slub.c 105.5 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
C
Christoph Lameter 已提交
9 10 11 12 13 14 15 16
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
17
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
18 19 20 21 22
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
23
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
24
#include <linux/kallsyms.h>
25
#include <linux/memory.h>
R
Roman Zippel 已提交
26
#include <linux/math64.h>
C
Christoph Lameter 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
73 74
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
75
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
76 77
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
78 79 80 81 82 83 84
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
85 86 87 88 89 90 91 92 93 94 95 96
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
97
 * 			freelist that allows lockless access to
98 99
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
100 101 102
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
103
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
104 105
 */

106
#ifdef CONFIG_SLUB_DEBUG
107
#define SLABDEBUG 1
108 109 110 111
#else
#define SLABDEBUG 0
#endif

C
Christoph Lameter 已提交
112 113 114 115 116 117 118 119 120 121 122
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

123 124 125 126
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
127
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
128

129 130 131 132 133 134 135
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
136 137
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
138

C
Christoph Lameter 已提交
139 140 141 142 143 144 145 146 147 148
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
149
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
150 151 152
#endif

#ifndef ARCH_SLAB_MINALIGN
153
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
154 155
#endif

156 157 158 159
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */

C
Christoph Lameter 已提交
160
/* Internal SLUB flags */
161 162
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
C
Christoph Lameter 已提交
163 164 165 166 167 168 169 170 171 172

static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
173
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
174 175 176 177 178
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
179
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
180

181 182 183 184
/*
 * Tracking user of a slab.
 */
struct track {
185
	unsigned long addr;	/* Called from address */
186 187 188 189 190 191 192
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
193
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
194 195 196
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
197

C
Christoph Lameter 已提交
198
#else
199 200 201
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
202 203 204 205
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
206

C
Christoph Lameter 已提交
207 208
#endif

209 210 211 212 213 214 215
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	c->stat[si]++;
#endif
}

C
Christoph Lameter 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

234 235
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
236 237 238 239 240
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
241 242
}

C
Christoph Lameter 已提交
243
/* Verify that a pointer has an address that is valid within a slab page */
244 245 246 247 248
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

249
	if (!object)
250 251
		return 1;

252
	base = page_address(page);
253
	if (object < base || object >= base + page->objects * s->size ||
254 255 256 257 258 259 260
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
279 280
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
281 282 283 284
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
285
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
286 287 288 289 290 291 292

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

293 294 295 296
static inline struct kmem_cache_order_objects oo_make(int order,
						unsigned long size)
{
	struct kmem_cache_order_objects x = {
297
		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
298 299 300 301 302 303 304
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
305
	return x.x >> OO_SHIFT;
306 307 308 309
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
310
	return x.x & OO_MASK;
311 312
}

C
Christoph Lameter 已提交
313 314 315 316
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
317 318 319
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
320
static int slub_debug;
321
#endif
C
Christoph Lameter 已提交
322 323 324

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
338
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
339 340
			newline = 0;
		}
P
Pekka Enberg 已提交
341
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
342 343 344
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
345
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
346 347 348 349 350 351
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
352
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
353 354 355
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
356
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
374
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
375 376 377 378 379 380 381 382 383 384 385 386
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
387
		p->pid = current->pid;
C
Christoph Lameter 已提交
388 389 390 391 392 393 394
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
395 396 397
	if (!(s->flags & SLAB_STORE_USER))
		return;

398 399
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
400 401 402 403 404 405 406
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

407
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
408
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
409 410 411 412 413 414 415 416 417 418 419 420 421
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
422 423
	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
		page, page->objects, page->inuse, page->freelist, page->flags);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
440 441
}

442 443 444 445 446 447 448 449 450 451 452 453
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
454 455
{
	unsigned int off;	/* Offset of last byte */
456
	u8 *addr = page_address(page);
457 458 459 460 461 462 463 464 465 466 467

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

468
	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
C
Christoph Lameter 已提交
469 470 471 472 473 474 475 476 477 478

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

479
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
480 481 482 483
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
484 485 486
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
487 488 489 490 491
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
492
	slab_bug(s, "%s", reason);
493
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
494 495
}

496
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
497 498 499 500
{
	va_list args;
	char buf[100];

501 502
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
503
	va_end(args);
504
	slab_bug(s, "%s", buf);
505
	print_page_info(page);
C
Christoph Lameter 已提交
506 507 508 509 510 511 512 513 514
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
515
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
516 517 518 519 520 521 522 523
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

524
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
525 526 527
{
	while (bytes) {
		if (*start != (u8)value)
528
			return start;
C
Christoph Lameter 已提交
529 530 531
		start++;
		bytes--;
	}
532 533 534 535 536 537 538 539 540 541 542 543
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
544
			u8 *start, unsigned int value, unsigned int bytes)
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
564 565 566 567 568 569 570 571 572
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
573
 *
C
Christoph Lameter 已提交
574 575 576 577 578
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
579 580 581
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
582 583 584 585
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
586 587
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
588 589
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
590
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
591
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
592 593 594
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
595 596
 *
 * object + s->size
C
Christoph Lameter 已提交
597
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
598
 *
C
Christoph Lameter 已提交
599 600
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

619 620
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
621 622
}

623
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
624 625
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
626 627 628 629 630
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
631 632 633 634

	if (!(s->flags & SLAB_POISON))
		return 1;

635
	start = page_address(page);
636
	length = (PAGE_SIZE << compound_order(page));
637 638
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
639 640 641
	if (!remainder)
		return 1;

642
	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
643 644 645 646 647 648
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
649
	print_section("Padding", end - remainder, remainder);
650 651 652

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
653 654 655 656 657 658 659 660 661 662 663 664
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

665 666
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
667 668
			return 0;
	} else {
I
Ingo Molnar 已提交
669 670 671 672
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE, s->inuse - s->objsize);
		}
C
Christoph Lameter 已提交
673 674 675 676
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
677 678 679
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
680
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
701
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
702
		 */
703
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
704 705 706 707 708 709 710
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
711 712
	int maxobj;

C
Christoph Lameter 已提交
713 714 715
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
716
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
717 718
		return 0;
	}
719 720 721 722 723 724 725 726

	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
727
		slab_err(s, page, "inuse %u > max %u",
728
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
729 730 731 732 733 734 735 736
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
737 738
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
739 740 741 742 743 744
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;
745
	unsigned long max_objects;
C
Christoph Lameter 已提交
746

747
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
748 749 750 751 752 753
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
754
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
755 756
				break;
			} else {
757
				slab_err(s, page, "Freepointer corrupt");
758
				page->freelist = NULL;
759
				page->inuse = page->objects;
760
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
761 762 763 764 765 766 767 768 769
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

770
	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
771 772
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
773 774 775 776 777 778 779

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
780
	if (page->inuse != page->objects - nr) {
781
		slab_err(s, page, "Wrong object count. Counter is %d but "
782 783
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
784
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
785 786 787 788
	}
	return search == NULL;
}

789 790
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

806
/*
C
Christoph Lameter 已提交
807
 * Tracking of fully allocated slabs for debugging purposes.
808
 */
C
Christoph Lameter 已提交
809
static void add_full(struct kmem_cache_node *n, struct page *page)
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

830 831 832 833 834 835 836 837
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

838
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
839 840 841 842 843 844 845 846 847
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
848
	if (!NUMA_BUILD || n) {
849
		atomic_long_inc(&n->nr_slabs);
850 851
		atomic_long_add(objects, &n->total_objects);
	}
852
}
853
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
854 855 856 857
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
858
	atomic_long_sub(objects, &n->total_objects);
859 860 861
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
862 863 864 865 866 867 868 869 870 871 872
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
873
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
874 875 876 877
{
	if (!check_slab(s, page))
		goto bad;

878
	if (!on_freelist(s, page, object)) {
879
		object_err(s, page, object, "Object already allocated");
880
		goto bad;
C
Christoph Lameter 已提交
881 882 883 884
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
885
		goto bad;
C
Christoph Lameter 已提交
886 887
	}

888
	if (!check_object(s, page, object, 0))
C
Christoph Lameter 已提交
889 890
		goto bad;

C
Christoph Lameter 已提交
891 892 893 894 895
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
896
	return 1;
C
Christoph Lameter 已提交
897

C
Christoph Lameter 已提交
898 899 900 901 902
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
903
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
904
		 */
905
		slab_fix(s, "Marking all objects used");
906
		page->inuse = page->objects;
907
		page->freelist = NULL;
C
Christoph Lameter 已提交
908 909 910 911
	}
	return 0;
}

C
Christoph Lameter 已提交
912
static int free_debug_processing(struct kmem_cache *s, struct page *page,
913
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
914 915 916 917 918
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
919
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
920 921 922 923
		goto fail;
	}

	if (on_freelist(s, page, object)) {
924
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
925 926 927 928 929 930 931
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
I
Ingo Molnar 已提交
932
		if (!PageSlab(page)) {
933 934
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
I
Ingo Molnar 已提交
935
		} else if (!page->slab) {
C
Christoph Lameter 已提交
936
			printk(KERN_ERR
937
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
938
						object);
939
			dump_stack();
P
Pekka Enberg 已提交
940
		} else
941 942
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
943 944
		goto fail;
	}
C
Christoph Lameter 已提交
945 946

	/* Special debug activities for freeing objects */
947
	if (!PageSlubFrozen(page) && !page->freelist)
C
Christoph Lameter 已提交
948 949 950 951 952
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
953
	return 1;
C
Christoph Lameter 已提交
954

C
Christoph Lameter 已提交
955
fail:
956
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
957 958 959
	return 0;
}

C
Christoph Lameter 已提交
960 961
static int __init setup_slub_debug(char *str)
{
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
986
	for (; *str && *str != ','; str++) {
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1005
				"unknown. skipped\n", *str);
1006
		}
C
Christoph Lameter 已提交
1007 1008
	}

1009
check_slabs:
C
Christoph Lameter 已提交
1010 1011
	if (*str == ',')
		slub_debug_slabs = str + 1;
1012
out:
C
Christoph Lameter 已提交
1013 1014 1015 1016 1017
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1018 1019
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1020
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1021 1022
{
	/*
1023
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1024
	 */
1025 1026 1027
	if (slub_debug && (!slub_debug_slabs ||
	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
			flags |= slub_debug;
1028 1029

	return flags;
C
Christoph Lameter 已提交
1030 1031
}
#else
C
Christoph Lameter 已提交
1032 1033
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1034

C
Christoph Lameter 已提交
1035
static inline int alloc_debug_processing(struct kmem_cache *s,
1036
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1037

C
Christoph Lameter 已提交
1038
static inline int free_debug_processing(struct kmem_cache *s,
1039
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1040 1041 1042 1043 1044

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1045
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1046 1047
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1048
	void (*ctor)(void *))
1049 1050 1051
{
	return flags;
}
C
Christoph Lameter 已提交
1052
#define slub_debug 0
1053 1054 1055

static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1056 1057 1058 1059
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
C
Christoph Lameter 已提交
1060
#endif
1061

C
Christoph Lameter 已提交
1062 1063 1064
/*
 * Slab allocation and freeing
 */
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

	if (node == -1)
		return alloc_pages(flags, order);
	else
		return alloc_pages_node(node, flags, order);
}

C
Christoph Lameter 已提交
1076 1077
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1078
	struct page *page;
1079
	struct kmem_cache_order_objects oo = s->oo;
C
Christoph Lameter 已提交
1080

1081
	flags |= s->allocflags;
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
									oo);
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
		if (!page)
			return NULL;
C
Christoph Lameter 已提交
1094

1095 1096
		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
	}
1097
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1098 1099 1100
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1101
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1102 1103 1104 1105 1106 1107 1108

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1109
	setup_object_debug(s, page, object);
1110
	if (unlikely(s->ctor))
1111
		s->ctor(object);
C
Christoph Lameter 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1121
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1122

C
Christoph Lameter 已提交
1123 1124
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1125 1126 1127
	if (!page)
		goto out;

1128
	inc_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1129 1130 1131 1132
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1133
		__SetPageSlubDebug(page);
C
Christoph Lameter 已提交
1134 1135 1136 1137

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
1138
		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
C
Christoph Lameter 已提交
1139 1140

	last = start;
1141
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1142 1143 1144 1145 1146
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1147
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1157 1158
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1159

1160
	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
C
Christoph Lameter 已提交
1161 1162 1163
		void *p;

		slab_pad_check(s, page);
1164 1165
		for_each_object(p, s, page_address(page),
						page->objects)
C
Christoph Lameter 已提交
1166
			check_object(s, page, p, 0);
1167
		__ClearPageSlubDebug(page);
C
Christoph Lameter 已提交
1168 1169 1170 1171 1172
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1173
		-pages);
C
Christoph Lameter 已提交
1174

1175 1176
	__ClearPageSlab(page);
	reset_page_mapcount(page);
1177
	__free_pages(page, order);
C
Christoph Lameter 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1203
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
N
Nick Piggin 已提交
1217
	__bit_spin_unlock(PG_locked, &page->flags);
C
Christoph Lameter 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1231 1232
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1233
{
C
Christoph Lameter 已提交
1234 1235
	spin_lock(&n->list_lock);
	n->nr_partial++;
1236 1237 1238 1239
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1240 1241 1242
	spin_unlock(&n->list_lock);
}

1243
static void remove_partial(struct kmem_cache *s, struct page *page)
C
Christoph Lameter 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1254
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1255
 *
C
Christoph Lameter 已提交
1256
 * Must hold list_lock.
C
Christoph Lameter 已提交
1257
 */
1258 1259
static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
							struct page *page)
C
Christoph Lameter 已提交
1260 1261 1262 1263
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1264
		__SetPageSlubFrozen(page);
C
Christoph Lameter 已提交
1265 1266 1267 1268 1269 1270
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1271
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1272 1273 1274 1275 1276 1277 1278 1279
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1280 1281
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1282 1283 1284 1285 1286 1287
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1288
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1289 1290 1291 1292 1293 1294 1295 1296
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1297
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1298 1299 1300 1301 1302
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1303
	struct zoneref *z;
1304 1305
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
C
Christoph Lameter 已提交
1306 1307 1308
	struct page *page;

	/*
C
Christoph Lameter 已提交
1309 1310 1311 1312
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1313
	 *
C
Christoph Lameter 已提交
1314 1315 1316 1317
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1318
	 *
C
Christoph Lameter 已提交
1319
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1320 1321 1322 1323 1324
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1325
	 */
1326 1327
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1328 1329
		return NULL;

1330
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1331
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
C
Christoph Lameter 已提交
1332 1333
		struct kmem_cache_node *n;

1334
		n = get_node(s, zone_to_nid(zone));
C
Christoph Lameter 已提交
1335

1336
		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1337
				n->nr_partial > n->min_partial) {
C
Christoph Lameter 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1369
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1370
{
C
Christoph Lameter 已提交
1371
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1372
	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1373

1374
	__ClearPageSlubFrozen(page);
C
Christoph Lameter 已提交
1375
	if (page->inuse) {
C
Christoph Lameter 已提交
1376

1377
		if (page->freelist) {
1378
			add_partial(n, page, tail);
1379 1380 1381
			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
		} else {
			stat(c, DEACTIVATE_FULL);
1382 1383
			if (SLABDEBUG && PageSlubDebug(page) &&
						(s->flags & SLAB_STORE_USER))
1384 1385
				add_full(n, page);
		}
C
Christoph Lameter 已提交
1386 1387
		slab_unlock(page);
	} else {
1388
		stat(c, DEACTIVATE_EMPTY);
1389
		if (n->nr_partial < n->min_partial) {
C
Christoph Lameter 已提交
1390
			/*
C
Christoph Lameter 已提交
1391 1392 1393
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
C
Christoph Lameter 已提交
1394 1395 1396
			 * so that the others get filled first. That way the
			 * size of the partial list stays small.
			 *
1397 1398
			 * kmem_cache_shrink can reclaim any empty slabs from
			 * the partial list.
C
Christoph Lameter 已提交
1399
			 */
1400
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1401 1402 1403
			slab_unlock(page);
		} else {
			slab_unlock(page);
1404
			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
C
Christoph Lameter 已提交
1405 1406
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1407 1408 1409 1410 1411 1412
	}
}

/*
 * Remove the cpu slab
 */
1413
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1414
{
1415
	struct page *page = c->page;
1416
	int tail = 1;
1417

1418
	if (page->freelist)
1419
		stat(c, DEACTIVATE_REMOTE_FREES);
1420
	/*
C
Christoph Lameter 已提交
1421
	 * Merge cpu freelist into slab freelist. Typically we get here
1422 1423 1424
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
1425
	while (unlikely(c->freelist)) {
1426 1427
		void **object;

1428 1429
		tail = 0;	/* Hot objects. Put the slab first */

1430
		/* Retrieve object from cpu_freelist */
1431
		object = c->freelist;
1432
		c->freelist = c->freelist[c->offset];
1433 1434

		/* And put onto the regular freelist */
1435
		object[c->offset] = page->freelist;
1436 1437 1438
		page->freelist = object;
		page->inuse--;
	}
1439
	c->page = NULL;
1440
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1441 1442
}

1443
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1444
{
1445
	stat(c, CPUSLAB_FLUSH);
1446 1447
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1448 1449 1450 1451
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
1452
 *
C
Christoph Lameter 已提交
1453 1454
 * Called from IPI handler with interrupts disabled.
 */
1455
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1456
{
1457
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1458

1459 1460
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1461 1462 1463 1464 1465 1466
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1467
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1468 1469 1470 1471
}

static void flush_all(struct kmem_cache *s)
{
1472
	on_each_cpu(flush_cpu_slab, s, 1);
C
Christoph Lameter 已提交
1473 1474
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1488
/*
1489 1490 1491 1492
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1493
 *
1494 1495 1496
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1497
 *
1498 1499 1500
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1501
 *
1502
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
1503 1504
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
1505
 */
1506 1507
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1508 1509
{
	void **object;
1510
	struct page *new;
C
Christoph Lameter 已提交
1511

1512 1513 1514
	/* We handle __GFP_ZERO in the caller */
	gfpflags &= ~__GFP_ZERO;

1515
	if (!c->page)
C
Christoph Lameter 已提交
1516 1517
		goto new_slab;

1518 1519
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1520
		goto another_slab;
C
Christoph Lameter 已提交
1521

1522
	stat(c, ALLOC_REFILL);
C
Christoph Lameter 已提交
1523

1524
load_freelist:
1525
	object = c->page->freelist;
1526
	if (unlikely(!object))
C
Christoph Lameter 已提交
1527
		goto another_slab;
1528
	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
C
Christoph Lameter 已提交
1529 1530
		goto debug;

1531
	c->freelist = object[c->offset];
1532
	c->page->inuse = c->page->objects;
1533
	c->page->freelist = NULL;
1534
	c->node = page_to_nid(c->page);
1535
unlock_out:
1536
	slab_unlock(c->page);
1537
	stat(c, ALLOC_SLOWPATH);
C
Christoph Lameter 已提交
1538 1539 1540
	return object;

another_slab:
1541
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1542 1543

new_slab:
1544 1545 1546
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1547
		stat(c, ALLOC_FROM_PARTIAL);
1548
		goto load_freelist;
C
Christoph Lameter 已提交
1549 1550
	}

1551 1552 1553
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1554
	new = new_slab(s, gfpflags, node);
1555 1556 1557 1558

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1559 1560
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1561
		stat(c, ALLOC_SLAB);
1562
		if (c->page)
1563 1564
			flush_slab(s, c);
		slab_lock(new);
1565
		__SetPageSlubFrozen(new);
1566
		c->page = new;
1567
		goto load_freelist;
C
Christoph Lameter 已提交
1568
	}
1569
	return NULL;
C
Christoph Lameter 已提交
1570
debug:
1571
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1572
		goto another_slab;
1573

1574
	c->page->inuse++;
1575
	c->page->freelist = object[c->offset];
1576
	c->node = -1;
1577
	goto unlock_out;
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1590
static __always_inline void *slab_alloc(struct kmem_cache *s,
1591
		gfp_t gfpflags, int node, unsigned long addr)
1592 1593
{
	void **object;
1594
	struct kmem_cache_cpu *c;
1595
	unsigned long flags;
1596
	unsigned int objsize;
1597

1598
	local_irq_save(flags);
1599
	c = get_cpu_slab(s, smp_processor_id());
1600
	objsize = c->objsize;
1601
	if (unlikely(!c->freelist || !node_match(c, node)))
1602

1603
		object = __slab_alloc(s, gfpflags, node, addr, c);
1604 1605

	else {
1606
		object = c->freelist;
1607
		c->freelist = object[c->offset];
1608
		stat(c, ALLOC_FASTPATH);
1609 1610
	}
	local_irq_restore(flags);
1611 1612

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1613
		memset(object, 0, objsize);
1614

1615
	return object;
C
Christoph Lameter 已提交
1616 1617 1618 1619
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1620
	return slab_alloc(s, gfpflags, -1, _RET_IP_);
C
Christoph Lameter 已提交
1621 1622 1623 1624 1625 1626
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1627
	return slab_alloc(s, gfpflags, node, _RET_IP_);
C
Christoph Lameter 已提交
1628 1629 1630 1631 1632
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1633 1634
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1635
 *
1636 1637 1638
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1639
 */
1640
static void __slab_free(struct kmem_cache *s, struct page *page,
1641
			void *x, unsigned long addr, unsigned int offset)
C
Christoph Lameter 已提交
1642 1643 1644
{
	void *prior;
	void **object = (void *)x;
1645
	struct kmem_cache_cpu *c;
C
Christoph Lameter 已提交
1646

1647 1648
	c = get_cpu_slab(s, raw_smp_processor_id());
	stat(c, FREE_SLOWPATH);
C
Christoph Lameter 已提交
1649 1650
	slab_lock(page);

1651
	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
C
Christoph Lameter 已提交
1652
		goto debug;
C
Christoph Lameter 已提交
1653

C
Christoph Lameter 已提交
1654
checks_ok:
1655
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1656 1657 1658
	page->freelist = object;
	page->inuse--;

1659
	if (unlikely(PageSlubFrozen(page))) {
1660
		stat(c, FREE_FROZEN);
C
Christoph Lameter 已提交
1661
		goto out_unlock;
1662
	}
C
Christoph Lameter 已提交
1663 1664 1665 1666 1667

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
C
Christoph Lameter 已提交
1668
	 * Objects left in the slab. If it was not on the partial list before
C
Christoph Lameter 已提交
1669 1670
	 * then add it.
	 */
1671
	if (unlikely(!prior)) {
1672
		add_partial(get_node(s, page_to_nid(page)), page, 1);
1673 1674
		stat(c, FREE_ADD_PARTIAL);
	}
C
Christoph Lameter 已提交
1675 1676 1677 1678 1679 1680

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
1681
	if (prior) {
C
Christoph Lameter 已提交
1682
		/*
C
Christoph Lameter 已提交
1683
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1684 1685
		 */
		remove_partial(s, page);
1686 1687
		stat(c, FREE_REMOVE_PARTIAL);
	}
C
Christoph Lameter 已提交
1688
	slab_unlock(page);
1689
	stat(c, FREE_SLAB);
C
Christoph Lameter 已提交
1690 1691 1692 1693
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1694
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1695 1696
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1697 1698
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1710
static __always_inline void slab_free(struct kmem_cache *s,
1711
			struct page *page, void *x, unsigned long addr)
1712 1713
{
	void **object = (void *)x;
1714
	struct kmem_cache_cpu *c;
1715 1716
	unsigned long flags;

1717
	local_irq_save(flags);
1718
	c = get_cpu_slab(s, smp_processor_id());
1719
	debug_check_no_locks_freed(object, c->objsize);
1720 1721
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(object, s->objsize);
1722
	if (likely(page == c->page && c->node >= 0)) {
1723
		object[c->offset] = c->freelist;
1724
		c->freelist = object;
1725
		stat(c, FREE_FASTPATH);
1726
	} else
1727
		__slab_free(s, page, x, addr, c->offset);
1728 1729 1730 1731

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1732 1733
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1734
	struct page *page;
C
Christoph Lameter 已提交
1735

1736
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1737

1738
	slab_free(s, page, x, _RET_IP_);
C
Christoph Lameter 已提交
1739 1740 1741 1742 1743 1744
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1745
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1746 1747 1748 1749 1750 1751 1752 1753

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1754 1755 1756 1757
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1758 1759 1760 1761
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1762
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
1773
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1774
static int slub_min_objects;
C
Christoph Lameter 已提交
1775 1776 1777

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1778
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1779 1780 1781 1782 1783 1784
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1785 1786 1787 1788
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
1789
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
1790 1791 1792 1793 1794 1795
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1796
 *
C
Christoph Lameter 已提交
1797 1798 1799 1800
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1801
 *
C
Christoph Lameter 已提交
1802 1803 1804 1805
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1806
 */
1807 1808
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1809 1810 1811
{
	int order;
	int rem;
1812
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1813

1814 1815
	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1816

1817
	for (order = max(min_order,
1818 1819
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1820

1821
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1822

1823
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1824 1825 1826 1827
			continue;

		rem = slab_size % size;

1828
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1829 1830 1831
			break;

	}
C
Christoph Lameter 已提交
1832

C
Christoph Lameter 已提交
1833 1834 1835
	return order;
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
1851 1852
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1853
	while (min_objects > 1) {
C
Christoph Lameter 已提交
1854
		fraction = 16;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1882
/*
C
Christoph Lameter 已提交
1883
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1884 1885 1886 1887 1888
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
C
Christoph Lameter 已提交
1889 1890
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
C
Christoph Lameter 已提交
1891
	 *
C
Christoph Lameter 已提交
1892 1893
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
C
Christoph Lameter 已提交
1894
	 */
1895 1896 1897 1898 1899 1900
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}
C
Christoph Lameter 已提交
1901 1902

	if (align < ARCH_SLAB_MINALIGN)
1903
		align = ARCH_SLAB_MINALIGN;
C
Christoph Lameter 已提交
1904 1905 1906 1907

	return ALIGN(align, sizeof(void *));
}

1908 1909 1910 1911
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1912
	c->freelist = NULL;
1913
	c->node = 0;
1914 1915
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
P
Pekka Enberg 已提交
1916 1917 1918
#ifdef CONFIG_SLUB_STATS
	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
#endif
1919 1920
}

1921 1922
static void
init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
C
Christoph Lameter 已提交
1923 1924
{
	n->nr_partial = 0;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
	n->min_partial = ilog2(s->size);
	if (n->min_partial < MIN_PARTIAL)
		n->min_partial = MIN_PARTIAL;
	else if (n->min_partial > MAX_PARTIAL)
		n->min_partial = MAX_PARTIAL;

C
Christoph Lameter 已提交
1936 1937
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1938
#ifdef CONFIG_SLUB_DEBUG
1939
	atomic_long_set(&n->nr_slabs, 0);
1940
	atomic_long_set(&n->total_objects, 0);
1941
	INIT_LIST_HEAD(&n->full);
1942
#endif
C
Christoph Lameter 已提交
1943 1944
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2070 2071 2072 2073 2074 2075 2076
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2077 2078
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2079
 */
2080 2081
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2082 2083 2084
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2085
	unsigned long flags;
C
Christoph Lameter 已提交
2086 2087 2088

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2089
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2090 2091

	BUG_ON(!page);
2092 2093 2094 2095 2096 2097 2098
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2099 2100 2101 2102 2103
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2104
#ifdef CONFIG_SLUB_DEBUG
2105 2106
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2107
#endif
2108
	init_kmem_cache_node(n, kmalloc_caches);
2109
	inc_slabs_node(kmalloc_caches, node, page->objects);
C
Christoph Lameter 已提交
2110

R
root 已提交
2111 2112 2113 2114 2115 2116
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2117
	add_partial(n, page, 0);
R
root 已提交
2118
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2119 2120 2121 2122 2123 2124 2125
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2126
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2144
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
2165
		init_kmem_cache_node(n, s);
C
Christoph Lameter 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
2176
	init_kmem_cache_node(&s->local_node, s);
C
Christoph Lameter 已提交
2177 2178 2179 2180 2181 2182 2183 2184
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2185
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2186 2187 2188 2189
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;
2190
	int order;
C
Christoph Lameter 已提交
2191

2192 2193 2194 2195 2196 2197 2198 2199
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2200 2201 2202 2203 2204 2205
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2206
			!s->ctor)
C
Christoph Lameter 已提交
2207 2208 2209 2210 2211 2212
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2213
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2214
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2215
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2216 2217 2218
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2219
#endif
C
Christoph Lameter 已提交
2220 2221

	/*
C
Christoph Lameter 已提交
2222 2223
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2224 2225 2226 2227
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2228
		s->ctor)) {
C
Christoph Lameter 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2241
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2242 2243 2244 2245 2246 2247 2248
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2249
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2250 2251 2252 2253 2254 2255 2256 2257
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2258
#endif
C
Christoph Lameter 已提交
2259

C
Christoph Lameter 已提交
2260 2261
	/*
	 * Determine the alignment based on various parameters that the
2262 2263
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;
2274 2275 2276 2277
	if (forced_order >= 0)
		order = forced_order;
	else
		order = calculate_order(size);
C
Christoph Lameter 已提交
2278

2279
	if (order < 0)
C
Christoph Lameter 已提交
2280 2281
		return 0;

2282
	s->allocflags = 0;
2283
	if (order)
2284 2285 2286 2287 2288 2289 2290 2291
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
2292 2293 2294
	/*
	 * Determine the number of objects per slab
	 */
2295
	s->oo = oo_make(order, size);
2296
	s->min = oo_make(get_order(size), size);
2297 2298
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
2299

2300
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
2301 2302 2303 2304 2305 2306

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2307
		void (*ctor)(void *))
C
Christoph Lameter 已提交
2308 2309 2310 2311 2312 2313
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2314
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2315

2316
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
2317 2318 2319 2320
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2321
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
2322
#endif
2323 2324
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2325

2326
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2327
		return 1;
2328
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2329 2330 2331 2332
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
2333
			s->name, (unsigned long)size, s->size, oo_order(s->oo),
C
Christoph Lameter 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2343
	struct page *page;
C
Christoph Lameter 已提交
2344 2345 2346 2347 2348 2349 2350

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2351
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2352 2353 2354 2355 2356
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
C
Christoph Lameter 已提交
2357
	 * purpose of kmem_ptr_valid() is to check if the object belongs
C
Christoph Lameter 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
	DECLARE_BITMAP(map, page->objects);

	bitmap_zero(map, page->objects);
	slab_err(s, page, "%s", text);
	slab_lock(page);
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);

	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
#endif
}

C
Christoph Lameter 已提交
2405
/*
C
Christoph Lameter 已提交
2406
 * Attempt to free all partial slabs on a node.
C
Christoph Lameter 已提交
2407
 */
C
Christoph Lameter 已提交
2408
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2409 2410 2411 2412 2413
{
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
2414
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
2415 2416 2417
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
C
Christoph Lameter 已提交
2418
			n->nr_partial--;
2419 2420 2421
		} else {
			list_slab_objects(s, page,
				"Objects remaining on kmem_cache_close()");
C
Christoph Lameter 已提交
2422
		}
2423
	}
C
Christoph Lameter 已提交
2424 2425 2426 2427
	spin_unlock_irqrestore(&n->list_lock, flags);
}

/*
C
Christoph Lameter 已提交
2428
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2429
 */
2430
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2431 2432 2433 2434 2435 2436
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2437
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2438
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2439 2440
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
2441 2442
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2459
		up_write(&slub_lock);
2460 2461 2462 2463 2464
		if (kmem_cache_close(s)) {
			printk(KERN_ERR "SLUB %s: %s called for cache that "
				"still has objects.\n", s->name, __func__);
			dump_stack();
		}
C
Christoph Lameter 已提交
2465
		sysfs_slab_remove(s);
2466 2467
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2468 2469 2470 2471 2472 2473 2474
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2475
struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
C
Christoph Lameter 已提交
2476 2477 2478 2479
EXPORT_SYMBOL(kmalloc_caches);

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2480
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2481 2482 2483 2484 2485 2486 2487 2488

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2489
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2490 2491 2492 2493 2494 2495 2496 2497

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2498
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2523
								flags, NULL))
C
Christoph Lameter 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2536
#ifdef CONFIG_ZONE_DMA
2537
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2566 2567 2568 2569 2570 2571 2572 2573 2574
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2575

2576
	realsize = kmalloc_caches[index].objsize;
I
Ingo Molnar 已提交
2577 2578
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
			 (unsigned int)realsize);
2579 2580 2581 2582 2583 2584 2585 2586
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2587
	}
2588 2589 2590 2591 2592 2593 2594

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2595
	up_write(&slub_lock);
2596
out:
2597
	return kmalloc_caches_dma[index];
2598 2599 2600
}
#endif

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2634 2635
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2636
	int index;
C
Christoph Lameter 已提交
2637

2638 2639 2640
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2641

2642
		index = size_index[(size - 1) / 8];
2643
	} else
2644
		index = fls(size - 1);
C
Christoph Lameter 已提交
2645 2646

#ifdef CONFIG_ZONE_DMA
2647
	if (unlikely((flags & SLUB_DMA)))
2648
		return dma_kmalloc_cache(index, flags);
2649

C
Christoph Lameter 已提交
2650 2651 2652 2653 2654 2655
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2656
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2657

2658
	if (unlikely(size > PAGE_SIZE))
2659
		return kmalloc_large(size, flags);
2660 2661 2662 2663

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2664 2665
		return s;

2666
	return slab_alloc(s, flags, -1, _RET_IP_);
C
Christoph Lameter 已提交
2667 2668 2669
}
EXPORT_SYMBOL(__kmalloc);

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
						get_order(size));

	if (page)
		return page_address(page);
	else
		return NULL;
}

C
Christoph Lameter 已提交
2681 2682 2683
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2684
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2685

2686
	if (unlikely(size > PAGE_SIZE))
2687
		return kmalloc_large_node(size, flags, node);
2688 2689 2690 2691

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2692 2693
		return s;

2694
	return slab_alloc(s, flags, node, _RET_IP_);
C
Christoph Lameter 已提交
2695 2696 2697 2698 2699 2700
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2701
	struct page *page;
C
Christoph Lameter 已提交
2702 2703
	struct kmem_cache *s;

2704
	if (unlikely(object == ZERO_SIZE_PTR))
2705 2706
		return 0;

2707 2708
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
2709 2710
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
2711
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
2712
	}
C
Christoph Lameter 已提交
2713 2714
	s = page->slab;

2715
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2716 2717 2718 2719 2720 2721 2722
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

2723
#endif
C
Christoph Lameter 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

void kfree(const void *x)
{
	struct page *page;
2740
	void *object = (void *)x;
C
Christoph Lameter 已提交
2741

2742
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2743 2744
		return;

2745
	page = virt_to_head_page(x);
2746
	if (unlikely(!PageSlab(page))) {
2747
		BUG_ON(!PageCompound(page));
2748 2749 2750
		put_page(page);
		return;
	}
2751
	slab_free(page->slab, page, object, _RET_IP_);
C
Christoph Lameter 已提交
2752 2753 2754
}
EXPORT_SYMBOL(kfree);

2755
/*
C
Christoph Lameter 已提交
2756 2757 2758 2759 2760 2761 2762 2763
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2764 2765 2766 2767 2768 2769 2770 2771
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
2772
	int objects = oo_objects(s->max);
2773
	struct list_head *slabs_by_inuse =
2774
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2775 2776 2777 2778 2779 2780
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2781
	for_each_node_state(node, N_NORMAL_MEMORY) {
2782 2783 2784 2785 2786
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

2787
		for (i = 0; i < objects; i++)
2788 2789 2790 2791 2792
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2793
		 * Build lists indexed by the items in use in each slab.
2794
		 *
C
Christoph Lameter 已提交
2795 2796
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2810 2811
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2812 2813 2814 2815
			}
		}

		/*
C
Christoph Lameter 已提交
2816 2817
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2818
		 */
2819
		for (i = objects - 1; i >= 0; i--)
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
2869
			BUG_ON(slabs_node(s, offline_node));
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
2894
	 * We are bringing a node online. No memory is available yet. We must
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
2910
		init_kmem_cache_node(n, s);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2945 2946 2947 2948 2949 2950 2951
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2952
	int caches = 0;
C
Christoph Lameter 已提交
2953

2954 2955
	init_alloc_cpu();

C
Christoph Lameter 已提交
2956 2957 2958
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2959
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2960 2961 2962 2963
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2964
	kmalloc_caches[0].refcount = -1;
2965
	caches++;
2966

2967
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
C
Christoph Lameter 已提交
2968 2969 2970 2971 2972 2973
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2974 2975
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2976
				"kmalloc-96", 96, GFP_KERNEL);
2977 2978
		caches++;
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2979
				"kmalloc-192", 192, GFP_KERNEL);
2980 2981
		caches++;
	}
C
Christoph Lameter 已提交
2982

2983
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
2984 2985
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2986 2987
		caches++;
	}
C
Christoph Lameter 已提交
2988

2989 2990 2991 2992

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
C
Christoph Lameter 已提交
2993
	 * MIPS it seems. The standard arches will not generate any code here.
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

3004
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3005 3006
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	if (KMALLOC_MIN_SIZE == 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[(i - 1) / 8] = 8;
	}

C
Christoph Lameter 已提交
3017 3018 3019
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
3020
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
3021 3022 3023 3024 3025
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3026 3027 3028 3029
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
3030 3031
#endif

I
Ingo Molnar 已提交
3032 3033
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3034 3035
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3048
	if (s->ctor)
C
Christoph Lameter 已提交
3049 3050
		return 1;

3051 3052 3053 3054 3055 3056
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3057 3058 3059 3060
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3061
		size_t align, unsigned long flags, const char *name,
3062
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3063
{
3064
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3065 3066 3067 3068

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3069
	if (ctor)
C
Christoph Lameter 已提交
3070 3071 3072 3073 3074
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3075
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3076

3077
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3078 3079 3080 3081 3082 3083
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3084
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3085 3086 3087 3088 3089
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3090
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3102
		size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3103 3104 3105 3106
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3107
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3108
	if (s) {
3109 3110
		int cpu;

C
Christoph Lameter 已提交
3111 3112 3113 3114 3115 3116
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3117 3118 3119 3120 3121 3122 3123

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3124

C
Christoph Lameter 已提交
3125
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3126
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3127

C
Christoph Lameter 已提交
3128 3129
		if (sysfs_slab_alias(s, name))
			goto err;
3130 3131
		return s;
	}
C
Christoph Lameter 已提交
3132

3133 3134 3135
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3136
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3137
			list_add(&s->list, &slab_caches);
3138 3139 3140 3141 3142 3143
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3158 3159
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3160 3161 3162 3163 3164
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3165 3166
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3167 3168

	switch (action) {
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3179
	case CPU_UP_CANCELED:
3180
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3181
	case CPU_DEAD:
3182
	case CPU_DEAD_FROZEN:
3183 3184
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3185 3186
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3187 3188 3189
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3190 3191
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3192 3193
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3194 3195 3196 3197 3198 3199 3200
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3201
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3202
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3203
};
C
Christoph Lameter 已提交
3204 3205 3206

#endif

3207
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3208
{
3209 3210
	struct kmem_cache *s;

3211
	if (unlikely(size > PAGE_SIZE))
3212 3213
		return kmalloc_large(size, gfpflags);

3214
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3215

3216
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3217
		return s;
C
Christoph Lameter 已提交
3218

3219
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3220 3221 3222
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3223
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3224
{
3225 3226
	struct kmem_cache *s;

3227
	if (unlikely(size > PAGE_SIZE))
3228
		return kmalloc_large_node(size, gfpflags, node);
3229

3230
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3231

3232
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3233
		return s;
C
Christoph Lameter 已提交
3234

3235
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3236 3237
}

C
Christoph Lameter 已提交
3238
#ifdef CONFIG_SLUB_DEBUG
3239 3240
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
3241 3242 3243 3244 3245 3246 3247
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
3248
		x += get_count(page);
3249 3250 3251
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266

static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}

static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}
3267

3268 3269
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3270 3271
{
	void *p;
3272
	void *addr = page_address(page);
3273 3274 3275 3276 3277 3278

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3279
	bitmap_zero(map, page->objects);
3280

3281 3282
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3283 3284 3285 3286
		if (!check_object(s, page, p, 0))
			return 0;
	}

3287
	for_each_object(p, s, addr, page->objects)
3288
		if (!test_bit(slab_index(p, s, addr), map))
3289 3290 3291 3292 3293
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3294 3295
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3296 3297
{
	if (slab_trylock(page)) {
3298
		validate_slab(s, page, map);
3299 3300 3301 3302 3303 3304
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3305 3306
		if (!PageSlubDebug(page))
			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3307 3308
				"on slab 0x%p\n", s->name, page);
	} else {
3309 3310
		if (PageSlubDebug(page))
			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3311 3312 3313 3314
				"slab 0x%p\n", s->name, page);
	}
}

3315 3316
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3317 3318 3319 3320 3321 3322 3323 3324
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3325
		validate_slab_slab(s, page, map);
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3336
		validate_slab_slab(s, page, map);
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3349
static long validate_slab_cache(struct kmem_cache *s)
3350 3351 3352
{
	int node;
	unsigned long count = 0;
3353
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3354 3355 3356 3357
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3358 3359

	flush_all(s);
C
Christoph Lameter 已提交
3360
	for_each_node_state(node, N_NORMAL_MEMORY) {
3361 3362
		struct kmem_cache_node *n = get_node(s, node);

3363
		count += validate_slab_node(s, n, map);
3364
	}
3365
	kfree(map);
3366 3367 3368
	return count;
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
I
Ingo Molnar 已提交
3389 3390 3391
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3392 3393 3394 3395 3396 3397 3398

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
I
Ingo Molnar 已提交
3399 3400
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
I
Ingo Molnar 已提交
3413 3414
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3427
/*
C
Christoph Lameter 已提交
3428
 * Generate lists of code addresses where slabcache objects are allocated
3429 3430 3431 3432 3433
 * and freed.
 */

struct location {
	unsigned long count;
3434
	unsigned long addr;
3435 3436 3437 3438 3439 3440 3441
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3457
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3458 3459 3460 3461 3462 3463
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3464
	l = (void *)__get_free_pages(flags, order);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3478
				const struct track *track)
3479 3480 3481
{
	long start, end, pos;
	struct location *l;
3482
	unsigned long caddr;
3483
	unsigned long age = jiffies - track->when;
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3518 3519 3520
			return 1;
		}

3521
		if (track->addr < caddr)
3522 3523 3524 3525 3526 3527
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3528
	 * Not found. Insert new tracking element.
3529
	 */
3530
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3531 3532 3533 3534 3535 3536 3537 3538
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3549 3550 3551 3552 3553 3554
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3555
	void *addr = page_address(page);
3556
	DECLARE_BITMAP(map, page->objects);
3557 3558
	void *p;

3559
	bitmap_zero(map, page->objects);
3560 3561
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3562

3563
	for_each_object(p, s, addr, page->objects)
3564 3565
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3566 3567 3568 3569 3570
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3571
	int len = 0;
3572
	unsigned long i;
3573
	struct loc_track t = { 0, 0, NULL };
3574 3575
	int node;

3576
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3577
			GFP_TEMPORARY))
3578
		return sprintf(buf, "Out of memory\n");
3579 3580 3581 3582

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3583
	for_each_node_state(node, N_NORMAL_MEMORY) {
3584 3585 3586 3587
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3588
		if (!atomic_long_read(&n->nr_slabs))
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3600
		struct location *l = &t.loc[i];
3601

3602
		if (len > PAGE_SIZE - 100)
3603
			break;
3604
		len += sprintf(buf + len, "%7ld ", l->count);
3605 3606

		if (l->addr)
3607
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3608
		else
3609
			len += sprintf(buf + len, "<not-available>");
3610 3611

		if (l->sum_time != l->min_time) {
3612
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
3613 3614 3615
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
3616
		} else
3617
			len += sprintf(buf + len, " age=%ld",
3618 3619 3620
				l->min_time);

		if (l->min_pid != l->max_pid)
3621
			len += sprintf(buf + len, " pid=%ld-%ld",
3622 3623
				l->min_pid, l->max_pid);
		else
3624
			len += sprintf(buf + len, " pid=%ld",
3625 3626
				l->min_pid);

3627
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3628 3629 3630
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3631 3632 3633
					l->cpus);
		}

3634
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3635 3636 3637
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3638 3639 3640
					l->nodes);
		}

3641
		len += sprintf(buf + len, "\n");
3642 3643 3644 3645
	}

	free_loc_track(&t);
	if (!t.count)
3646 3647
		len += sprintf(buf, "No data\n");
	return len;
3648 3649
}

C
Christoph Lameter 已提交
3650
enum slab_stat_type {
3651 3652 3653 3654 3655
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
3656 3657
};

3658
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
3659 3660 3661
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
3662
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
3663

3664 3665
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
3666 3667 3668 3669 3670 3671 3672 3673
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3674 3675
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
3676 3677
	per_cpu = nodes + nr_node_ids;

3678 3679
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
3680

3681 3682
		for_each_possible_cpu(cpu) {
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3683

3684 3685 3686 3687 3688 3689 3690 3691
			if (!c || c->node < 0)
				continue;

			if (c->page) {
					if (flags & SO_TOTAL)
						x = c->page->objects;
				else if (flags & SO_OBJECTS)
					x = c->page->inuse;
C
Christoph Lameter 已提交
3692 3693
				else
					x = 1;
3694

C
Christoph Lameter 已提交
3695
				total += x;
3696
				nodes[c->node] += x;
C
Christoph Lameter 已提交
3697
			}
3698
			per_cpu[c->node]++;
C
Christoph Lameter 已提交
3699 3700 3701
		}
	}

3702 3703 3704 3705 3706 3707 3708 3709 3710
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_TOTAL)
			x = atomic_long_read(&n->total_objects);
		else if (flags & SO_OBJECTS)
			x = atomic_long_read(&n->total_objects) -
				count_partial(n, count_free);
C
Christoph Lameter 已提交
3711 3712

			else
3713
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
3714 3715 3716 3717
			total += x;
			nodes[node] += x;
		}

3718 3719 3720
	} else if (flags & SO_PARTIAL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
3721

3722 3723 3724 3725
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
3726
			else
3727
				x = n->nr_partial;
C
Christoph Lameter 已提交
3728 3729 3730 3731 3732 3733
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3734
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;

3747
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3748 3749
		struct kmem_cache_node *n = get_node(s, node);

3750 3751 3752
		if (!n)
			continue;

3753
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
3795
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
3796 3797 3798
}
SLAB_ATTR_RO(objs_per_slab);

3799 3800 3801
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
3802 3803 3804 3805 3806 3807
	unsigned long order;
	int err;

	err = strict_strtoul(buf, 10, &order);
	if (err)
		return err;
3808 3809 3810 3811 3812 3813 3814 3815

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
3816 3817
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
3818
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
3819
}
3820
SLAB_ATTR(order);
C
Christoph Lameter 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
3841
	return show_slab_objects(s, buf, SO_ALL);
C
Christoph Lameter 已提交
3842 3843 3844 3845 3846
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
3847
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
3848 3849 3850 3851 3852
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
3853
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
3854 3855 3856 3857 3858
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
3859
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
3860 3861 3862
}
SLAB_ATTR_RO(objects);

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3922
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
3954
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
3973
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
3992
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
3993 3994 3995 3996
	return length;
}
SLAB_ATTR(store_user);

3997 3998 3999 4000 4001 4002 4003 4004
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4005 4006 4007 4008 4009 4010 4011 4012
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4013 4014 4015
}
SLAB_ATTR(validate);

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
4051
#ifdef CONFIG_NUMA
4052
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4053
{
4054
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4055 4056
}

4057
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4058 4059
				const char *buf, size_t length)
{
4060 4061 4062 4063 4064 4065 4066
	unsigned long ratio;
	int err;

	err = strict_strtoul(buf, 10, &ratio);
	if (err)
		return err;

4067
	if (ratio <= 100)
4068
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4069 4070 4071

	return length;
}
4072
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4073 4074
#endif

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = get_cpu_slab(s, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4095
#ifdef CONFIG_SMP
4096 4097
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4098
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4099
	}
4100
#endif
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
SLAB_ATTR_RO(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4129
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4130 4131
#endif

P
Pekka Enberg 已提交
4132
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4133 4134 4135 4136 4137
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
4138 4139
	&objects_partial_attr.attr,
	&total_objects_attr.attr,
C
Christoph Lameter 已提交
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4154
	&validate_attr.attr,
4155
	&shrink_attr.attr,
4156 4157
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4158 4159 4160 4161
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4162
	&remote_node_defrag_ratio_attr.attr,
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4182
	&order_fallback_attr.attr,
C
Christoph Lameter 已提交
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4229 4230 4231 4232 4233 4234 4235
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4236 4237 4238 4239 4240 4241 4242
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4243
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4259
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4260 4261 4262 4263

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
4264 4265
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4312
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4322
	s->kobj.kset = slab_kset;
4323 4324 4325
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4326
		return err;
4327
	}
C
Christoph Lameter 已提交
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4345
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4358
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4368 4369
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4385
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4386 4387
	int err;

4388
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4389
	if (!slab_kset) {
C
Christoph Lameter 已提交
4390 4391 4392 4393
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4394 4395
	slab_state = SYSFS;

4396
	list_for_each_entry(s, &slab_caches, list) {
4397
		err = sysfs_slab_add(s);
4398 4399 4400
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4401
	}
C
Christoph Lameter 已提交
4402 4403 4404 4405 4406 4407

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4408 4409 4410
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4420 4421 4422 4423

/*
 * The /proc/slabinfo ABI
 */
4424
#ifdef CONFIG_SLABINFO
P
Pekka J Enberg 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
4461 4462
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
4476 4477
		nr_objs += atomic_long_read(&n->total_objects);
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
4478 4479
	}

4480
	nr_inuse = nr_objs - nr_free;
P
Pekka J Enberg 已提交
4481 4482

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4483 4484
		   nr_objs, s->size, oo_objects(s->oo),
		   (1 << oo_order(s->oo)));
P
Pekka J Enberg 已提交
4485 4486 4487 4488 4489 4490 4491
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

4492
static const struct seq_operations slabinfo_op = {
P
Pekka J Enberg 已提交
4493 4494 4495 4496 4497 4498
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
	return 0;
}
module_init(slab_proc_init);
4517
#endif /* CONFIG_SLABINFO */