slub.c 93.1 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
69 70
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
71
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
72 73
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
74 75 76 77 78 79 80
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
81 82 83 84 85 86 87 88 89 90 91 92
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
93
 * 			freelist that allows lockless access to
94 95
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
96 97 98
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
99
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
100 101
 */

102 103 104 105 106 107 108 109
#define FROZEN (1 << PG_active)

#ifdef CONFIG_SLUB_DEBUG
#define SLABDEBUG (1 << PG_error)
#else
#define SLABDEBUG 0
#endif

110 111
static inline int SlabFrozen(struct page *page)
{
112
	return page->flags & FROZEN;
113 114 115 116
}

static inline void SetSlabFrozen(struct page *page)
{
117
	page->flags |= FROZEN;
118 119 120 121
}

static inline void ClearSlabFrozen(struct page *page)
{
122
	page->flags &= ~FROZEN;
123 124
}

125 126
static inline int SlabDebug(struct page *page)
{
127
	return page->flags & SLABDEBUG;
128 129 130 131
}

static inline void SetSlabDebug(struct page *page)
{
132
	page->flags |= SLABDEBUG;
133 134 135 136
}

static inline void ClearSlabDebug(struct page *page)
{
137
	page->flags &= ~SLABDEBUG;
138 139
}

C
Christoph Lameter 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

170 171 172 173
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
174 175
#define MIN_PARTIAL 2

176 177 178 179 180 181 182
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
183 184
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
185

C
Christoph Lameter 已提交
186 187 188 189 190 191 192 193 194 195
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
196
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
197 198 199
#endif

#ifndef ARCH_SLAB_MINALIGN
200
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
C
Christoph Lameter 已提交
201 202 203
#endif

/* Internal SLUB flags */
204 205
#define __OBJECT_POISON		0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
C
Christoph Lameter 已提交
206

207 208 209 210 211
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

C
Christoph Lameter 已提交
212 213 214 215 216 217 218 219 220
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
C
Christoph Lameter 已提交
221
	UP,		/* Everything works but does not show up in sysfs */
C
Christoph Lameter 已提交
222 223 224 225 226
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
A
Adrian Bunk 已提交
227
static LIST_HEAD(slab_caches);
C
Christoph Lameter 已提交
228

229 230 231 232 233 234 235 236 237 238 239 240
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

C
Christoph Lameter 已提交
241
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
C
Christoph Lameter 已提交
242 243 244 245
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
#else
246 247 248 249
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
static inline void sysfs_slab_remove(struct kmem_cache *s) {}
C
Christoph Lameter 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
#endif

/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

270 271
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
{
272 273 274 275 276
#ifdef CONFIG_SMP
	return s->cpu_slab[cpu];
#else
	return &s->cpu_slab;
#endif
277 278
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

C
Christoph Lameter 已提交
328 329 330 331
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
332 333 334
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
335
static int slub_debug;
336
#endif
C
Christoph Lameter 已提交
337 338 339

static char *slub_debug_slabs;

C
Christoph Lameter 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
353
			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
C
Christoph Lameter 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
			newline = 0;
		}
		printk(" %02x", addr[i]);
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
			printk(" %s\n",ascii);
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
			printk("   ");
			ascii[i] = ' ';
			i++;
		}
		printk(" %s\n", ascii);
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
410 411 412 413 414
	if (!(s->flags & SLAB_STORE_USER))
		return;

	set_track(s, object, TRACK_FREE, NULL);
	set_track(s, object, TRACK_ALLOC, NULL);
C
Christoph Lameter 已提交
415 416 417 418 419 420 421
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

422
	printk(KERN_ERR "INFO: %s in ", s);
C
Christoph Lameter 已提交
423
	__print_symbol("%s", (unsigned long)t->addr);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
		page, page->inuse, page->freelist, page->flags);

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
C
Christoph Lameter 已提交
456 457
}

458 459 460 461 462 463 464 465 466 467 468 469
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
470 471
{
	unsigned int off;	/* Offset of last byte */
472 473 474 475 476 477 478 479 480 481 482 483 484
	u8 *addr = page_address(page);

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
		print_section("Bytes b4", p - 16, 16);

	print_section("Object", p, min(s->objsize, 128));
C
Christoph Lameter 已提交
485 486 487 488 489 490 491 492 493 494

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

495
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
496 497 498 499
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
500 501 502
		print_section("Padding", p + off, s->size - off);

	dump_stack();
C
Christoph Lameter 已提交
503 504 505 506 507
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
508 509
	slab_bug(s, reason);
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
510 511
}

512
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
C
Christoph Lameter 已提交
513 514 515 516
{
	va_list args;
	char buf[100];

517 518
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
519
	va_end(args);
520 521
	slab_bug(s, fmt);
	print_page_info(page);
C
Christoph Lameter 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
		p[s->objsize -1] = POISON_END;
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

540
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
C
Christoph Lameter 已提交
541 542 543
{
	while (bytes) {
		if (*start != (u8)value)
544
			return start;
C
Christoph Lameter 已提交
545 546 547
		start++;
		bytes--;
	}
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	return NULL;
}

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
			u8* start, unsigned int value, unsigned int bytes)
{
	u8 *fault;
	u8 *end;

	fault = check_bytes(start, value, bytes);
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
580 581 582 583 584 585 586 587 588
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
589
 *
C
Christoph Lameter 已提交
590 591 592 593 594
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
595 596 597
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
C
Christoph Lameter 已提交
598 599 600 601
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
602 603
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
604 605
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
606 607 608 609 610
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
611 612
 *
 * object + s->size
C
Christoph Lameter 已提交
613
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
614
 *
C
Christoph Lameter 已提交
615 616
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

635 636
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
637 638 639 640
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
641 642 643 644 645
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
646 647 648 649

	if (!(s->flags & SLAB_POISON))
		return 1;

650 651
	start = page_address(page);
	end = start + (PAGE_SIZE << s->order);
C
Christoph Lameter 已提交
652
	length = s->objects * s->size;
653
	remainder = end - (start + length);
C
Christoph Lameter 已提交
654 655 656
	if (!remainder)
		return 1;

657 658 659 660 661 662 663 664 665 666 667
	fault = check_bytes(start + length, POISON_INUSE, remainder);
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
	print_section("Padding", start, length);

	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
	return 0;
C
Christoph Lameter 已提交
668 669 670 671 672 673 674 675 676 677 678 679
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

680 681
		if (!check_bytes_and_report(s, page, object, "Redzone",
			endobject, red, s->inuse - s->objsize))
C
Christoph Lameter 已提交
682 683
			return 0;
	} else {
684 685 686
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
				POISON_INUSE, s->inuse - s->objsize);
C
Christoph Lameter 已提交
687 688 689 690
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
691 692 693 694
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
			 	p + s->objsize -1, POISON_END, 1)))
C
Christoph Lameter 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
715
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
716 717 718 719 720 721 722 723 724 725 726 727
		 */
		set_freepointer(s, p, NULL);
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
728
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
729 730 731
		return 0;
	}
	if (page->inuse > s->objects) {
732 733
		slab_err(s, page, "inuse %u > max %u",
			s->name, page->inuse, s->objects);
C
Christoph Lameter 已提交
734 735 736 737 738 739 740 741
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
742 743
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

	while (fp && nr <= s->objects) {
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
				set_freepointer(s, object, NULL);
				break;
			} else {
761
				slab_err(s, page, "Freepointer corrupt");
C
Christoph Lameter 已提交
762 763
				page->freelist = NULL;
				page->inuse = s->objects;
764
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
765 766 767 768 769 770 771 772 773 774
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
775
		slab_err(s, page, "Wrong object count. Counter is %d but "
776
			"counted were %d", page->inuse, s->objects - nr);
C
Christoph Lameter 已提交
777
		page->inuse = s->objects - nr;
778
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
779 780 781 782
	}
	return search == NULL;
}

C
Christoph Lameter 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

799
/*
C
Christoph Lameter 已提交
800
 * Tracking of fully allocated slabs for debugging purposes.
801
 */
C
Christoph Lameter 已提交
802
static void add_full(struct kmem_cache_node *n, struct page *page)
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

C
Christoph Lameter 已提交
823 824 825 826 827 828 829 830 831 832 833 834
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

	init_object(s, object, 0);
	init_tracking(s, object);
}

static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
835 836 837 838 839
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
840
		object_err(s, page, object, "Object already allocated");
841
		goto bad;
C
Christoph Lameter 已提交
842 843 844 845
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
846
		goto bad;
C
Christoph Lameter 已提交
847 848
	}

C
Christoph Lameter 已提交
849
	if (object && !check_object(s, page, object, 0))
C
Christoph Lameter 已提交
850 851
		goto bad;

C
Christoph Lameter 已提交
852 853 854 855 856
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
	init_object(s, object, 1);
C
Christoph Lameter 已提交
857
	return 1;
C
Christoph Lameter 已提交
858

C
Christoph Lameter 已提交
859 860 861 862 863
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
864
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
865
		 */
866
		slab_fix(s, "Marking all objects used");
C
Christoph Lameter 已提交
867 868 869 870 871 872
		page->inuse = s->objects;
		page->freelist = NULL;
	}
	return 0;
}

C
Christoph Lameter 已提交
873 874
static int free_debug_processing(struct kmem_cache *s, struct page *page,
						void *object, void *addr)
C
Christoph Lameter 已提交
875 876 877 878 879
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
880
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
881 882 883 884
		goto fail;
	}

	if (on_freelist(s, page, object)) {
885
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
886 887 888 889 890 891 892 893
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
		if (!PageSlab(page))
894 895
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
C
Christoph Lameter 已提交
896
		else
897
		if (!page->slab) {
C
Christoph Lameter 已提交
898
			printk(KERN_ERR
899
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
900
						object);
901 902
			dump_stack();
		}
C
Christoph Lameter 已提交
903
		else
904 905
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
906 907
		goto fail;
	}
C
Christoph Lameter 已提交
908 909 910 911 912 913 914 915

	/* Special debug activities for freeing objects */
	if (!SlabFrozen(page) && !page->freelist)
		remove_full(s, page);
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
	init_object(s, object, 0);
C
Christoph Lameter 已提交
916
	return 1;
C
Christoph Lameter 已提交
917

C
Christoph Lameter 已提交
918
fail:
919
	slab_fix(s, "Object at 0x%p not freed", object);
C
Christoph Lameter 已提交
920 921 922
	return 0;
}

C
Christoph Lameter 已提交
923 924
static int __init setup_slub_debug(char *str)
{
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
	for ( ;*str && *str != ','; str++) {
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
		default:
			printk(KERN_ERR "slub_debug option '%c' "
				"unknown. skipped\n",*str);
		}
C
Christoph Lameter 已提交
970 971
	}

972
check_slabs:
C
Christoph Lameter 已提交
973 974
	if (*str == ',')
		slub_debug_slabs = str + 1;
975
out:
C
Christoph Lameter 已提交
976 977 978 979 980
	return 1;
}

__setup("slub_debug", setup_slub_debug);

981 982 983
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
	void (*ctor)(void *, struct kmem_cache *, unsigned long))
C
Christoph Lameter 已提交
984 985 986 987 988 989 990 991 992 993
{
	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
994
	 * Debugging or ctor may create a need to move the free
C
Christoph Lameter 已提交
995 996
	 * pointer. Fail if this happens.
	 */
997 998
	if (objsize >= 65535 * sizeof(void *)) {
		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
C
Christoph Lameter 已提交
999
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1000 1001
		BUG_ON(ctor);
	} else {
C
Christoph Lameter 已提交
1002 1003 1004 1005
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
1006
		    strncmp(slub_debug_slabs, name,
C
Christoph Lameter 已提交
1007
		    	strlen(slub_debug_slabs)) == 0))
1008 1009 1010 1011
				flags |= slub_debug;
	}

	return flags;
C
Christoph Lameter 已提交
1012 1013
}
#else
C
Christoph Lameter 已提交
1014 1015
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1016

C
Christoph Lameter 已提交
1017 1018
static inline int alloc_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1019

C
Christoph Lameter 已提交
1020 1021
static inline int free_debug_processing(struct kmem_cache *s,
	struct page *page, void *object, void *addr) { return 0; }
C
Christoph Lameter 已提交
1022 1023 1024 1025 1026

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
C
Christoph Lameter 已提交
1027
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1028 1029 1030 1031 1032 1033
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
	void (*ctor)(void *, struct kmem_cache *, unsigned long))
{
	return flags;
}
C
Christoph Lameter 已提交
1034 1035
#define slub_debug 0
#endif
C
Christoph Lameter 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page * page;
	int pages = 1 << s->order;

	if (s->order)
		flags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		flags |= SLUB_DMA;

1050 1051 1052
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1072
	setup_object_debug(s, page, object);
1073
	if (unlikely(s->ctor))
C
Christoph Lameter 已提交
1074
		s->ctor(object, s, 0);
C
Christoph Lameter 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *end;
	void *last;
	void *p;

C
Christoph Lameter 已提交
1086
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1087 1088 1089 1090

	if (flags & __GFP_WAIT)
		local_irq_enable();

C
Christoph Lameter 已提交
1091 1092
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1103
		SetSlabDebug(page);
C
Christoph Lameter 已提交
1104 1105 1106 1107 1108 1109 1110 1111

	start = page_address(page);
	end = start + s->objects * s->size;

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1112
	for_each_object(p, s, start) {
C
Christoph Lameter 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
	set_freepointer(s, last, NULL);

	page->freelist = start;
	page->inuse = 0;
out:
	if (flags & __GFP_WAIT)
		local_irq_disable();
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1132
	if (unlikely(SlabDebug(page))) {
C
Christoph Lameter 已提交
1133 1134 1135
		void *p;

		slab_pad_check(s, page);
1136
		for_each_object(p, s, page_address(page))
C
Christoph Lameter 已提交
1137
			check_object(s, page, p, 0);
1138
		ClearSlabDebug(page);
C
Christoph Lameter 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		- pages);

	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1176
	__ClearPageSlab(page);
C
Christoph Lameter 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	bit_spin_unlock(PG_locked, &page->flags);
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
C
Christoph Lameter 已提交
1204
static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1205
{
C
Christoph Lameter 已提交
1206 1207 1208 1209 1210
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add_tail(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}
C
Christoph Lameter 已提交
1211

C
Christoph Lameter 已提交
1212 1213
static void add_partial(struct kmem_cache_node *n, struct page *page)
{
C
Christoph Lameter 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
C
Christoph Lameter 已提交
1232
 * Lock slab and remove from the partial list.
C
Christoph Lameter 已提交
1233
 *
C
Christoph Lameter 已提交
1234
 * Must hold list_lock.
C
Christoph Lameter 已提交
1235
 */
1236
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
C
Christoph Lameter 已提交
1237 1238 1239 1240
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
1241
		SetSlabFrozen(page);
C
Christoph Lameter 已提交
1242 1243 1244 1245 1246 1247
		return 1;
	}
	return 0;
}

/*
C
Christoph Lameter 已提交
1248
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1249 1250 1251 1252 1253 1254 1255 1256
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1257 1258
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1259 1260 1261 1262 1263 1264
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
1265
		if (lock_and_freeze_slab(n, page))
C
Christoph Lameter 已提交
1266 1267 1268 1269 1270 1271 1272 1273
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
C
Christoph Lameter 已提交
1274
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
C
Christoph Lameter 已提交
1284 1285 1286 1287
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1288
	 *
C
Christoph Lameter 已提交
1289 1290 1291 1292
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1293 1294
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1295 1296 1297 1298 1299
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	 */
	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
C
Christoph Lameter 已提交
1312
				n->nr_partial > MIN_PARTIAL) {
C
Christoph Lameter 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
1344
static void unfreeze_slab(struct kmem_cache *s, struct page *page)
C
Christoph Lameter 已提交
1345
{
C
Christoph Lameter 已提交
1346 1347
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

1348
	ClearSlabFrozen(page);
C
Christoph Lameter 已提交
1349
	if (page->inuse) {
C
Christoph Lameter 已提交
1350

C
Christoph Lameter 已提交
1351
		if (page->freelist)
C
Christoph Lameter 已提交
1352
			add_partial(n, page);
1353
		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
C
Christoph Lameter 已提交
1354
			add_full(n, page);
C
Christoph Lameter 已提交
1355
		slab_unlock(page);
C
Christoph Lameter 已提交
1356

C
Christoph Lameter 已提交
1357
	} else {
C
Christoph Lameter 已提交
1358 1359
		if (n->nr_partial < MIN_PARTIAL) {
			/*
C
Christoph Lameter 已提交
1360 1361 1362 1363 1364 1365
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
C
Christoph Lameter 已提交
1366 1367 1368 1369 1370 1371 1372
			 */
			add_partial_tail(n, page);
			slab_unlock(page);
		} else {
			slab_unlock(page);
			discard_slab(s, page);
		}
C
Christoph Lameter 已提交
1373 1374 1375 1376 1377 1378
	}
}

/*
 * Remove the cpu slab
 */
1379
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1380
{
1381
	struct page *page = c->page;
1382 1383 1384 1385 1386
	/*
	 * Merge cpu freelist into freelist. Typically we get here
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
1387
	while (unlikely(c->freelist)) {
1388 1389 1390
		void **object;

		/* Retrieve object from cpu_freelist */
1391
		object = c->freelist;
1392
		c->freelist = c->freelist[c->offset];
1393 1394

		/* And put onto the regular freelist */
1395
		object[c->offset] = page->freelist;
1396 1397 1398
		page->freelist = object;
		page->inuse--;
	}
1399
	c->page = NULL;
1400
	unfreeze_slab(s, page);
C
Christoph Lameter 已提交
1401 1402
}

1403
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1404
{
1405 1406
	slab_lock(c->page);
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1407 1408 1409 1410 1411 1412
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
1413
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
1414
{
1415
	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
1416

1417 1418
	if (likely(c && c->page))
		flush_slab(s, c);
C
Christoph Lameter 已提交
1419 1420 1421 1422 1423 1424
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

1425
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
	if (node != -1 && c->node != node)
		return 0;
#endif
	return 1;
}

C
Christoph Lameter 已提交
1454
/*
1455 1456 1457 1458
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
C
Christoph Lameter 已提交
1459
 *
1460 1461 1462
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
1463
 *
1464 1465 1466
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
1467
 *
1468 1469
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is slowest path since we may sleep.
C
Christoph Lameter 已提交
1470
 */
1471
static void *__slab_alloc(struct kmem_cache *s,
1472
		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1473 1474
{
	void **object;
1475
	struct page *new;
C
Christoph Lameter 已提交
1476

1477
	if (!c->page)
C
Christoph Lameter 已提交
1478 1479
		goto new_slab;

1480 1481
	slab_lock(c->page);
	if (unlikely(!node_match(c, node)))
C
Christoph Lameter 已提交
1482
		goto another_slab;
1483
load_freelist:
1484
	object = c->page->freelist;
C
Christoph Lameter 已提交
1485 1486
	if (unlikely(!object))
		goto another_slab;
1487
	if (unlikely(SlabDebug(c->page)))
C
Christoph Lameter 已提交
1488 1489
		goto debug;

1490
	object = c->page->freelist;
1491
	c->freelist = object[c->offset];
1492 1493 1494 1495
	c->page->inuse = s->objects;
	c->page->freelist = NULL;
	c->node = page_to_nid(c->page);
	slab_unlock(c->page);
C
Christoph Lameter 已提交
1496 1497 1498
	return object;

another_slab:
1499
	deactivate_slab(s, c);
C
Christoph Lameter 已提交
1500 1501

new_slab:
1502 1503 1504
	new = get_partial(s, gfpflags, node);
	if (new) {
		c->page = new;
1505
		goto load_freelist;
C
Christoph Lameter 已提交
1506 1507
	}

1508 1509 1510 1511
	new = new_slab(s, gfpflags, node);
	if (new) {
		c = get_cpu_slab(s, smp_processor_id());
		if (c->page) {
C
Christoph Lameter 已提交
1512
			/*
C
Christoph Lameter 已提交
1513 1514 1515 1516 1517
			 * Someone else populated the cpu_slab while we
			 * enabled interrupts, or we have gotten scheduled
			 * on another cpu. The page may not be on the
			 * requested node even if __GFP_THISNODE was
			 * specified. So we need to recheck.
C
Christoph Lameter 已提交
1518
			 */
1519
			if (node_match(c, node)) {
C
Christoph Lameter 已提交
1520 1521 1522 1523
				/*
				 * Current cpuslab is acceptable and we
				 * want the current one since its cache hot
				 */
1524 1525
				discard_slab(s, new);
				slab_lock(c->page);
1526
				goto load_freelist;
C
Christoph Lameter 已提交
1527
			}
C
Christoph Lameter 已提交
1528
			/* New slab does not fit our expectations */
1529
			flush_slab(s, c);
C
Christoph Lameter 已提交
1530
		}
1531 1532 1533
		slab_lock(new);
		SetSlabFrozen(new);
		c->page = new;
1534
		goto load_freelist;
C
Christoph Lameter 已提交
1535 1536 1537
	}
	return NULL;
debug:
1538 1539
	object = c->page->freelist;
	if (!alloc_debug_processing(s, c->page, object, addr))
C
Christoph Lameter 已提交
1540
		goto another_slab;
1541

1542
	c->page->inuse++;
1543
	c->page->freelist = object[c->offset];
1544
	c->node = -1;
1545
	slab_unlock(c->page);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	return object;
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
static void __always_inline *slab_alloc(struct kmem_cache *s,
1560
		gfp_t gfpflags, int node, void *addr)
1561 1562 1563
{
	void **object;
	unsigned long flags;
1564
	struct kmem_cache_cpu *c;
1565 1566

	local_irq_save(flags);
1567
	c = get_cpu_slab(s, smp_processor_id());
1568
	if (unlikely(!c->freelist || !node_match(c, node)))
1569

1570
		object = __slab_alloc(s, gfpflags, node, addr, c);
1571 1572

	else {
1573
		object = c->freelist;
1574
		c->freelist = object[c->offset];
1575 1576
	}
	local_irq_restore(flags);
1577 1578

	if (unlikely((gfpflags & __GFP_ZERO) && object))
1579
		memset(object, 0, c->objsize);
1580

1581
	return object;
C
Christoph Lameter 已提交
1582 1583 1584 1585
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
1586
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
1587 1588 1589 1590 1591 1592
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
1593
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1594 1595 1596 1597 1598
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1599 1600
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
1601
 *
1602 1603 1604
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
1605
 */
1606
static void __slab_free(struct kmem_cache *s, struct page *page,
1607
				void *x, void *addr, unsigned int offset)
C
Christoph Lameter 已提交
1608 1609 1610 1611 1612 1613
{
	void *prior;
	void **object = (void *)x;

	slab_lock(page);

1614
	if (unlikely(SlabDebug(page)))
C
Christoph Lameter 已提交
1615 1616
		goto debug;
checks_ok:
1617
	prior = object[offset] = page->freelist;
C
Christoph Lameter 已提交
1618 1619 1620
	page->freelist = object;
	page->inuse--;

1621
	if (unlikely(SlabFrozen(page)))
C
Christoph Lameter 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		goto out_unlock;

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
	if (unlikely(!prior))
C
Christoph Lameter 已提交
1633
		add_partial(get_node(s, page_to_nid(page)), page);
C
Christoph Lameter 已提交
1634 1635 1636 1637 1638 1639 1640 1641

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
	if (prior)
		/*
C
Christoph Lameter 已提交
1642
		 * Slab still on the partial list.
C
Christoph Lameter 已提交
1643 1644 1645 1646 1647 1648 1649 1650
		 */
		remove_partial(s, page);

	slab_unlock(page);
	discard_slab(s, page);
	return;

debug:
C
Christoph Lameter 已提交
1651
	if (!free_debug_processing(s, page, x, addr))
C
Christoph Lameter 已提交
1652 1653
		goto out_unlock;
	goto checks_ok;
C
Christoph Lameter 已提交
1654 1655
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
static void __always_inline slab_free(struct kmem_cache *s,
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
	unsigned long flags;
1672
	struct kmem_cache_cpu *c;
1673 1674

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1675
	debug_check_no_locks_freed(object, s->objsize);
1676
	c = get_cpu_slab(s, smp_processor_id());
1677
	if (likely(page == c->page && c->node >= 0)) {
1678
		object[c->offset] = c->freelist;
1679
		c->freelist = object;
1680
	} else
1681
		__slab_free(s, page, x, addr, c->offset);
1682 1683 1684 1685

	local_irq_restore(flags);
}

C
Christoph Lameter 已提交
1686 1687
void kmem_cache_free(struct kmem_cache *s, void *x)
{
C
Christoph Lameter 已提交
1688
	struct page *page;
C
Christoph Lameter 已提交
1689

1690
	page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1691

C
Christoph Lameter 已提交
1692
	slab_free(s, page, x, __builtin_return_address(0));
C
Christoph Lameter 已提交
1693 1694 1695 1696 1697 1698
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1699
	struct page *page = virt_to_head_page(x);
C
Christoph Lameter 已提交
1700 1701 1702 1703 1704 1705 1706 1707

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
C
Christoph Lameter 已提交
1708 1709 1710 1711
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
1712 1713 1714 1715
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
1716
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
1732
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
1733 1734 1735 1736 1737 1738
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
1750
 *
C
Christoph Lameter 已提交
1751 1752 1753 1754
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
1755
 *
C
Christoph Lameter 已提交
1756 1757 1758 1759
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
1760
 */
1761 1762
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
C
Christoph Lameter 已提交
1763 1764 1765
{
	int order;
	int rem;
1766
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
1767

1768
	for (order = max(min_order,
1769 1770
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
1771

1772
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
1773

1774
		if (slab_size < min_objects * size)
C
Christoph Lameter 已提交
1775 1776 1777 1778
			continue;

		rem = slab_size % size;

1779
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
1780 1781 1782
			break;

	}
C
Christoph Lameter 已提交
1783

C
Christoph Lameter 已提交
1784 1785 1786
	return order;
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

C
Christoph Lameter 已提交
1831
/*
C
Christoph Lameter 已提交
1832
 * Figure out what the alignment of the objects will be.
C
Christoph Lameter 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1846
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1847 1848
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
C
Christoph Lameter 已提交
1849 1850 1851 1852 1853 1854 1855

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

1856 1857 1858 1859 1860 1861
static void init_kmem_cache_cpu(struct kmem_cache *s,
			struct kmem_cache_cpu *c)
{
	c->page = NULL;
	c->freelist = NULL;
	c->node = 0;
1862 1863
	c->offset = s->offset / sizeof(void *);
	c->objsize = s->objsize;
1864 1865
}

C
Christoph Lameter 已提交
1866 1867 1868 1869 1870 1871
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1872
#ifdef CONFIG_SLUB_DEBUG
1873
	INIT_LIST_HEAD(&n->full);
1874
#endif
C
Christoph Lameter 已提交
1875 1876
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
#ifdef CONFIG_SMP
/*
 * Per cpu array for per cpu structures.
 *
 * The per cpu array places all kmem_cache_cpu structures from one processor
 * close together meaning that it becomes possible that multiple per cpu
 * structures are contained in one cacheline. This may be particularly
 * beneficial for the kmalloc caches.
 *
 * A desktop system typically has around 60-80 slabs. With 100 here we are
 * likely able to get per cpu structures for all caches from the array defined
 * here. We must be able to cover all kmalloc caches during bootstrap.
 *
 * If the per cpu array is exhausted then fall back to kmalloc
 * of individual cachelines. No sharing is possible then.
 */
#define NR_KMEM_CACHE_CPU 100

static DEFINE_PER_CPU(struct kmem_cache_cpu,
				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];

static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;

static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
							int cpu, gfp_t flags)
{
	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);

	if (c)
		per_cpu(kmem_cache_cpu_free, cpu) =
				(void *)c->freelist;
	else {
		/* Table overflow: So allocate ourselves */
		c = kmalloc_node(
			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
			flags, cpu_to_node(cpu));
		if (!c)
			return NULL;
	}

	init_kmem_cache_cpu(s, c);
	return c;
}

static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
{
	if (c < per_cpu(kmem_cache_cpu, cpu) ||
			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
		kfree(c);
		return;
	}
	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
	per_cpu(kmem_cache_cpu_free, cpu) = c;
}

static void free_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c) {
			s->cpu_slab[cpu] = NULL;
			free_kmem_cache_cpu(c, cpu);
		}
	}
}

static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	int cpu;

	for_each_online_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c)
			continue;

		c = alloc_kmem_cache_cpu(s, cpu, flags);
		if (!c) {
			free_kmem_cache_cpus(s);
			return 0;
		}
		s->cpu_slab[cpu] = c;
	}
	return 1;
}

/*
 * Initialize the per cpu array.
 */
static void init_alloc_cpu_cpu(int cpu)
{
	int i;

	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
		return;

	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);

	cpu_set(cpu, kmem_cach_cpu_free_init_once);
}

static void __init init_alloc_cpu(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		init_alloc_cpu_cpu(cpu);
  }

#else
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
static inline void init_alloc_cpu(void) {}

static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
	init_kmem_cache_cpu(s, &s->cpu_slab);
	return 1;
}
#endif

C
Christoph Lameter 已提交
2002 2003 2004 2005 2006 2007 2008
#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2009 2010
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2011
 */
2012 2013
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
							   int node)
C
Christoph Lameter 已提交
2014 2015 2016 2017 2018 2019
{
	struct page *page;
	struct kmem_cache_node *n;

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

2020
	page = new_slab(kmalloc_caches, gfpflags, node);
C
Christoph Lameter 已提交
2021 2022

	BUG_ON(!page);
2023 2024 2025 2026 2027 2028 2029
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2030 2031 2032 2033 2034
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
2035
#ifdef CONFIG_SLUB_DEBUG
2036 2037
	init_object(kmalloc_caches, n, 1);
	init_tracking(kmalloc_caches, n);
2038
#endif
C
Christoph Lameter 已提交
2039 2040
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
C
Christoph Lameter 已提交
2041
	add_partial(n, page);
2042 2043 2044 2045 2046 2047

	/*
	 * new_slab() disables interupts. If we do not reenable interrupts here
	 * then bootup would continue with interrupts disabled.
	 */
	local_irq_enable();
C
Christoph Lameter 已提交
2048 2049 2050 2051 2052 2053 2054
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2055
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

C
Christoph Lameter 已提交
2073
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2126
			!s->ctor)
C
Christoph Lameter 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

C
Christoph Lameter 已提交
2138
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2139
	/*
C
Christoph Lameter 已提交
2140
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2141
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2142
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2143 2144 2145
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
C
Christoph Lameter 已提交
2146
#endif
C
Christoph Lameter 已提交
2147 2148

	/*
C
Christoph Lameter 已提交
2149 2150
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2151 2152 2153 2154
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2155
		s->ctor)) {
C
Christoph Lameter 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2168
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2169 2170 2171 2172 2173 2174 2175
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2176
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2177 2178 2179 2180 2181 2182 2183 2184
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
		 * corrupted if an user writes before the start
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
2185
#endif
C
Christoph Lameter 已提交
2186

C
Christoph Lameter 已提交
2187 2188
	/*
	 * Determine the alignment based on various parameters that the
2189 2190
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
C
Christoph Lameter 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	 */
	align = calculate_alignment(flags, align, s->objsize);

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;

	s->order = calculate_order(size);
	if (s->order < 0)
		return 0;

	/*
	 * Determine the number of objects per slab
	 */
	s->objects = (PAGE_SIZE << s->order) / size;

2211
	return !!s->objects;
C
Christoph Lameter 已提交
2212 2213 2214 2215 2216 2217

}

static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
		const char *name, size_t size,
		size_t align, unsigned long flags,
2218
		void (*ctor)(void *, struct kmem_cache *, unsigned long))
C
Christoph Lameter 已提交
2219 2220 2221 2222 2223 2224
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2225
	s->flags = kmem_cache_flags(size, flags, name, ctor);
C
Christoph Lameter 已提交
2226 2227 2228 2229 2230 2231 2232 2233

	if (!calculate_sizes(s))
		goto error;

	s->refcount = 1;
#ifdef CONFIG_NUMA
	s->defrag_ratio = 100;
#endif
2234 2235
	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
		goto error;
C
Christoph Lameter 已提交
2236

2237
	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
C
Christoph Lameter 已提交
2238
		return 1;
2239
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
			s->name, (unsigned long)size, s->size, s->order,
			s->offset, flags);
	return 0;
}

/*
 * Check if a given pointer is valid
 */
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{
	struct page * page;

	page = get_object_page(object);

	if (!page || s != page->slab)
		/* No slab or wrong slab */
		return 0;

2262
	if (!check_valid_pointer(s, page, object))
C
Christoph Lameter 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		return 0;

	/*
	 * We could also check if the object is on the slabs freelist.
	 * But this would be too expensive and it seems that the main
	 * purpose of kmem_ptr_valid is to check if the object belongs
	 * to a certain slab.
	 */
	return 1;
}
EXPORT_SYMBOL(kmem_ptr_validate);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

/*
C
Christoph Lameter 已提交
2291 2292
 * Attempt to free all slabs on a node. Return the number of slabs we
 * were unable to free.
C
Christoph Lameter 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
 */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
			struct list_head *list)
{
	int slabs_inuse = 0;
	unsigned long flags;
	struct page *page, *h;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry_safe(page, h, list, lru)
		if (!page->inuse) {
			list_del(&page->lru);
			discard_slab(s, page);
		} else
			slabs_inuse++;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return slabs_inuse;
}

/*
C
Christoph Lameter 已提交
2313
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
2314
 */
2315
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
2316 2317 2318 2319 2320 2321
{
	int node;

	flush_all(s);

	/* Attempt to free all objects */
2322
	free_kmem_cache_cpus(s);
C
Christoph Lameter 已提交
2323
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2324 2325
		struct kmem_cache_node *n = get_node(s, node);

2326
		n->nr_partial -= free_list(s, n, &n->partial);
C
Christoph Lameter 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
		if (atomic_long_read(&n->nr_slabs))
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
2344
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2345 2346 2347 2348
		if (kmem_cache_close(s))
			WARN_ON(1);
		sysfs_slab_remove(s);
		kfree(s);
2349 2350
	} else
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2351 2352 2353 2354 2355 2356 2357
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

2358
struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
C
Christoph Lameter 已提交
2359 2360 2361
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
2362
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
C
Christoph Lameter 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
#endif

static int __init setup_slub_min_order(char *str)
{
	get_option (&str, &slub_min_order);

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
	get_option (&str, &slub_max_order);

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
	get_option (&str, &slub_min_objects);

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
		const char *name, int size, gfp_t gfp_flags)
{
	unsigned int flags = 0;

	if (gfp_flags & SLUB_DMA)
		flags = SLAB_CACHE_DMA;

	down_write(&slub_lock);
	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2410
			flags, NULL))
C
Christoph Lameter 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
		goto panic;

	list_add(&s->list, &slab_caches);
	up_write(&slub_lock);
	if (sysfs_slab_add(s))
		goto panic;
	return s;

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
}

2423
#ifdef CONFIG_ZONE_DMA
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

static void sysfs_add_func(struct work_struct *w)
{
	struct kmem_cache *s;

	down_write(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		if (s->flags & __SYSFS_ADD_DEFERRED) {
			s->flags &= ~__SYSFS_ADD_DEFERRED;
			sysfs_slab_add(s);
		}
	}
	up_write(&slub_lock);
}

static DECLARE_WORK(sysfs_add_work, sysfs_add_func);

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
{
	struct kmem_cache *s;
	char *text;
	size_t realsize;

	s = kmalloc_caches_dma[index];
	if (s)
		return s;

	/* Dynamically create dma cache */
2452 2453 2454 2455 2456 2457 2458 2459 2460
	if (flags & __GFP_WAIT)
		down_write(&slub_lock);
	else {
		if (!down_write_trylock(&slub_lock))
			goto out;
	}

	if (kmalloc_caches_dma[index])
		goto unlock_out;
2461

2462
	realsize = kmalloc_caches[index].objsize;
2463 2464 2465 2466 2467 2468 2469 2470 2471
	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
	s = kmalloc(kmem_size, flags & ~SLUB_DMA);

	if (!s || !text || !kmem_cache_open(s, flags, text,
			realsize, ARCH_KMALLOC_MINALIGN,
			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
		kfree(s);
		kfree(text);
		goto unlock_out;
2472
	}
2473 2474 2475 2476 2477 2478 2479

	list_add(&s->list, &slab_caches);
	kmalloc_caches_dma[index] = s;

	schedule_work(&sysfs_add_work);

unlock_out:
2480
	up_write(&slub_lock);
2481
out:
2482
	return kmalloc_caches_dma[index];
2483 2484 2485
}
#endif

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

C
Christoph Lameter 已提交
2519 2520
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
2521
	int index;
C
Christoph Lameter 已提交
2522

2523 2524 2525
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
C
Christoph Lameter 已提交
2526

2527
		index = size_index[(size - 1) / 8];
2528
	} else
2529
		index = fls(size - 1);
C
Christoph Lameter 已提交
2530 2531

#ifdef CONFIG_ZONE_DMA
2532
	if (unlikely((flags & SLUB_DMA)))
2533
		return dma_kmalloc_cache(index, flags);
2534

C
Christoph Lameter 已提交
2535 2536 2537 2538 2539 2540
#endif
	return &kmalloc_caches[index];
}

void *__kmalloc(size_t size, gfp_t flags)
{
2541
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2542

2543 2544 2545 2546 2547 2548 2549
	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(flags | __GFP_COMP,
							get_order(size));

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2550 2551
		return s;

2552
	return slab_alloc(s, flags, -1, __builtin_return_address(0));
C
Christoph Lameter 已提交
2553 2554 2555 2556 2557 2558
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
2559
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2560

2561 2562 2563 2564 2565 2566 2567
	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(flags | __GFP_COMP,
							get_order(size));

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
2568 2569
		return s;

2570
	return slab_alloc(s, flags, node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2571 2572 2573 2574 2575 2576
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
2577
	struct page *page;
C
Christoph Lameter 已提交
2578 2579
	struct kmem_cache *s;

2580 2581
	BUG_ON(!object);
	if (unlikely(object == ZERO_SIZE_PTR))
2582 2583 2584
		return 0;

	page = get_object_page(object);
C
Christoph Lameter 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	BUG_ON(!page);
	s = page->slab;
	BUG_ON(!s);

	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;

	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}
EXPORT_SYMBOL(ksize);

void kfree(const void *x)
{
	struct page *page;

2615
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
2616 2617
		return;

2618
	page = virt_to_head_page(x);
2619 2620 2621 2622 2623
	if (unlikely(!PageSlab(page))) {
		put_page(page);
		return;
	}
	slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
C
Christoph Lameter 已提交
2624 2625 2626
}
EXPORT_SYMBOL(kfree);

2627
/*
C
Christoph Lameter 已提交
2628 2629 2630 2631 2632 2633 2634 2635
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
	struct list_head *slabs_by_inuse =
		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
2652
	for_each_node_state(node, N_NORMAL_MEMORY) {
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

		for (i = 0; i < s->objects; i++)
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
2664
		 * Build lists indexed by the items in use in each slab.
2665
		 *
C
Christoph Lameter 已提交
2666 2667
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
			if (!page->inuse && slab_trylock(page)) {
				/*
				 * Must hold slab lock here because slab_free
				 * may have freed the last object and be
				 * waiting to release the slab.
				 */
				list_del(&page->lru);
				n->nr_partial--;
				slab_unlock(page);
				discard_slab(s, page);
			} else {
2681 2682
				list_move(&page->lru,
				slabs_by_inuse + page->inuse);
2683 2684 2685 2686
			}
		}

		/*
C
Christoph Lameter 已提交
2687 2688
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
		 */
		for (i = s->objects - 1; i >= 0; i--)
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

C
Christoph Lameter 已提交
2701 2702 2703 2704 2705 2706 2707
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

void __init kmem_cache_init(void)
{
	int i;
2708
	int caches = 0;
C
Christoph Lameter 已提交
2709

2710 2711
	init_alloc_cpu();

C
Christoph Lameter 已提交
2712 2713 2714
#ifdef CONFIG_NUMA
	/*
	 * Must first have the slab cache available for the allocations of the
C
Christoph Lameter 已提交
2715
	 * struct kmem_cache_node's. There is special bootstrap code in
C
Christoph Lameter 已提交
2716 2717 2718 2719
	 * kmem_cache_open for slab_state == DOWN.
	 */
	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
		sizeof(struct kmem_cache_node), GFP_KERNEL);
2720
	kmalloc_caches[0].refcount = -1;
2721
	caches++;
C
Christoph Lameter 已提交
2722 2723 2724 2725 2726 2727
#endif

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

	/* Caches that are not of the two-to-the-power-of size */
2728 2729
	if (KMALLOC_MIN_SIZE <= 64) {
		create_kmalloc_cache(&kmalloc_caches[1],
C
Christoph Lameter 已提交
2730
				"kmalloc-96", 96, GFP_KERNEL);
2731 2732 2733 2734
		caches++;
	}
	if (KMALLOC_MIN_SIZE <= 128) {
		create_kmalloc_cache(&kmalloc_caches[2],
C
Christoph Lameter 已提交
2735
				"kmalloc-192", 192, GFP_KERNEL);
2736 2737
		caches++;
	}
C
Christoph Lameter 已提交
2738

2739
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
C
Christoph Lameter 已提交
2740 2741
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
2742 2743
		caches++;
	}
C
Christoph Lameter 已提交
2744

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * mips it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

2760
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2761 2762
		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;

C
Christoph Lameter 已提交
2763 2764 2765
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
2766
	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
C
Christoph Lameter 已提交
2767 2768 2769 2770 2771
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
2772 2773 2774 2775
	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
#else
	kmem_size = sizeof(struct kmem_cache);
C
Christoph Lameter 已提交
2776 2777 2778 2779
#endif


	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2780 2781
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
C
Christoph Lameter 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

2794
	if (s->ctor)
C
Christoph Lameter 已提交
2795 2796
		return 1;

2797 2798 2799 2800 2801 2802
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
2803 2804 2805 2806
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
2807
		size_t align, unsigned long flags, const char *name,
2808
		void (*ctor)(void *, struct kmem_cache *, unsigned long))
C
Christoph Lameter 已提交
2809
{
2810
	struct kmem_cache *s;
C
Christoph Lameter 已提交
2811 2812 2813 2814

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

2815
	if (ctor)
C
Christoph Lameter 已提交
2816 2817 2818 2819 2820
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
2821
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
2822

2823
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
2824 2825 2826 2827 2828 2829
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

2830
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align -1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
		size_t align, unsigned long flags,
2849
		void (*ctor)(void *, struct kmem_cache *, unsigned long))
C
Christoph Lameter 已提交
2850 2851 2852 2853
{
	struct kmem_cache *s;

	down_write(&slub_lock);
2854
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
2855
	if (s) {
2856 2857
		int cpu;

C
Christoph Lameter 已提交
2858 2859 2860 2861 2862 2863
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
2864 2865 2866 2867 2868 2869 2870

		/*
		 * And then we need to update the object size in the
		 * per cpu structures
		 */
		for_each_online_cpu(cpu)
			get_cpu_slab(s, cpu)->objsize = s->objsize;
C
Christoph Lameter 已提交
2871
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2872
		up_write(&slub_lock);
C
Christoph Lameter 已提交
2873 2874
		if (sysfs_slab_alias(s, name))
			goto err;
2875 2876 2877 2878 2879
		return s;
	}
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
		if (kmem_cache_open(s, GFP_KERNEL, name,
2880
				size, align, flags, ctor)) {
C
Christoph Lameter 已提交
2881
			list_add(&s->list, &slab_caches);
2882 2883 2884 2885 2886 2887
			up_write(&slub_lock);
			if (sysfs_slab_add(s))
				goto err;
			return s;
		}
		kfree(s);
C
Christoph Lameter 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	}
	up_write(&slub_lock);

err:
	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
2902 2903
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
2904 2905 2906 2907 2908
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
2909 2910
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
2911 2912

	switch (action) {
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		init_alloc_cpu_cpu(cpu);
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list)
			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
							GFP_KERNEL);
		up_read(&slub_lock);
		break;

C
Christoph Lameter 已提交
2923
	case CPU_UP_CANCELED:
2924
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
2925
	case CPU_DEAD:
2926
	case CPU_DEAD_FROZEN:
2927 2928
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
2929 2930
			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

2931 2932 2933
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
2934 2935
			free_kmem_cache_cpu(c, cpu);
			s->cpu_slab[cpu] = NULL;
2936 2937
		}
		up_read(&slub_lock);
C
Christoph Lameter 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata slab_notifier =
	{ &slab_cpuup_callback, NULL, 0 };

#endif

void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
2952 2953 2954 2955 2956 2957
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
							get_order(size));
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
2958

2959
	if (unlikely(ZERO_OR_NULL_PTR(s)))
2960
		return s;
C
Christoph Lameter 已提交
2961

2962
	return slab_alloc(s, gfpflags, -1, caller);
C
Christoph Lameter 已提交
2963 2964 2965 2966 2967
}

void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
					int node, void *caller)
{
2968 2969 2970 2971 2972 2973
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE / 2))
		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
							get_order(size));
	s = get_slab(size, gfpflags);
C
Christoph Lameter 已提交
2974

2975
	if (unlikely(ZERO_OR_NULL_PTR(s)))
2976
		return s;
C
Christoph Lameter 已提交
2977

2978
	return slab_alloc(s, gfpflags, node, caller);
C
Christoph Lameter 已提交
2979 2980
}

C
Christoph Lameter 已提交
2981
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2982 2983
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
{
	void *p;
	void *addr = page_address(page);

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
	bitmap_zero(map, s->objects);

2995 2996
	for_each_free_object(p, s, page->freelist) {
		set_bit(slab_index(p, s, addr), map);
2997 2998 2999 3000
		if (!check_object(s, page, p, 0))
			return 0;
	}

3001 3002
	for_each_object(p, s, addr)
		if (!test_bit(slab_index(p, s, addr), map))
3003 3004 3005 3006 3007
			if (!check_object(s, page, p, 1))
				return 0;
	return 1;
}

3008 3009
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3010 3011
{
	if (slab_trylock(page)) {
3012
		validate_slab(s, page, map);
3013 3014 3015 3016 3017 3018
		slab_unlock(page);
	} else
		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
			s->name, page);

	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3019 3020
		if (!SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3021 3022
				"on slab 0x%p\n", s->name, page);
	} else {
3023 3024
		if (SlabDebug(page))
			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3025 3026 3027 3028
				"slab 0x%p\n", s->name, page);
	}
}

3029 3030
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3031 3032 3033 3034 3035 3036 3037 3038
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3039
		validate_slab_slab(s, page, map);
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3050
		validate_slab_slab(s, page, map);
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3063
static long validate_slab_cache(struct kmem_cache *s)
3064 3065 3066
{
	int node;
	unsigned long count = 0;
3067 3068 3069 3070 3071
	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3072 3073

	flush_all(s);
C
Christoph Lameter 已提交
3074
	for_each_node_state(node, N_NORMAL_MEMORY) {
3075 3076
		struct kmem_cache_node *n = get_node(s, node);

3077
		count += validate_slab_node(s, n, map);
3078
	}
3079
	kfree(map);
3080 3081 3082
	return count;
}

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches + 4);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
		 	" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches + 5);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches + 6);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 7);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 8);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches + 9);
}
#else
static void resiliency_test(void) {};
#endif

3138
/*
C
Christoph Lameter 已提交
3139
 * Generate lists of code addresses where slabcache objects are allocated
3140 3141 3142 3143 3144 3145
 * and freed.
 */

struct location {
	unsigned long count;
	void *addr;
3146 3147 3148 3149 3150 3151 3152
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
	cpumask_t cpus;
	nodemask_t nodes;
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3168
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3169 3170 3171 3172 3173 3174
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3175
	l = (void *)__get_free_pages(flags, order);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3189
				const struct track *track)
3190 3191 3192 3193
{
	long start, end, pos;
	struct location *l;
	void *caddr;
3194
	unsigned long age = jiffies - track->when;
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

				cpu_set(track->cpu, l->cpus);
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3229 3230 3231
			return 1;
		}

3232
		if (track->addr < caddr)
3233 3234 3235 3236 3237 3238
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3239
	 * Not found. Insert new tracking element.
3240
	 */
3241
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3242 3243 3244 3245 3246 3247 3248 3249
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
	cpus_clear(l->cpus);
	cpu_set(track->cpu, l->cpus);
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3260 3261 3262 3263 3264 3265 3266
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
		struct page *page, enum track_item alloc)
{
	void *addr = page_address(page);
3267
	DECLARE_BITMAP(map, s->objects);
3268 3269 3270
	void *p;

	bitmap_zero(map, s->objects);
3271 3272
	for_each_free_object(p, s, page->freelist)
		set_bit(slab_index(p, s, addr), map);
3273

3274
	for_each_object(p, s, addr)
3275 3276
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
3277 3278 3279 3280 3281 3282 3283
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
	int n = 0;
	unsigned long i;
3284
	struct loc_track t = { 0, 0, NULL };
3285 3286
	int node;

3287 3288 3289
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
			GFP_KERNEL))
		return sprintf(buf, "Out of memory\n");
3290 3291 3292 3293

	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
3294
	for_each_node_state(node, N_NORMAL_MEMORY) {
3295 3296 3297 3298
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

3299
		if (!atomic_long_read(&n->nr_slabs))
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
			process_slab(&t, s, page, alloc);
		list_for_each_entry(page, &n->full, lru)
			process_slab(&t, s, page, alloc);
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
3311
		struct location *l = &t.loc[i];
3312 3313 3314

		if (n > PAGE_SIZE - 100)
			break;
3315 3316 3317 3318
		n += sprintf(buf + n, "%7ld ", l->count);

		if (l->addr)
			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3319 3320
		else
			n += sprintf(buf + n, "<not-available>");
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

		if (l->sum_time != l->min_time) {
			unsigned long remainder;

			n += sprintf(buf + n, " age=%ld/%ld/%ld",
			l->min_time,
			div_long_long_rem(l->sum_time, l->count, &remainder),
			l->max_time);
		} else
			n += sprintf(buf + n, " age=%ld",
				l->min_time);

		if (l->min_pid != l->max_pid)
			n += sprintf(buf + n, " pid=%ld-%ld",
				l->min_pid, l->max_pid);
		else
			n += sprintf(buf + n, " pid=%ld",
				l->min_pid);

3340 3341
		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
				n < PAGE_SIZE - 60) {
3342 3343 3344 3345 3346
			n += sprintf(buf + n, " cpus=");
			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
					l->cpus);
		}

3347 3348
		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
				n < PAGE_SIZE - 60) {
3349 3350 3351 3352 3353
			n += sprintf(buf + n, " nodes=");
			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
					l->nodes);
		}

3354 3355 3356 3357 3358 3359 3360 3361 3362
		n += sprintf(buf + n, "\n");
	}

	free_loc_track(&t);
	if (!t.count)
		n += sprintf(buf, "No data\n");
	return n;
}

C
Christoph Lameter 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static unsigned long count_partial(struct kmem_cache_node *n)
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += page->inuse;
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

enum slab_stat_type {
	SL_FULL,
	SL_PARTIAL,
	SL_CPU,
	SL_OBJECTS
};

#define SO_FULL		(1 << SL_FULL)
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)

static unsigned long slab_objects(struct kmem_cache *s,
			char *buf, unsigned long flags)
{
	unsigned long total = 0;
	int cpu;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
	per_cpu = nodes + nr_node_ids;

	for_each_possible_cpu(cpu) {
3402
		struct page *page;
3403
		int node;
3404
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
C
Christoph Lameter 已提交
3405

3406 3407 3408 3409
		if (!c)
			continue;

		page = c->page;
3410 3411 3412
		node = c->node;
		if (node < 0)
			continue;
C
Christoph Lameter 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421
		if (page) {
			if (flags & SO_CPU) {
				int x = 0;

				if (flags & SO_OBJECTS)
					x = page->inuse;
				else
					x = 1;
				total += x;
3422
				nodes[node] += x;
C
Christoph Lameter 已提交
3423
			}
3424
			per_cpu[node]++;
C
Christoph Lameter 已提交
3425 3426 3427
		}
	}

C
Christoph Lameter 已提交
3428
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
		struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_PARTIAL) {
			if (flags & SO_OBJECTS)
				x = count_partial(n);
			else
				x = n->nr_partial;
			total += x;
			nodes[node] += x;
		}

		if (flags & SO_FULL) {
3441
			int full_slabs = atomic_long_read(&n->nr_slabs)
C
Christoph Lameter 已提交
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
					- per_cpu[node]
					- n->nr_partial;

			if (flags & SO_OBJECTS)
				x = full_slabs * s->objects;
			else
				x = full_slabs;
			total += x;
			nodes[node] += x;
		}
	}

	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3456
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

static int any_slab_objects(struct kmem_cache *s)
{
	int node;
	int cpu;

3470 3471 3472 3473
	for_each_possible_cpu(cpu) {
		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);

		if (c && c->page)
C
Christoph Lameter 已提交
3474
			return 1;
3475
	}
C
Christoph Lameter 已提交
3476

3477
	for_each_online_node(node) {
C
Christoph Lameter 已提交
3478 3479
		struct kmem_cache_node *n = get_node(s, node);

3480 3481 3482
		if (!n)
			continue;

3483
		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
C
Christoph Lameter 已提交
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
			return 1;
	}
	return 0;
}

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj);

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
	static struct slab_attribute _name##_attr = __ATTR_RO(_name)

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
	__ATTR(_name, 0644, _name##_show, _name##_store)

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objects);
}
SLAB_ATTR_RO(objs_per_slab);

static ssize_t order_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->order);
}
SLAB_ATTR_RO(order);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
		int n = sprint_symbol(buf, (unsigned long)s->ctor);

		return n + sprintf(buf + n, "\n");
	}
	return 0;
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);

static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
	if (buf[0] == '1')
		s->flags |= SLAB_DEBUG_FREE;
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
	if (buf[0] == '1')
		s->flags |= SLAB_TRACE;
	return length;
}
SLAB_ATTR(trace);

static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
3623
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
C
Christoph Lameter 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
	if (buf[0] == '1')
		s->flags |= SLAB_RED_ZONE;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
	if (buf[0] == '1')
		s->flags |= SLAB_POISON;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
	if (buf[0] == '1')
		s->flags |= SLAB_STORE_USER;
	calculate_sizes(s);
	return length;
}
SLAB_ATTR(store_user);

3698 3699 3700 3701 3702 3703 3704 3705
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
3706 3707 3708 3709 3710 3711 3712 3713
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
3714 3715 3716
}
SLAB_ATTR(validate);

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);

C
Christoph Lameter 已提交
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
#ifdef CONFIG_NUMA
static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
}

static ssize_t defrag_ratio_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	int n = simple_strtoul(buf, NULL, 10);

	if (n < 100)
		s->defrag_ratio = n * 10;
	return length;
}
SLAB_ATTR(defrag_ratio);
#endif

static struct attribute * slab_attrs[] = {
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&objects_attr.attr,
	&slabs_attr.attr,
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
3790
	&validate_attr.attr,
3791
	&shrink_attr.attr,
3792 3793
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
C
Christoph Lameter 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
	&defrag_ratio_attr.attr,
#endif
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

static struct sysfs_ops slab_sysfs_ops = {
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops slab_uevent_ops = {
	.filter = uevent_filter,
};

A
Adrian Bunk 已提交
3867
static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
C
Christoph Lameter 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
 * format
 * :[flags-]size:[memory address of kmemcache]
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
L
Linus Torvalds 已提交
3920
		sysfs_remove_link(&slab_subsys.kobj, s->name);
C
Christoph Lameter 已提交
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

	kobj_set_kset_s(s, slab_subsys);
	kobject_set_name(&s->kobj, name);
	kobject_init(&s->kobj);
	err = kobject_add(&s->kobj);
	if (err)
		return err;

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
	if (err)
		return err;
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
 * available lest we loose that information.
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
3965
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
3966 3967 3968 3969 3970 3971 3972 3973 3974

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
L
Linus Torvalds 已提交
3975 3976
		sysfs_remove_link(&slab_subsys.kobj, name);
		return sysfs_create_link(&slab_subsys.kobj,
C
Christoph Lameter 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
						&s->kobj, name);
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
3993
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3994 3995 3996 3997 3998 3999 4000 4001
	int err;

	err = subsystem_register(&slab_subsys);
	if (err) {
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

4002 4003
	slab_state = SYSFS;

4004
	list_for_each_entry(s, &slab_caches, list) {
4005
		err = sysfs_slab_add(s);
4006 4007 4008
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
4009
	}
C
Christoph Lameter 已提交
4010 4011 4012 4013 4014 4015

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
4016 4017 4018
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
C
Christoph Lameter 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027
		kfree(al);
	}

	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
#endif