1465 1466 1467 1468 1469
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1470

1471 1472
		/*
		 * This is the fast path and we cannot handle a pagefault
1473 1474 1475 1476 1477 1478 1479
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1480
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1481
		pagefault_enable();
1482 1483
		if (unlikely(copied)) {
			remain = -EFAULT;
1484 1485
			goto out;
		}
1486

1487
		remain -= count;
1488
		do {
1489
			u64 offset = eb_relocate_entry(eb, vma, r);
1490

1491 1492 1493
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1494
				goto out;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1520
			}
1521 1522 1523
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1524
out:
1525
	reloc_cache_reset(&eb->reloc_cache);
1526
	return remain;
1527 1528 1529
}

static int
1530
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1531
{
1532
	const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
1533 1534 1535 1536
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1537 1538

	for (i = 0; i < entry->relocation_count; i++) {
1539
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1540

1541 1542 1543 1544
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1545
	}
1546 1547 1548 1549
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1550 1551
}

1552
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1553
{
1554 1555 1556
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1557

1558 1559 1560
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1561

1562 1563
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1564

1565 1566 1567 1568
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1569

1570 1571 1572 1573 1574
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1575
	}
1576
	return __get_user(c, end - 1);
1577
}
1578

1579
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1580
{
1581 1582 1583
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1584

1585 1586 1587 1588 1589 1590
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1591

1592 1593
		if (nreloc == 0)
			continue;
1594

1595 1596 1597
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1598

1599 1600
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1601

1602 1603 1604 1605 1606 1607
		relocs = kvmalloc_array(size, 1, GFP_TEMPORARY);
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char *)urelocs + copied,
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1622

1623 1624
			copied += len;
		} while (copied < size);
1625

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1643

1644 1645
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1646

1647
	return 0;
1648

1649 1650 1651 1652 1653 1654 1655 1656
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1657 1658
}

1659
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1660
{
1661 1662
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1663

1664 1665
	if (unlikely(i915.prefault_disable))
		return 0;
1666

1667 1668
	for (i = 0; i < count; i++) {
		int err;
1669

1670 1671 1672 1673
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1674

1675
	return 0;
1676 1677
}

1678
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1679
{
1680
	struct drm_device *dev = &eb->i915->drm;
1681
	bool have_copy = false;
1682
	struct i915_vma *vma;
1683 1684 1685 1686 1687 1688 1689
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1690

1691
	/* We may process another execbuffer during the unlock... */
1692
	eb_reset_vmas(eb);
1693 1694
	mutex_unlock(&dev->struct_mutex);

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1716
	}
1717 1718 1719
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1720 1721
	}

1722 1723 1724
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1725 1726
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1727
		mutex_lock(&dev->struct_mutex);
1728
		goto out;
1729 1730
	}

1731
	/* reacquire the objects */
1732 1733
	err = eb_lookup_vmas(eb);
	if (err)
1734
		goto err;
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1748 1749
	}

1750 1751
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1752 1753 1754 1755 1756 1757
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err ?: have_copy;
1780 1781
}

1782
static int eb_relocate(struct i915_execbuffer *eb)
1783
{
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1803
static void eb_export_fence(struct i915_vma *vma,
1804 1805 1806
			    struct drm_i915_gem_request *req,
			    unsigned int flags)
{
1807
	struct reservation_object *resv = vma->resv;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
		reservation_object_add_excl_fence(resv, &req->fence);
	else if (reservation_object_reserve_shared(resv) == 0)
		reservation_object_add_shared_fence(resv, &req->fence);
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1827

1828 1829 1830
	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);
1831
		struct drm_i915_gem_object *obj = vma->obj;
1832

1833
		if (entry->flags & EXEC_OBJECT_CAPTURE) {
1834 1835 1836 1837 1838 1839
			struct i915_gem_capture_list *capture;

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1840
			capture->next = eb->request->capture_list;
1841
			capture->vma = vma;
1842
			eb->request->capture_list = capture;
1843 1844
		}

1845 1846
		if (entry->flags & EXEC_OBJECT_ASYNC)
			goto skip_flushes;
1847

1848
		if (unlikely(obj->cache_dirty && !obj->cache_coherent))
1849 1850
			i915_gem_clflush_object(obj, 0);

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
		err = i915_gem_request_await_object
			(eb->request, obj, entry->flags & EXEC_OBJECT_WRITE);
		if (err)
			return err;

skip_flushes:
		i915_vma_move_to_active(vma, eb->request, entry->flags);
		__eb_unreserve_vma(vma, entry);
		vma->exec_entry = NULL;
	}

	for (i = 0; i < count; i++) {
		const struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct i915_vma *vma = exec_to_vma(entry);

1866
		eb_export_fence(vma, eb->request, entry->flags);
1867 1868
		if (unlikely(entry->flags & __EXEC_OBJECT_HAS_REF))
			i915_vma_put(vma);
1869
	}
1870
	eb->exec = NULL;
1871

1872
	/* Unconditionally flush any chipset caches (for streaming writes). */
1873
	i915_gem_chipset_flush(eb->i915);
1874

1875
	/* Unconditionally invalidate GPU caches and TLBs. */
1876
	return eb->engine->emit_flush(eb->request, EMIT_INVALIDATE);
1877 1878
}

1879
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1880
{
1881
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1882 1883
		return false;

C
Chris Wilson 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	/* Kernel clipping was a DRI1 misfeature */
	if (exec->num_cliprects || exec->cliprects_ptr)
		return false;

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1899 1900
}

1901 1902 1903 1904 1905 1906 1907
void i915_vma_move_to_active(struct i915_vma *vma,
			     struct drm_i915_gem_request *req,
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
	const unsigned int idx = req->engine->id;

1908
	lockdep_assert_held(&req->i915->drm.struct_mutex);
1909 1910
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1911 1912
	/*
	 * Add a reference if we're newly entering the active list.
1913 1914 1915 1916 1917 1918
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1919 1920 1921 1922 1923
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
	i915_gem_active_set(&vma->last_read[idx], req);
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1924

1925
	obj->base.write_domain = 0;
1926
	if (flags & EXEC_OBJECT_WRITE) {
1927 1928
		obj->base.write_domain = I915_GEM_DOMAIN_RENDER;

1929 1930
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
			i915_gem_active_set(&obj->frontbuffer_write, req);
1931

1932
		obj->base.read_domains = 0;
1933
	}
1934
	obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1935

1936 1937
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
		i915_gem_active_set(&vma->last_fence, req);
1938 1939
}

1940
static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1941
{
1942 1943
	u32 *cs;
	int i;
1944

1945
	if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1946 1947 1948
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1949

1950
	cs = intel_ring_begin(req, 4 * 2 + 2);
1951 1952
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1953

1954
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1955
	for (i = 0; i < 4; i++) {
1956 1957
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1958
	}
1959
	*cs++ = MI_NOOP;
1960
	intel_ring_advance(req, cs);
1961 1962 1963 1964

	return 0;
}

1965
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1966 1967
{
	struct drm_i915_gem_object *shadow_batch_obj;
1968
	struct i915_vma *vma;
1969
	int err;
1970

1971 1972
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1973
	if (IS_ERR(shadow_batch_obj))
1974
		return ERR_CAST(shadow_batch_obj);
1975

1976
	err = intel_engine_cmd_parser(eb->engine,
1977
				      eb->batch->obj,
1978
				      shadow_batch_obj,
1979 1980
				      eb->batch_start_offset,
				      eb->batch_len,
1981
				      is_master);
1982 1983
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1984 1985
			vma = NULL;
		else
1986
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1987 1988
		goto out;
	}
1989

C
Chris Wilson 已提交
1990 1991 1992
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1993

1994
	vma->exec_entry =
1995 1996
		memset(&eb->exec[eb->buffer_count++],
		       0, sizeof(*vma->exec_entry));
1997
	vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1998
	__exec_to_vma(vma->exec_entry) = (uintptr_t)i915_vma_get(vma);
1999

C
Chris Wilson 已提交
2000
out:
C
Chris Wilson 已提交
2001
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
2002
	return vma;
2003
}
2004

2005
static void
2006
add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
2007 2008 2009 2010 2011
{
	req->file_priv = file->driver_priv;
	list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
}

2012
static int eb_submit(struct i915_execbuffer *eb)
2013
{
2014
	int err;
2015

2016 2017 2018
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2019

2020 2021 2022
	err = i915_switch_context(eb->request);
	if (err)
		return err;
2023

2024
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2025 2026 2027
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2028 2029
	}

2030
	err = eb->engine->emit_bb_start(eb->request,
2031 2032 2033
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2034 2035 2036
					eb->batch_flags);
	if (err)
		return err;
2037

C
Chris Wilson 已提交
2038
	return 0;
2039 2040
}

2041 2042
/**
 * Find one BSD ring to dispatch the corresponding BSD command.
2043
 * The engine index is returned.
2044
 */
2045
static unsigned int
2046 2047
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2048 2049 2050
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2051
	/* Check whether the file_priv has already selected one ring. */
2052 2053 2054
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2055

2056
	return file_priv->bsd_engine;
2057 2058
}

2059 2060
#define I915_USER_RINGS (4)

2061
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2062 2063 2064 2065 2066 2067 2068
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2069 2070 2071 2072
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2073 2074
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2075
	struct intel_engine_cs *engine;
2076 2077 2078

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2079
		return NULL;
2080 2081 2082 2083 2084 2085
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2086
		return NULL;
2087 2088 2089 2090 2091 2092
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2093
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2094 2095
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2096
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2097 2098 2099 2100
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2101
			return NULL;
2102 2103
		}

2104
		engine = dev_priv->engine[_VCS(bsd_idx)];
2105
	} else {
2106
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2107 2108
	}

2109
	if (!engine) {
2110
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2111
		return NULL;
2112 2113
	}

2114
	return engine;
2115 2116
}

2117
static int
2118
i915_gem_do_execbuffer(struct drm_device *dev,
2119 2120
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2121
		       struct drm_i915_gem_exec_object2 *exec)
2122
{
2123
	struct i915_execbuffer eb;
2124 2125 2126
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2127
	int err;
2128

2129 2130
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2131

2132 2133 2134
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2135
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2136
		args->flags |= __EXEC_HAS_RELOC;
2137
	eb.exec = exec;
2138 2139 2140
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2141 2142
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2143
	eb.buffer_count = args->buffer_count;
2144 2145 2146
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2147
	eb.batch_flags = 0;
2148
	if (args->flags & I915_EXEC_SECURE) {
2149
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2150 2151
		    return -EPERM;

2152
		eb.batch_flags |= I915_DISPATCH_SECURE;
2153
	}
2154
	if (args->flags & I915_EXEC_IS_PINNED)
2155
		eb.batch_flags |= I915_DISPATCH_PINNED;
2156

2157 2158
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2159 2160
		return -EINVAL;

2161
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2162
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2163 2164 2165
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2166
		if (eb.engine->id != RCS) {
2167
			DRM_DEBUG("RS is not available on %s\n",
2168
				 eb.engine->name);
2169 2170 2171
			return -EINVAL;
		}

2172
		eb.batch_flags |= I915_DISPATCH_RS;
2173 2174
	}

2175 2176
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2177 2178
		if (!in_fence)
			return -EINVAL;
2179 2180 2181 2182 2183
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2184
			err = out_fence_fd;
2185
			goto err_in_fence;
2186 2187 2188
		}
	}

2189 2190 2191 2192 2193
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2194

2195 2196 2197 2198
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2199 2200
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2201 2202 2203 2204 2205
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2206
	intel_runtime_pm_get(eb.i915);
2207

2208 2209 2210
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2211

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	err = eb_relocate(&eb);
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
	if (err < 0)
		goto err_vma;
2224

2225
	if (unlikely(eb.batch->exec_entry->flags & EXEC_OBJECT_WRITE)) {
2226
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2227 2228
		err = -EINVAL;
		goto err_vma;
2229
	}
2230 2231
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2232
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2233 2234
		err = -EINVAL;
		goto err_vma;
2235
	}
2236

2237
	if (eb.engine->needs_cmd_parser && eb.batch_len) {
2238 2239
		struct i915_vma *vma;

2240
		vma = eb_parse(&eb, drm_is_current_master(file));
2241
		if (IS_ERR(vma)) {
2242 2243
			err = PTR_ERR(vma);
			goto err_vma;
2244
		}
2245

2246
		if (vma) {
2247 2248 2249 2250 2251 2252 2253 2254 2255
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2256
			eb.batch_flags |= I915_DISPATCH_SECURE;
2257 2258
			eb.batch_start_offset = 0;
			eb.batch = vma;
2259
		}
2260 2261
	}

2262 2263
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2264

2265 2266
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2267
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2268
	 * hsw should have this fixed, but bdw mucks it up again. */
2269
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2270
		struct i915_vma *vma;
2271

2272 2273 2274 2275 2276 2277
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2278
		 *   so we don't really have issues with multiple objects not
2279 2280 2281
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2282
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2283
		if (IS_ERR(vma)) {
2284 2285
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2286
		}
2287

2288
		eb.batch = vma;
2289
	}
2290

2291 2292 2293
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2294
	/* Allocate a request for this batch buffer nice and early. */
2295 2296
	eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
	if (IS_ERR(eb.request)) {
2297
		err = PTR_ERR(eb.request);
2298
		goto err_batch_unpin;
2299
	}
2300

2301
	if (in_fence) {
2302 2303
		err = i915_gem_request_await_dma_fence(eb.request, in_fence);
		if (err < 0)
2304 2305 2306 2307
			goto err_request;
	}

	if (out_fence_fd != -1) {
2308
		out_fence = sync_file_create(&eb.request->fence);
2309
		if (!out_fence) {
2310
			err = -ENOMEM;
2311 2312 2313 2314
			goto err_request;
		}
	}

2315 2316
	/*
	 * Whilst this request exists, batch_obj will be on the
2317 2318 2319 2320 2321
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2322
	eb.request->batch = eb.batch;
2323

2324 2325
	trace_i915_gem_request_queue(eb.request, eb.batch_flags);
	err = eb_submit(&eb);
2326
err_request:
2327
	__i915_add_request(eb.request, err == 0);
2328
	add_to_client(eb.request, file);
2329

2330
	if (out_fence) {
2331
		if (err == 0) {
2332 2333 2334 2335 2336 2337 2338 2339
			fd_install(out_fence_fd, out_fence->file);
			args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2340

2341
err_batch_unpin:
2342
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2343
		i915_vma_unpin(eb.batch);
2344 2345 2346
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2347
	mutex_unlock(&dev->struct_mutex);
2348
err_rpm:
2349
	intel_runtime_pm_put(eb.i915);
2350 2351
	i915_gem_context_put(eb.ctx);
err_destroy:
2352
	eb_destroy(&eb);
2353
err_out_fence:
2354 2355
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2356
err_in_fence:
2357
	dma_fence_put(in_fence);
2358
	return err;
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
2369
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2370 2371 2372 2373
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2374 2375
	unsigned int i;
	int err;
2376

2377 2378
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2379 2380 2381
		return -EINVAL;
	}

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2396
	/* Copy in the exec list from userland */
2397 2398 2399 2400
	exec_list = kvmalloc_array(args->buffer_count, sizeof(*exec_list),
				   __GFP_NOWARN | GFP_TEMPORARY);
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2401
	if (exec_list == NULL || exec2_list == NULL) {
2402
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2403
			  args->buffer_count);
M
Michal Hocko 已提交
2404 2405
		kvfree(exec_list);
		kvfree(exec2_list);
2406 2407
		return -ENOMEM;
	}
2408
	err = copy_from_user(exec_list,
2409
			     u64_to_user_ptr(args->buffers_ptr),
2410
			     sizeof(*exec_list) * args->buffer_count);
2411
	if (err) {
2412
		DRM_DEBUG("copy %d exec entries failed %d\n",
2413
			  args->buffer_count, err);
M
Michal Hocko 已提交
2414 2415
		kvfree(exec_list);
		kvfree(exec2_list);
2416 2417 2418 2419 2420 2421 2422 2423 2424
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2425
		if (INTEL_GEN(to_i915(dev)) < 4)
2426 2427 2428 2429 2430
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2431 2432
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
	if (exec2.flags & __EXEC_HAS_RELOC) {
2433
		struct drm_i915_gem_exec_object __user *user_exec_list =
2434
			u64_to_user_ptr(args->buffers_ptr);
2435

2436
		/* Copy the new buffer offsets back to the user's exec list. */
2437
		for (i = 0; i < args->buffer_count; i++) {
2438 2439 2440
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2441
			exec2_list[i].offset =
2442 2443 2444 2445 2446
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2447
				break;
2448 2449 2450
		}
	}

M
Michal Hocko 已提交
2451 2452
	kvfree(exec_list);
	kvfree(exec2_list);
2453
	return err;
2454 2455 2456 2457 2458 2459
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
2460
	const size_t sz = sizeof(struct drm_i915_gem_exec_object2);
2461
	struct drm_i915_gem_execbuffer2 *args = data;
2462 2463
	struct drm_i915_gem_exec_object2 *exec2_list;
	int err;
2464

2465
	if (args->buffer_count < 1 || args->buffer_count > SIZE_MAX / sz - 1) {
2466
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
2467 2468 2469
		return -EINVAL;
	}

2470 2471 2472 2473 2474 2475
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(args->buffer_count + 1, sz,
				    __GFP_NOWARN | GFP_TEMPORARY);
2476
	if (exec2_list == NULL) {
2477
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2478 2479 2480
			  args->buffer_count);
		return -ENOMEM;
	}
2481 2482 2483 2484
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
			   sizeof(*exec2_list) * args->buffer_count)) {
		DRM_DEBUG("copy %d exec entries failed\n", args->buffer_count);
M
Michal Hocko 已提交
2485
		kvfree(exec2_list);
2486 2487 2488
		return -EFAULT;
	}

2489 2490 2491 2492 2493 2494 2495 2496 2497
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2498
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2499 2500
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2501

2502 2503
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2504
		for (i = 0; i < args->buffer_count; i++) {
2505 2506 2507
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2508
			exec2_list[i].offset =
2509 2510 2511 2512
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2513
		}
2514 2515
end_user:
		user_access_end();
2516 2517
	}

2518
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
2519
	kvfree(exec2_list);
2520
	return err;
2521
}