slub.c 100.7 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
C
Christoph Lameter 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
70 71
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
72
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
73 74
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
75 76 77 78 79 80 81
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
82 83 84 85 86 87 88 89 90 91 92 93
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
94
 * 			freelist that allows lockless access to
95 96
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
97 98 99
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
100
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
101 102
 */

103 104 105 106 107 108 109 110
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

111 112
static inline int SlabFrozen(struct page *page)
{
113
	return page->flags & FROZEN;
114 115 116 117
}

static inline void SetSlabFrozen(struct page *page)
{
118
	page->flags |= FROZEN;
119 120 121 122
}

static inline void ClearSlabFrozen(struct page *page)
{
123
	page->flags &= ~FROZEN;
124 125
}

126 127
static inline int SlabDebug(struct page *page)
{
128
	return page->flags & SLABDEBUG;
129 130 131 132
}

static inline void SetSlabDebug(struct page *page)
{
133
	page->flags |= SLABDEBUG;
134 135 136 137
}

static inline void ClearSlabDebug(struct page *page)
{
138
	page->flags &= ~SLABDEBUG;
139 140
}

C
Christoph Lameter 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

171 172 173 174
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
175
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
176

177 178 179 180 181 182 183
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
184 185
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
186

C
Christoph Lameter 已提交
187 188 189 190 191 192 193 194 195 196
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
197
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
198 199 200
#endif

#ifndef ARCH_SLAB_MINALIGN
201
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
202 203 204
#endif

/* Internal SLUB flags */
205 206
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
207 208
#define __KMALLOC_CACHE		0x20000000 /* objects freed using kfree */
#define __PAGE_ALLOC_FALLBACK	0x10000000 /* Allow fallback to page alloc */
C
Christoph Lameter 已提交
209

210 211 212 213 214
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
215 216 217 218 219 220 221 222 223
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
224
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
225 226 227 228 229
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
230
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
231

232 233 234 235 236 237 238 239 240 241 242 243
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
244
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
245 246 247
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
248

C
Christoph Lameter 已提交
249
#else
250 251 252
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
C
Christoph Lameter 已提交
253 254 255 256
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
	kfree(s);
}
257

C
Christoph Lameter 已提交
258 259
#endif

260 261 262 263 264 265 266
static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
	c->stat[si]++;
#endif
}

C
Christoph Lameter 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

285 286
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
287 288 289 290 291
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
292 293
}

294 295 296 297 298
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

299
	if (!object)
300 301
		return 1;

302
	base = page_address(page);
303 304 305 306 307 308 309 310
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
335
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
336 337 338 339 340 341 342

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
343 344 345 346
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
347 348 349
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
350
static int slub_debug;
351
#endif
C
Christoph Lameter 已提交
352 353 354

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
368
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
369 370
			newline = 0;
		}
P
Pekka Enberg 已提交
371
		printk(KERN_CONT " %02x", addr[i]);
C
Christoph Lameter 已提交
372 373 374
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
P
Pekka Enberg 已提交
375
			printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
376 377 378 379 380 381
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
P
Pekka Enberg 已提交
382
			printk(KERN_CONT "   ");
C
Christoph Lameter 已提交
383 384 385
			ascii[i] = ' ';
			i++;
		}
P
Pekka Enberg 已提交
386
		printk(KERN_CONT " %s\n", ascii);
C
Christoph Lameter 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
425 426 427 428 429
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
430 431 432 433 434 435 436
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

437
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
438
	__print_symbol("%s", (unsigned long)t->addr);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
471 472
}

473 474 475 476 477 478 479 480 481 482 483 484
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
485 486
{
	unsigned int off;	/* Offset of last byte */
487
	u8 *addr = page_address(page);
488 489 490 491 492 493 494 495 496 497 498 499

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
500 501 502 503 504 505 506 507 508 509

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

510
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
511 512 513 514
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
515 516 517
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
518 519 520 521 522
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
523 524
	slab_bug(s, reason);
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
525 526
}

527
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
528 529 530 531
{
	va_list args;
	char buf[100];

532 533
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
534
	va_end(args);
535 536
	slab_bug(s, fmt);
	print_page_info(page);
C
Christoph Lameter 已提交
537 538 539 540 541 542 543 544 545
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
P
Pekka Enberg 已提交
546
		p[s->objsize - 1] = POISON_END;
C
Christoph Lameter 已提交
547 548 549 550 551 552 553 554
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

555
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
556 557 558
{
	while (bytes) {
		if (*start != (u8)value)
559
			return start;
C
Christoph Lameter 已提交
560 561 562
		start++;
		bytes--;
	}
563 564 565 566 567 568 569 570 571 572 573 574
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
575
			u8 *start, unsigned int value, unsigned int bytes)
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
595 596 597 598 599 600 601 602 603
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
604
 *
C
Christoph Lameter 已提交
605 606 607 608 609
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
610 611 612
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
613 614 615 616
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
617 618
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
619 620
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
621 622 623 624 625
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
626 627
 *
 * object + s->size
C
Christoph Lameter 已提交
628
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
629
 *
C
Christoph Lameter 已提交
630 631
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

650 651
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
652 653 654 655
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
656 657 658 659 660
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
661 662 663 664

	if (!(s->flags & SLAB_POISON))
		return 1;

665
	start = page_address(page);
666
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
667
	length = s->objects * s->size;
668
	remainder = end - (start + length);
C
Christoph Lameter 已提交
669 670 671
	if (!remainder)
		return 1;

672 673 674 675 676 677 678 679 680 681 682
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
683 684 685 686 687 688 689 690 691 692 693 694
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

695 696
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
697 698
			return 0;
	} else {
I
Ingo Molnar 已提交
699 700 701 702
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE, s->inuse - s->objsize);
		}
C
Christoph Lameter 已提交
703 704 705 706
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
707 708 709
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
P
Pekka Enberg 已提交
710
				p + s->objsize - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
731
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
732
		 */
733
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
734 735 736 737 738 739 740 741 742 743
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
744
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
745 746 747
		return 0;
	}
	if (page->inuse > s->objects) {
748 749
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
750 751 752 753 754 755 756 757
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
758 759
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
760 761 762 763 764 765 766
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

767
	while (fp && nr <= s->objects) {
C
Christoph Lameter 已提交
768 769 770 771 772 773
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
774
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
775 776
				break;
			} else {
777
				slab_err(s, page, "Freepointer corrupt");
778
				page->freelist = NULL;
C
Christoph Lameter 已提交
779
				page->inuse = s->objects;
780
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
781 782 783 784 785 786 787 788 789 790
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
791
		slab_err(s, page, "Wrong object count. Counter is %d but "
792
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
793
		page->inuse = s->objects - nr;
794
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
795 796 797 798
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

815
/*
C
Christoph Lameter 已提交
816
 * Tracking of fully allocated slabs for debugging purposes.
817
 */
C
Christoph Lameter 已提交
818
static void add_full(struct kmem_cache_node *n, struct page *page)
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
839 840 841 842 843 844 845 846 847 848 849 850
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
851 852 853 854
{
	if (!check_slab(s, page))
		goto bad;

855
	if (!on_freelist(s, page, object)) {
856
		object_err(s, page, object, "Object already allocated");
857
		goto bad;
C
Christoph Lameter 已提交
858 859 860 861
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
862
		goto bad;
C
Christoph Lameter 已提交
863 864
	}

865
	if (!check_object(s, page, object, 0))
C
Christoph Lameter 已提交
866 867
		goto bad;

C
Christoph Lameter 已提交
868 869 870 871 872
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
873
	return 1;
C
Christoph Lameter 已提交
874

C
Christoph Lameter 已提交
875 876 877 878 879
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
880
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
881
		 */
882
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
883
		page->inuse = s->objects;
884
		page->freelist = NULL;
C
Christoph Lameter 已提交
885 886 887 888
	}
	return 0;
}

C
Christoph Lameter 已提交
889 890
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
891 892 893 894 895
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
896
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
897 898 899 900
		goto fail;
	}

	if (on_freelist(s, page, object)) {
901
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
902 903 904 905 906 907 908
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
I
Ingo Molnar 已提交
909
		if (!PageSlab(page)) {
910 911
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
I
Ingo Molnar 已提交
912
		} else if (!page->slab) {
C
Christoph Lameter 已提交
913
			printk(KERN_ERR
914
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
915
						object);
916
			dump_stack();
P
Pekka Enberg 已提交
917
		} else
918 919
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
920 921
		goto fail;
	}
C
Christoph Lameter 已提交
922 923

	/* Special debug activities for freeing objects */
924
	if (!SlabFrozen(page) && !page->freelist)
C
Christoph Lameter 已提交
925 926 927 928 929
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
930
	return 1;
C
Christoph Lameter 已提交
931

C
Christoph Lameter 已提交
932
fail:
933
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
934 935 936
	return 0;
}

C
Christoph Lameter 已提交
937 938
static int __init setup_slub_debug(char *str)
{
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
963
	for (; *str && *str != ','; str++) {
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
982
				"unknown. skipped\n", *str);
983
		}
C
Christoph Lameter 已提交
984 985
	}

986
check_slabs:
C
Christoph Lameter 已提交
987 988
	if (*str == ',')
		slub_debug_slabs = str + 1;
989
out:
C
Christoph Lameter 已提交
990 991 992 993 994
	return 1;
}

__setup("slub_debug", setup_slub_debug);

995 996
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
997
	void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
998 999
{
	/*
1000
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1001
	 */
1002 1003 1004
	if (slub_debug && (!slub_debug_slabs ||
	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
			flags |= slub_debug;
1005 1006

	return flags;
C
Christoph Lameter 已提交
1007 1008
}
#else
C
Christoph Lameter 已提交
1009 1010
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1011

C
Christoph Lameter 已提交
1012 1013
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1014

C
Christoph Lameter 已提交
1015 1016
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1017 1018 1019 1020 1021

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1022
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1023 1024
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1025
	void (*ctor)(struct kmem_cache *, void *))
1026 1027 1028
{
	return flags;
}
C
Christoph Lameter 已提交
1029 1030
#define slub_debug 0
#endif
C
Christoph Lameter 已提交
1031 1032 1033 1034 1035
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1036
	struct page *page;
C
Christoph Lameter 已提交
1037 1038
	int pages = 1 << s->order;

1039
	flags |= s->allocflags;
1040

C
Christoph Lameter 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1060
	setup_object_debug(s, page, object);
1061
	if (unlikely(s->ctor))
1062
		s->ctor(s, object);
C
Christoph Lameter 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1073
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1074

C
Christoph Lameter 已提交
1075 1076
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1087
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1088 1089 1090 1091 1092 1093 1094

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1095
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1096 1097 1098 1099 1100
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1101
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

	page->freelist = start;
	page->inuse = 0;
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1113
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1114 1115 1116
		void *p;

		slab_pad_check(s, page);
1117
		for_each_object(p, s, page_address(page))
C
Christoph Lameter 已提交
1118
			check_object(s, page, p, 0);
1119
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1120 1121 1122 1123 1124
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1125
		-pages);
C
Christoph Lameter 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1157
	__ClearPageSlab(page);
C
Christoph Lameter 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
N
Nick Piggin 已提交
1171
	__bit_spin_unlock(PG_locked, &page->flags);
C
Christoph Lameter 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
1185 1186
static void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
C
Christoph Lameter 已提交
1187
{
C
Christoph Lameter 已提交
1188 1189
	spin_lock(&n->list_lock);
	n->nr_partial++;
1190 1191 1192 1193
	if (tail)
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1209
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1210
 *
C
Christoph Lameter 已提交
1211
 * Must hold list_lock.
C
Christoph Lameter 已提交
1212
 */
1213
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1214 1215 1216 1217
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1218
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1219 1220 1221 1222 1223 1224
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1225
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1226 1227 1228 1229 1230 1231 1232 1233
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1234 1235
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1236 1237 1238 1239 1240 1241
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1242
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1243 1244 1245 1246 1247 1248 1249 1250
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1251
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1261 1262 1263 1264
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1265
	 *
C
Christoph Lameter 已提交
1266 1267 1268 1269
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1270 1271
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1272 1273 1274 1275 1276
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1277
	 */
1278 1279
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1280 1281
		return NULL;

I
Ingo Molnar 已提交
1282 1283
	zonelist = &NODE_DATA(
		slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
C
Christoph Lameter 已提交
1284 1285 1286 1287 1288 1289
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1290
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1322
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
C
Christoph Lameter 已提交
1323
{
C
Christoph Lameter 已提交
1324
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1325
	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1326

1327
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1328
	if (page->inuse) {
C
Christoph Lameter 已提交
1329

1330
		if (page->freelist) {
1331
			add_partial(n, page, tail);
1332 1333 1334 1335 1336 1337
			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
		} else {
			stat(c, DEACTIVATE_FULL);
			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
				add_full(n, page);
		}
C
Christoph Lameter 已提交
1338 1339
		slab_unlock(page);
	} else {
1340
		stat(c, DEACTIVATE_EMPTY);
C
Christoph Lameter 已提交
1341 1342
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1343 1344 1345 1346 1347 1348
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
C
Christoph Lameter 已提交
1349
			 */
1350
			add_partial(n, page, 1);
C
Christoph Lameter 已提交
1351 1352 1353
			slab_unlock(page);
		} else {
			slab_unlock(page);
1354
			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
C
Christoph Lameter 已提交
1355 1356
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1357 1358 1359 1360 1361 1362
	}
}

/*
 * Remove the cpu slab
 */
1363
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1364
{
1365
	struct page *page = c->page;
1366
	int tail = 1;
1367 1368 1369

	if (c->freelist)
		stat(c, DEACTIVATE_REMOTE_FREES);
1370 1371 1372 1373 1374
	/*
	 * Merge cpu freelist into freelist. Typically we get here
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
1375
	while (unlikely(c->freelist)) {
1376 1377
		void **object;

1378 1379
		tail = 0;	/* Hot objects. Put the slab first */

1380
		/* Retrieve object from cpu_freelist */
1381
		object = c->freelist;
1382
		c->freelist = c->freelist[c->offset];
1383 1384

		/* And put onto the regular freelist */
1385
		object[c->offset] = page->freelist;
1386 1387 1388
		page->freelist = object;
		page->inuse--;
	}
1389
	c->page = NULL;
1390
	unfreeze_slab(s, page, tail);
C
Christoph Lameter 已提交
1391 1392
}

1393
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1394
{
1395
	stat(c, CPUSLAB_FLUSH);
1396 1397
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1398 1399 1400 1401 1402 1403
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
1404
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1405
{
1406
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1407

1408 1409
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1410 1411 1412 1413 1414 1415
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1416
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1445
/*
1446 1447 1448 1449
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1450
 *
1451 1452 1453
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1454
 *
1455 1456 1457
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1458
 *
1459 1460
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is slowest path since we may sleep.
C
Christoph Lameter 已提交
1461
 */
1462
static void *__slab_alloc(struct kmem_cache *s,
1463
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1464 1465
{
	void **object;
1466
	struct page *new;
C
Christoph Lameter 已提交
1467

1468
	if (!c->page)
C
Christoph Lameter 已提交
1469 1470
		goto new_slab;

1471 1472
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1473
		goto another_slab;
1474
	stat(c, ALLOC_REFILL);
1475
load_freelist:
1476
	object = c->page->freelist;
1477
	if (unlikely(!object))
C
Christoph Lameter 已提交
1478
		goto another_slab;
1479
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1480 1481
		goto debug;

1482
	object = c->page->freelist;
1483
	c->freelist = object[c->offset];
1484
	c->page->inuse = s->objects;
1485
	c->page->freelist = NULL;
1486
	c->node = page_to_nid(c->page);
1487
unlock_out:
1488
	slab_unlock(c->page);
1489
	stat(c, ALLOC_SLOWPATH);
C
Christoph Lameter 已提交
1490 1491 1492
	return object;

another_slab:
1493
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1494 1495

new_slab:
1496 1497 1498
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1499
		stat(c, ALLOC_FROM_PARTIAL);
1500
		goto load_freelist;
C
Christoph Lameter 已提交
1501 1502
	}

1503 1504 1505
	if (gfpflags & __GFP_WAIT)
		local_irq_enable();

1506
	new = new_slab(s, gfpflags, node);
1507 1508 1509 1510

	if (gfpflags & __GFP_WAIT)
		local_irq_disable();

1511 1512
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
1513
		stat(c, ALLOC_SLAB);
1514
		if (c->page)
1515 1516 1517 1518
			flush_slab(s, c);
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1519
		goto load_freelist;
C
Christoph Lameter 已提交
1520
	}
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	/*
	 * No memory available.
	 *
	 * If the slab uses higher order allocs but the object is
	 * smaller than a page size then we can fallback in emergencies
	 * to the page allocator via kmalloc_large. The page allocator may
	 * have failed to obtain a higher order page and we can try to
	 * allocate a single page if the object fits into a single page.
	 * That is only possible if certain conditions are met that are being
	 * checked when a slab is created.
	 */
	if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
		return kmalloc_large(s->objsize, gfpflags);

	return NULL;
C
Christoph Lameter 已提交
1537
debug:
1538 1539
	object = c->page->freelist;
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1540
		goto another_slab;
1541

1542
	c->page->inuse++;
1543
	c->page->freelist = object[c->offset];
1544
	c->node = -1;
1545
	goto unlock_out;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
P
Pekka Enberg 已提交
1558
static __always_inline void *slab_alloc(struct kmem_cache *s,
1559
		gfp_t gfpflags, int node, void *addr)
1560 1561
{
	void **object;
1562
	struct kmem_cache_cpu *c;
1563 1564
	unsigned long flags;

1565
	local_irq_save(flags);
1566
	c = get_cpu_slab(s, smp_processor_id());
1567
	if (unlikely(!c->freelist || !node_match(c, node)))
1568

1569
		object = __slab_alloc(s, gfpflags, node, addr, c);
1570 1571

	else {
1572
		object = c->freelist;
1573
		c->freelist = object[c->offset];
1574
		stat(c, ALLOC_FASTPATH);
1575 1576
	}
	local_irq_restore(flags);
1577 1578

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1579
		memset(object, 0, c->objsize);
1580

1581
	return object;
C
Christoph Lameter 已提交
1582 1583 1584 1585
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1586
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1587 1588 1589 1590 1591 1592
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1593
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1594 1595 1596 1597 1598
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1599 1600
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1601
 *
1602 1603 1604
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1605
 */
1606
static void __slab_free(struct kmem_cache *s, struct page *page,
1607
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1608 1609 1610
{
	void *prior;
	void **object = (void *)x;
1611
	struct kmem_cache_cpu *c;
C
Christoph Lameter 已提交
1612

1613 1614
	c = get_cpu_slab(s, raw_smp_processor_id());
	stat(c, FREE_SLOWPATH);
C
Christoph Lameter 已提交
1615 1616
	slab_lock(page);

1617
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1618 1619
		goto debug;
checks_ok:
1620
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1621 1622 1623
	page->freelist = object;
	page->inuse--;

1624 1625
	if (unlikely(SlabFrozen(page))) {
		stat(c, FREE_FROZEN);
C
Christoph Lameter 已提交
1626
		goto out_unlock;
1627
	}
C
Christoph Lameter 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
1637
	if (unlikely(!prior)) {
1638
		add_partial(get_node(s, page_to_nid(page)), page, 1);
1639 1640
		stat(c, FREE_ADD_PARTIAL);
	}
C
Christoph Lameter 已提交
1641 1642 1643 1644 1645 1646

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
1647
	if (prior) {
C
Christoph Lameter 已提交
1648
		/*
C
Christoph Lameter 已提交
1649
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1650 1651
		 */
		remove_partial(s, page);
1652 1653
		stat(c, FREE_REMOVE_PARTIAL);
	}
C
Christoph Lameter 已提交
1654
	slab_unlock(page);
1655
	stat(c, FREE_SLAB);
C
Christoph Lameter 已提交
1656 1657 1658 1659
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1660
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1661 1662
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1663 1664
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
1676
static __always_inline void slab_free(struct kmem_cache *s,
1677 1678 1679
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
1680
	struct kmem_cache_cpu *c;
1681 1682
	unsigned long flags;

1683
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1684
	debug_check_no_locks_freed(object, s->objsize);
1685
	c = get_cpu_slab(s, smp_processor_id());
1686
	if (likely(page == c->page && c->node >= 0)) {
1687
		object[c->offset] = c->freelist;
1688
		c->freelist = object;
1689
		stat(c, FREE_FASTPATH);
1690
	} else
1691
		__slab_free(s, page, x, addr, c->offset);
1692 1693 1694 1695

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1696 1697
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1698
	struct page *page;
C
Christoph Lameter 已提交
1699

1700
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1701

C
Christoph Lameter 已提交
1702
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1703 1704 1705 1706 1707 1708
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1709
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1710 1711 1712 1713 1714 1715 1716 1717

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1718 1719 1720 1721
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1722 1723 1724 1725
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1726
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1742
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1743 1744 1745 1746 1747 1748
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1760
 *
C
Christoph Lameter 已提交
1761 1762 1763 1764
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1765
 *
C
Christoph Lameter 已提交
1766 1767 1768 1769
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1770
 */
1771 1772
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1773 1774 1775
{
	int order;
	int rem;
1776
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1777

1778
	for (order = max(min_order,
1779 1780
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1781

1782
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1783

1784
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1785 1786 1787 1788
			continue;

		rem = slab_size % size;

1789
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1790 1791 1792
			break;

	}
C
Christoph Lameter 已提交
1793

C
Christoph Lameter 已提交
1794 1795 1796
	return order;
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1841
/*
C
Christoph Lameter 已提交
1842
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1856
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1857 1858
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1859 1860 1861 1862 1863 1864 1865

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

1866 1867 1868 1869
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
1870
	c->freelist = NULL;
1871
	c->node = 0;
1872 1873
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
1874 1875
}

C
Christoph Lameter 已提交
1876 1877 1878 1879 1880 1881
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1882
#ifdef CONFIG_SLUB_DEBUG
1883
	INIT_LIST_HEAD(&n->full);
1884
#endif
C
Christoph Lameter 已提交
1885 1886
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2012 2013 2014 2015 2016 2017 2018
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2019 2020
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2021
 */
2022 2023
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2024 2025 2026
{
	struct page *page;
	struct kmem_cache_node *n;
R
root 已提交
2027
	unsigned long flags;
C
Christoph Lameter 已提交
2028 2029 2030

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2031
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2032 2033

	BUG_ON(!page);
2034 2035 2036 2037 2038 2039 2040
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2041 2042 2043 2044 2045
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2046
#ifdef CONFIG_SLUB_DEBUG
2047 2048
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2049
#endif
C
Christoph Lameter 已提交
2050 2051
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
R
root 已提交
2052 2053 2054 2055 2056 2057
	/*
	 * lockdep requires consistent irq usage for each lock
	 * so even though there cannot be a race this early in
	 * the boot sequence, we still disable irqs.
	 */
	local_irq_save(flags);
2058
	add_partial(n, page, 0);
R
root 已提交
2059
	local_irq_restore(flags);
C
Christoph Lameter 已提交
2060 2061 2062 2063 2064 2065 2066
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2067
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2085
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2138
			!s->ctor)
C
Christoph Lameter 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

C
Christoph Lameter 已提交
2150
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2151
	/*
C
Christoph Lameter 已提交
2152
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2153
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2154
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2155 2156 2157
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2158
#endif
C
Christoph Lameter 已提交
2159 2160

	/*
C
Christoph Lameter 已提交
2161 2162
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2163 2164 2165 2166
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2167
		s->ctor)) {
C
Christoph Lameter 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2180
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2181 2182 2183 2184 2185 2186 2187
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2188
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2189 2190 2191 2192 2193 2194 2195 2196
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2197
#endif
C
Christoph Lameter 已提交
2198

C
Christoph Lameter 已提交
2199 2200
	/*
	 * Determine the alignment based on various parameters that the
2201 2202
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	if ((flags & __KMALLOC_CACHE) &&
			PAGE_SIZE / size < slub_min_objects) {
		/*
		 * Kmalloc cache that would not have enough objects in
		 * an order 0 page. Kmalloc slabs can fallback to
		 * page allocator order 0 allocs so take a reasonably large
		 * order that will allows us a good number of objects.
		 */
		s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
		s->flags |= __PAGE_ALLOC_FALLBACK;
		s->allocflags |= __GFP_NOWARN;
	} else
		s->order = calculate_order(size);

C
Christoph Lameter 已提交
2228 2229 2230
	if (s->order < 0)
		return 0;

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	s->allocflags = 0;
	if (s->order)
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
2241 2242 2243 2244 2245
	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

2246
	return !!s->objects;
C
Christoph Lameter 已提交
2247 2248 2249 2250 2251 2252

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2253
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2254 2255 2256 2257 2258 2259
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2260
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2261 2262 2263 2264 2265 2266

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
2267
	s->remote_node_defrag_ratio = 100;
C
Christoph Lameter 已提交
2268
#endif
2269 2270
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2271

2272
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2273
		return 1;
2274
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
P
Pekka Enberg 已提交
2289
	struct page *page;
C
Christoph Lameter 已提交
2290 2291 2292 2293 2294 2295 2296

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2297
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2326 2327
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2348
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2349
 */
2350
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2351 2352 2353 2354 2355 2356
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2357
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2358
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2359 2360
		struct kmem_cache_node *n = get_node(s, node);

2361
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2379
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2380 2381 2382
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
2383 2384
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2385 2386 2387 2388 2389 2390 2391
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2392
struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
C
Christoph Lameter 已提交
2393 2394 2395
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
2396
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
C
Christoph Lameter 已提交
2397 2398 2399 2400
#endif

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
2401
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
2402 2403 2404 2405 2406 2407 2408 2409

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
2410
	get_option(&str, &slub_max_order);
C
Christoph Lameter 已提交
2411 2412 2413 2414 2415 2416 2417 2418

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
2419
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2444
			flags | __KMALLOC_CACHE, NULL))
C
Christoph Lameter 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2457
#ifdef CONFIG_ZONE_DMA
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2486 2487 2488 2489 2490 2491 2492 2493 2494
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2495

2496
	realsize = kmalloc_caches[index].objsize;
I
Ingo Molnar 已提交
2497 2498
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
			 (unsigned int)realsize);
2499 2500 2501 2502 2503 2504 2505 2506
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2507
	}
2508 2509 2510 2511 2512 2513 2514

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2515
	up_write(&slub_lock);
2516
out:
2517
	return kmalloc_caches_dma[index];
2518 2519 2520
}
#endif

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2554 2555
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2556
	int index;
C
Christoph Lameter 已提交
2557

2558 2559 2560
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2561

2562
		index = size_index[(size - 1) / 8];
2563
	} else
2564
		index = fls(size - 1);
C
Christoph Lameter 已提交
2565 2566

#ifdef CONFIG_ZONE_DMA
2567
	if (unlikely((flags & SLUB_DMA)))
2568
		return dma_kmalloc_cache(index, flags);
2569

C
Christoph Lameter 已提交
2570 2571 2572 2573 2574 2575
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2576
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2577

2578
	if (unlikely(size > PAGE_SIZE))
2579
		return kmalloc_large(size, flags);
2580 2581 2582 2583

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2584 2585
		return s;

2586
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2587 2588 2589 2590 2591 2592
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2593
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2594

2595
	if (unlikely(size > PAGE_SIZE))
2596
		return kmalloc_large(size, flags);
2597 2598 2599 2600

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2601 2602
		return s;

2603
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2604 2605 2606 2607 2608 2609
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2610
	struct page *page;
C
Christoph Lameter 已提交
2611 2612
	struct kmem_cache *s;

2613 2614
	BUG_ON(!object);
	if (unlikely(object == ZERO_SIZE_PTR))
2615 2616
		return 0;

2617
	page = virt_to_head_page(object);
C
Christoph Lameter 已提交
2618
	BUG_ON(!page);
2619 2620 2621 2622

	if (unlikely(!PageSlab(page)))
		return PAGE_SIZE << compound_order(page);

C
Christoph Lameter 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;
2651
	void *object = (void *)x;
C
Christoph Lameter 已提交
2652

2653
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2654 2655
		return;

2656
	page = virt_to_head_page(x);
2657 2658 2659 2660
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
2661
	slab_free(page->slab, page, object, __builtin_return_address(0));
C
Christoph Lameter 已提交
2662 2663 2664
}
EXPORT_SYMBOL(kfree);

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2678
/*
C
Christoph Lameter 已提交
2679 2680 2681 2682 2683 2684 2685 2686
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2703
	for_each_node_state(node, N_NORMAL_MEMORY) {
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2715
		 * Build lists indexed by the items in use in each slab.
2716
		 *
C
Christoph Lameter 已提交
2717 2718
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2732 2733
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2734 2735 2736 2737
			}
		}

		/*
C
Christoph Lameter 已提交
2738 2739
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
			 * and offline_pages() function shoudn't call this
			 * callback. So, we must fail.
			 */
A
Al Viro 已提交
2791
			BUG_ON(atomic_long_read(&n->nr_slabs));
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866

			s->node[offline_node] = NULL;
			kmem_cache_free(kmalloc_caches, n);
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
	 * We are bringing a node online. No memory is availabe yet. We must
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
		init_kmem_cache_node(n);
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}

	ret = notifier_from_errno(ret);
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

C
Christoph Lameter 已提交
2867 2868 2869 2870 2871 2872 2873
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2874
	int caches = 0;
C
Christoph Lameter 已提交
2875

2876 2877
	init_alloc_cpu();

C
Christoph Lameter 已提交
2878 2879 2880
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2881
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2882 2883 2884 2885
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2886
	kmalloc_caches[0].refcount = -1;
2887
	caches++;
2888 2889

	hotplug_memory_notifier(slab_memory_callback, 1);
C
Christoph Lameter 已提交
2890 2891 2892 2893 2894 2895
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2896 2897
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2898
				"kmalloc-96", 96, GFP_KERNEL);
2899 2900 2901 2902
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2903
				"kmalloc-192", 192, GFP_KERNEL);
2904 2905
		caches++;
	}
C
Christoph Lameter 已提交
2906

2907
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
2908 2909
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2910 2911
		caches++;
	}
C
Christoph Lameter 已提交
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * mips it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

2928
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2929 2930
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
2931 2932 2933
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
2934
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
2935 2936 2937 2938 2939
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
2940 2941 2942 2943
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
2944 2945 2946
#endif


I
Ingo Molnar 已提交
2947 2948
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2949 2950
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

2963
	if ((s->flags & __PAGE_ALLOC_FALLBACK))
2964 2965
		return 1;

2966
	if (s->ctor)
C
Christoph Lameter 已提交
2967 2968
		return 1;

2969 2970 2971 2972 2973 2974
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
2975 2976 2977 2978
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
2979
		size_t align, unsigned long flags, const char *name,
2980
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
2981
{
2982
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2983 2984 2985 2986

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

2987
	if (ctor)
C
Christoph Lameter 已提交
2988 2989 2990 2991 2992
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
2993
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
2994

2995
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
2996 2997 2998 2999 3000 3001
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3002
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3003 3004 3005 3006 3007
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3008
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
3021
		void (*ctor)(struct kmem_cache *, void *))
C
Christoph Lameter 已提交
3022 3023 3024 3025
{
	struct kmem_cache *s;

	down_write(&slub_lock);
3026
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3027
	if (s) {
3028 3029
		int cpu;

C
Christoph Lameter 已提交
3030 3031 3032 3033 3034 3035
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
3036 3037 3038 3039 3040 3041 3042

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
3043
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3044
		up_write(&slub_lock);
C
Christoph Lameter 已提交
3045 3046
		if (sysfs_slab_alias(s, name))
			goto err;
3047 3048 3049 3050 3051
		return s;
	}
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
3052
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
3053
			list_add(&s->list, &slab_caches);
3054 3055 3056 3057 3058 3059
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3074 3075
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3076 3077 3078 3079 3080
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3081 3082
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3083 3084

	switch (action) {
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
3095
	case CPU_UP_CANCELED:
3096
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3097
	case CPU_DEAD:
3098
	case CPU_DEAD_FROZEN:
3099 3100
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
3101 3102
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

3103 3104 3105
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
3106 3107
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
3108 3109
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
3110 3111 3112 3113 3114 3115 3116
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3117
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3118
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3119
};
C
Christoph Lameter 已提交
3120 3121 3122 3123 3124

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
3125 3126
	struct kmem_cache *s;

3127
	if (unlikely(size > PAGE_SIZE))
3128 3129
		return kmalloc_large(size, gfpflags);

3130
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3131

3132
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3133
		return s;
C
Christoph Lameter 已提交
3134

3135
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
3136 3137 3138 3139 3140
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
3141 3142
	struct kmem_cache *s;

3143
	if (unlikely(size > PAGE_SIZE))
3144 3145
		return kmalloc_large(size, gfpflags);

3146
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
3147

3148
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3149
		return s;
C
Christoph Lameter 已提交
3150

3151
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
3152 3153
}

C
Christoph Lameter 已提交
3154
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3155 3156
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3157 3158
{
	void *p;
3159
	void *addr = page_address(page);
3160 3161 3162 3163 3164 3165 3166 3167

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

3168 3169
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
3170 3171 3172 3173
		if (!check_object(s, page, p, 0))
			return 0;
	}

3174 3175
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
3176 3177 3178 3179 3180
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3181 3182
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3183 3184
{
	if (slab_trylock(page)) {
3185
		validate_slab(s, page, map);
3186 3187 3188 3189 3190 3191
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3192 3193
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3194 3195
				"on slab 0x%p\n", s->name, page);
	} else {
3196 3197
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3198 3199 3200 3201
				"slab 0x%p\n", s->name, page);
	}
}

3202 3203
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3204 3205 3206 3207 3208 3209 3210 3211
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3212
		validate_slab_slab(s, page, map);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3223
		validate_slab_slab(s, page, map);
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3236
static long validate_slab_cache(struct kmem_cache *s)
3237 3238 3239
{
	int node;
	unsigned long count = 0;
3240 3241 3242 3243 3244
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3245 3246

	flush_all(s);
C
Christoph Lameter 已提交
3247
	for_each_node_state(node, N_NORMAL_MEMORY) {
3248 3249
		struct kmem_cache_node *n = get_node(s, node);

3250
		count += validate_slab_node(s, n, map);
3251
	}
3252
	kfree(map);
3253 3254 3255
	return count;
}

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
I
Ingo Molnar 已提交
3276 3277 3278
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3279 3280 3281 3282 3283 3284 3285

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
I
Ingo Molnar 已提交
3286 3287
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
I
Ingo Molnar 已提交
3300 3301
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3314
/*
C
Christoph Lameter 已提交
3315
 * Generate lists of code addresses where slabcache objects are allocated
3316 3317 3318 3319 3320 3321
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3322 3323 3324 3325 3326 3327 3328
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3344
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3345 3346 3347 3348 3349 3350
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3351
	l = (void *)__get_free_pages(flags, order);
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3365
				const struct track *track)
3366 3367 3368 3369
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3370
	unsigned long age = jiffies - track->when;
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3405 3406 3407
			return 1;
		}

3408
		if (track->addr < caddr)
3409 3410 3411 3412 3413 3414
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3415
	 * Not found. Insert new tracking element.
3416
	 */
3417
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3418 3419 3420 3421 3422 3423 3424 3425
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3436 3437 3438 3439 3440 3441
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
3442
	void *addr = page_address(page);
3443
	DECLARE_BITMAP(map, s->objects);
3444 3445 3446
	void *p;

	bitmap_zero(map, s->objects);
3447 3448
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3449

3450
	for_each_object(p, s, addr)
3451 3452
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3453 3454 3455 3456 3457
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
3458
	int len = 0;
3459
	unsigned long i;
3460
	struct loc_track t = { 0, 0, NULL };
3461 3462
	int node;

3463
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3464
			GFP_TEMPORARY))
3465
		return sprintf(buf, "Out of memory\n");
3466 3467 3468 3469

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3470
	for_each_node_state(node, N_NORMAL_MEMORY) {
3471 3472 3473 3474
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3475
		if (!atomic_long_read(&n->nr_slabs))
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3487
		struct location *l = &t.loc[i];
3488

3489
		if (len > PAGE_SIZE - 100)
3490
			break;
3491
		len += sprintf(buf + len, "%7ld ", l->count);
3492 3493

		if (l->addr)
3494
			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3495
		else
3496
			len += sprintf(buf + len, "<not-available>");
3497 3498 3499 3500

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

3501
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3502 3503 3504 3505
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
3506
			len += sprintf(buf + len, " age=%ld",
3507 3508 3509
				l->min_time);

		if (l->min_pid != l->max_pid)
3510
			len += sprintf(buf + len, " pid=%ld-%ld",
3511 3512
				l->min_pid, l->max_pid);
		else
3513
			len += sprintf(buf + len, " pid=%ld",
3514 3515
				l->min_pid);

3516
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3517 3518 3519
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3520 3521 3522
					l->cpus);
		}

3523
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3524 3525 3526
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3527 3528 3529
					l->nodes);
		}

3530
		len += sprintf(buf + len, "\n");
3531 3532 3533 3534
	}

	free_loc_track(&t);
	if (!t.count)
3535 3536
		len += sprintf(buf, "No data\n");
	return len;
3537 3538
}

C
Christoph Lameter 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

3551
static unsigned long show_slab_objects(struct kmem_cache *s,
C
Christoph Lameter 已提交
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
3565 3566
		struct page *page;
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
3567

3568 3569 3570 3571
		if (!c)
			continue;

		page = c->page;
3572 3573 3574
		node = c->node;
		if (node < 0)
			continue;
C
Christoph Lameter 已提交
3575 3576 3577 3578 3579 3580 3581
		if (page) {
			if (flags & SO_CPU) {
				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
3582
				nodes[node] += x;
C
Christoph Lameter 已提交
3583
			}
3584
			per_cpu[node]++;
C
Christoph Lameter 已提交
3585 3586 3587
		}
	}

C
Christoph Lameter 已提交
3588
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
3601
			int full_slabs = atomic_long_read(&n->nr_slabs)
C
Christoph Lameter 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3616
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3630 3631 3632 3633
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3634
			return 1;
3635
	}
C
Christoph Lameter 已提交
3636

3637
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3638 3639
		struct kmem_cache_node *n = get_node(s, node);

3640 3641 3642
		if (!n)
			continue;

3643
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
3714
	return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
C
Christoph Lameter 已提交
3715 3716 3717 3718 3719
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
3720
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
3721 3722 3723 3724 3725
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
3726
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
3727 3728 3729 3730 3731
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
3732
	return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
C
Christoph Lameter 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3783
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3858 3859 3860 3861 3862 3863 3864 3865
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3866 3867 3868 3869 3870 3871 3872 3873
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3874 3875 3876
}
SLAB_ATTR(validate);

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
3912
#ifdef CONFIG_NUMA
3913
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
3914
{
3915
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
3916 3917
}

3918
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
3919 3920 3921 3922 3923
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
3924
		s->remote_node_defrag_ratio = n * 10;
C
Christoph Lameter 已提交
3925 3926
	return length;
}
3927
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
3928 3929
#endif

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
#ifdef CONFIG_SLUB_STATS

static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
		unsigned x = get_cpu_slab(s, cpu)->stat[si];

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
	}
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
SLAB_ATTR_RO(text);						\

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);

#endif

P
Pekka Enberg 已提交
3986
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4006
	&validate_attr.attr,
4007
	&shrink_attr.attr,
4008 4009
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
4010 4011 4012 4013
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4014
	&remote_node_defrag_ratio_attr.attr,
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
C
Christoph Lameter 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

C
Christoph Lameter 已提交
4080 4081 4082 4083 4084 4085 4086
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

	kfree(s);
}

C
Christoph Lameter 已提交
4087 4088 4089 4090 4091 4092 4093
static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
C
Christoph Lameter 已提交
4094
	.release = kmem_cache_release
C
Christoph Lameter 已提交
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

4110
static struct kset *slab_kset;
C
Christoph Lameter 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
4163
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
4164 4165 4166 4167 4168 4169 4170 4171 4172
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

4173
	s->kobj.kset = slab_kset;
4174 4175 4176
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4177
		return err;
4178
	}
C
Christoph Lameter 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
4196
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
4209
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
4219 4220
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
4236
	struct kmem_cache *s;
C
Christoph Lameter 已提交
4237 4238
	int err;

4239
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4240
	if (!slab_kset) {
C
Christoph Lameter 已提交
4241 4242 4243 4244
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4245 4246
	slab_state = SYSFS;

4247
	list_for_each_entry(s, &slab_caches, list) {
4248
		err = sysfs_slab_add(s);
4249 4250 4251
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4252
	}
C
Christoph Lameter 已提交
4253 4254 4255 4256 4257 4258

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4259 4260 4261
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4262 4263 4264 4265 4266 4267 4268 4269 4270
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif
P
Pekka J Enberg 已提交
4271 4272 4273 4274

/*
 * The /proc/slabinfo ABI
 */
4275 4276 4277 4278 4279 4280 4281 4282
#ifdef CONFIG_SLABINFO

ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                       size_t count, loff_t *ppos)
{
	return -EINVAL;
}

P
Pekka J Enberg 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
	unsigned long nr_objs;
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
		nr_inuse += count_partial(n);
	}

	nr_objs = nr_slabs * s->objects;
	nr_inuse += (nr_slabs - nr_partials) * s->objects;

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
		   nr_objs, s->size, s->objects, (1 << s->order));
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

const struct seq_operations slabinfo_op = {
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

4356
#endif /* CONFIG_SLABINFO */