timekeeping.c 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
/**
122
 * tk_setup_internals - Set up internals to use clocksource clock.
123
 *
124
 * @tk:		The target timekeeper to setup.
125 126 127 128 129 130 131
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
132
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 134
{
	cycle_t interval;
135
	u64 tmp, ntpinterval;
136
	struct clocksource *old_clock;
137

138 139 140 141 142
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
143 144 145 146

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
147
	ntpinterval = tmp;
148 149
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
154
	tk->cycle_interval = interval;
155 156

	/* Go back from cycles -> shifted ns */
157 158 159
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
160
		((u64) interval * clock->mult) >> clock->shift;
161

162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
166
			tk->tkr.xtime_nsec >>= -shift_change;
167
		else
168
			tk->tkr.xtime_nsec <<= shift_change;
169
	}
170
	tk->tkr.shift = clock->shift;
171

172 173
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 176 177 178 179 180

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
181
	tk->tkr.mult = clock->mult;
182
	tk->ntp_err_mult = 0;
183
}
184

185
/* Timekeeper helper functions. */
186 187

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 189
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190
#else
191
static inline u32 arch_gettimeoffset(void) { return 0; }
192 193
#endif

194
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195
{
196
	cycle_t cycle_now, delta;
197
	s64 nsec;
198 199

	/* read clocksource: */
200
	cycle_now = tkr->read(tkr->clock);
201 202

	/* calculate the delta since the last update_wall_time: */
203
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204

205 206
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
207

208
	/* If arch requires, add in get_arch_timeoffset() */
209
	return nsec + arch_gettimeoffset();
210 211
}

212
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213
{
214
	struct clocksource *clock = tk->tkr.clock;
215
	cycle_t cycle_now, delta;
216
	s64 nsec;
217 218

	/* read clocksource: */
219
	cycle_now = tk->tkr.read(clock);
220 221

	/* calculate the delta since the last update_wall_time: */
222
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223

224
	/* convert delta to nanoseconds. */
225
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226

227
	/* If arch requires, add in get_arch_timeoffset() */
228
	return nsec + arch_gettimeoffset();
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 * @tk:		The timekeeper from which we take the update
 * @tkf:	The fast timekeeper to update
 * @tbase:	The time base for the fast timekeeper (mono/raw)
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[0], tk);
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[1], tk);
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
static void update_fast_timekeeper(struct timekeeper *tk)
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
	memcpy(base, &tk->tkr, sizeof(*base));

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

337 338 339 340
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
341
	struct timespec xt, wm;
342

343
	xt = timespec64_to_timespec(tk_xtime(tk));
344 345
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346
			    tk->tkr.cycle_last);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
363 364 365
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366
	tk->ntp_error += remainder << tk->ntp_error_shift;
367
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 369 370 371 372
}
#else
#define old_vsyscall_fixup(tk)
#endif

373 374
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

375
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376
{
377
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 379 380 381 382 383 384
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
385
	struct timekeeper *tk = &tk_core.timekeeper;
386 387 388
	unsigned long flags;
	int ret;

389
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
390
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391
	update_pvclock_gtod(tk, true);
392
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393 394 395 396 397 398 399 400 401 402 403 404 405 406

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

407
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
408
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410 411 412 413 414

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
	s64 nsec;

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec *= NSEC_PER_SEC;
	nsec += tk->wall_to_monotonic.tv_nsec;
432
	tk->tkr.base_mono = ns_to_ktime(nsec);
433 434 435

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
436 437
}

438
/* must hold timekeeper_lock */
439
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
440
{
441
	if (action & TK_CLEAR_NTP) {
442
		tk->ntp_error = 0;
443 444
		ntp_clear();
	}
445

446 447
	tk_update_ktime_data(tk);

448 449 450
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

451
	if (action & TK_MIRROR)
452 453
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
454 455

	update_fast_timekeeper(tk);
456 457
}

458
/**
459
 * timekeeping_forward_now - update clock to the current time
460
 *
461 462 463
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
464
 */
465
static void timekeeping_forward_now(struct timekeeper *tk)
466
{
467
	struct clocksource *clock = tk->tkr.clock;
468
	cycle_t cycle_now, delta;
469
	s64 nsec;
470

471 472 473
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
474

475
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
476

477
	/* If arch requires, add in get_arch_timeoffset() */
478
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
479

480
	tk_normalize_xtime(tk);
481

482
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
483
	timespec64_add_ns(&tk->raw_time, nsec);
484 485 486
}

/**
487
 * __getnstimeofday64 - Returns the time of day in a timespec64.
488 489
 * @ts:		pointer to the timespec to be set
 *
490 491
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
492
 */
493
int __getnstimeofday64(struct timespec64 *ts)
494
{
495
	struct timekeeper *tk = &tk_core.timekeeper;
496
	unsigned long seq;
497
	s64 nsecs = 0;
498 499

	do {
500
		seq = read_seqcount_begin(&tk_core.seq);
501

502
		ts->tv_sec = tk->xtime_sec;
503
		nsecs = timekeeping_get_ns(&tk->tkr);
504

505
	} while (read_seqcount_retry(&tk_core.seq, seq));
506

507
	ts->tv_nsec = 0;
508
	timespec64_add_ns(ts, nsecs);
509 510 511 512 513 514 515 516 517

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
518
EXPORT_SYMBOL(__getnstimeofday64);
519 520

/**
521
 * getnstimeofday64 - Returns the time of day in a timespec64.
522
 * @ts:		pointer to the timespec64 to be set
523
 *
524
 * Returns the time of day in a timespec64 (WARN if suspended).
525
 */
526
void getnstimeofday64(struct timespec64 *ts)
527
{
528
	WARN_ON(__getnstimeofday64(ts));
529
}
530
EXPORT_SYMBOL(getnstimeofday64);
531

532 533
ktime_t ktime_get(void)
{
534
	struct timekeeper *tk = &tk_core.timekeeper;
535
	unsigned int seq;
536 537
	ktime_t base;
	s64 nsecs;
538 539 540 541

	WARN_ON(timekeeping_suspended);

	do {
542
		seq = read_seqcount_begin(&tk_core.seq);
543
		base = tk->tkr.base_mono;
544
		nsecs = timekeeping_get_ns(&tk->tkr);
545

546
	} while (read_seqcount_retry(&tk_core.seq, seq));
547

548
	return ktime_add_ns(base, nsecs);
549 550 551
}
EXPORT_SYMBOL_GPL(ktime_get);

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
569
		base = ktime_add(tk->tkr.base_mono, *offset);
570
		nsecs = timekeeping_get_ns(&tk->tkr);
571 572 573 574 575 576 577 578

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

620
/**
621
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
622 623 624 625
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
626
 * in normalized timespec64 format in the variable pointed to by @ts.
627
 */
628
void ktime_get_ts64(struct timespec64 *ts)
629
{
630
	struct timekeeper *tk = &tk_core.timekeeper;
631
	struct timespec64 tomono;
632
	s64 nsec;
633 634 635 636 637
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
638
		seq = read_seqcount_begin(&tk_core.seq);
639
		ts->tv_sec = tk->xtime_sec;
640
		nsec = timekeeping_get_ns(&tk->tkr);
641
		tomono = tk->wall_to_monotonic;
642

643
	} while (read_seqcount_retry(&tk_core.seq, seq));
644

645 646 647
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
648
}
649
EXPORT_SYMBOL_GPL(ktime_get_ts64);
650

651 652 653 654 655 656 657 658 659 660 661 662 663
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
664
	struct timekeeper *tk = &tk_core.timekeeper;
665 666 667 668 669 670
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
671
		seq = read_seqcount_begin(&tk_core.seq);
672

673
		*ts_raw = timespec64_to_timespec(tk->raw_time);
674
		ts_real->tv_sec = tk->xtime_sec;
675
		ts_real->tv_nsec = 0;
676

677
		nsecs_raw = timekeeping_get_ns_raw(tk);
678
		nsecs_real = timekeeping_get_ns(&tk->tkr);
679

680
	} while (read_seqcount_retry(&tk_core.seq, seq));
681 682 683 684 685 686 687 688

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

689 690 691 692
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
693
 * NOTE: Users should be converted to using getnstimeofday()
694 695 696
 */
void do_gettimeofday(struct timeval *tv)
{
697
	struct timespec64 now;
698

699
	getnstimeofday64(&now);
700 701 702 703
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
704

705
/**
706 707
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
708 709 710
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
711
int do_settimeofday64(const struct timespec64 *ts)
712
{
713
	struct timekeeper *tk = &tk_core.timekeeper;
714
	struct timespec64 ts_delta, xt;
715
	unsigned long flags;
716

717
	if (!timespec64_valid_strict(ts))
718 719
		return -EINVAL;

720
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
721
	write_seqcount_begin(&tk_core.seq);
722

723
	timekeeping_forward_now(tk);
724

725
	xt = tk_xtime(tk);
726 727
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
728

729
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
730

731
	tk_set_xtime(tk, ts);
732

733
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
734

735
	write_seqcount_end(&tk_core.seq);
736
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
737 738 739 740 741 742

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
743
EXPORT_SYMBOL(do_settimeofday64);
744

745 746 747 748 749 750 751 752
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
753
	struct timekeeper *tk = &tk_core.timekeeper;
754
	unsigned long flags;
755
	struct timespec64 ts64, tmp;
756
	int ret = 0;
757 758 759 760

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

761 762
	ts64 = timespec_to_timespec64(*ts);

763
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
764
	write_seqcount_begin(&tk_core.seq);
765

766
	timekeeping_forward_now(tk);
767

768
	/* Make sure the proposed value is valid */
769 770
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
771 772 773
		ret = -EINVAL;
		goto error;
	}
774

775 776
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
777

778
error: /* even if we error out, we forwarded the time, so call update */
779
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
780

781
	write_seqcount_end(&tk_core.seq);
782
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
783 784 785 786

	/* signal hrtimers about time change */
	clock_was_set();

787
	return ret;
788 789 790
}
EXPORT_SYMBOL(timekeeping_inject_offset);

791 792 793 794 795 796 797

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
798
	struct timekeeper *tk = &tk_core.timekeeper;
799 800 801 802
	unsigned int seq;
	s32 ret;

	do {
803
		seq = read_seqcount_begin(&tk_core.seq);
804
		ret = tk->tai_offset;
805
	} while (read_seqcount_retry(&tk_core.seq, seq));
806 807 808 809 810 811 812 813

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
814
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
815 816
{
	tk->tai_offset = tai_offset;
817
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
818 819 820 821 822 823 824 825
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
826
	struct timekeeper *tk = &tk_core.timekeeper;
827 828
	unsigned long flags;

829
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
830
	write_seqcount_begin(&tk_core.seq);
831
	__timekeeping_set_tai_offset(tk, tai_offset);
832
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
833
	write_seqcount_end(&tk_core.seq);
834
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
835
	clock_was_set();
836 837
}

838 839 840 841 842
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
843
static int change_clocksource(void *data)
844
{
845
	struct timekeeper *tk = &tk_core.timekeeper;
846
	struct clocksource *new, *old;
847
	unsigned long flags;
848

849
	new = (struct clocksource *) data;
850

851
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
852
	write_seqcount_begin(&tk_core.seq);
853

854
	timekeeping_forward_now(tk);
855 856 857 858 859 860
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
861
			old = tk->tkr.clock;
862 863 864 865 866 867 868
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
869
	}
870
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
871

872
	write_seqcount_end(&tk_core.seq);
873
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
874

875 876
	return 0;
}
877

878 879 880 881 882 883 884
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
885
int timekeeping_notify(struct clocksource *clock)
886
{
887
	struct timekeeper *tk = &tk_core.timekeeper;
888

889
	if (tk->tkr.clock == clock)
890
		return 0;
891
	stop_machine(change_clocksource, clock, NULL);
892
	tick_clock_notify();
893
	return tk->tkr.clock == clock ? 0 : -1;
894
}
895

896
/**
897 898
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
899 900 901
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
902
void getrawmonotonic64(struct timespec64 *ts)
903
{
904
	struct timekeeper *tk = &tk_core.timekeeper;
905
	struct timespec64 ts64;
906 907 908 909
	unsigned long seq;
	s64 nsecs;

	do {
910
		seq = read_seqcount_begin(&tk_core.seq);
911
		nsecs = timekeeping_get_ns_raw(tk);
912
		ts64 = tk->raw_time;
913

914
	} while (read_seqcount_retry(&tk_core.seq, seq));
915

916
	timespec64_add_ns(&ts64, nsecs);
917
	*ts = ts64;
918
}
919 920
EXPORT_SYMBOL(getrawmonotonic64);

921

922
/**
923
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
924
 */
925
int timekeeping_valid_for_hres(void)
926
{
927
	struct timekeeper *tk = &tk_core.timekeeper;
928 929 930 931
	unsigned long seq;
	int ret;

	do {
932
		seq = read_seqcount_begin(&tk_core.seq);
933

934
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
935

936
	} while (read_seqcount_retry(&tk_core.seq, seq));
937 938 939 940

	return ret;
}

941 942 943 944 945
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
946
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
947 948
	unsigned long seq;
	u64 ret;
949

J
John Stultz 已提交
950
	do {
951
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
952

953
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
954

955
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
956 957

	return ret;
958 959
}

960
/**
961
 * read_persistent_clock -  Return time from the persistent clock.
962 963
 *
 * Weak dummy function for arches that do not yet support it.
964 965
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
966 967 968
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
969
void __weak read_persistent_clock(struct timespec *ts)
970
{
971 972
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
973 974
}

975 976 977 978 979 980 981 982 983
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
984
void __weak read_boot_clock(struct timespec *ts)
985 986 987 988 989
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

990 991 992 993 994
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
995
	struct timekeeper *tk = &tk_core.timekeeper;
996
	struct clocksource *clock;
997
	unsigned long flags;
998 999
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1000

1001 1002 1003
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1004 1005 1006 1007
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1008 1009
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1010

1011 1012 1013
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1014 1015 1016 1017 1018
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1019

1020
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1021
	write_seqcount_begin(&tk_core.seq);
1022 1023
	ntp_init();

1024
	clock = clocksource_default_clock();
1025 1026
	if (clock->enable)
		clock->enable(clock);
1027
	tk_setup_internals(tk, clock);
1028

1029 1030 1031
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1032
	tk->base_raw.tv64 = 0;
1033
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1034
		boot = tk_xtime(tk);
1035

1036
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1037
	tk_set_wall_to_mono(tk, tmp);
1038

1039
	timekeeping_update(tk, TK_MIRROR);
1040

1041
	write_seqcount_end(&tk_core.seq);
1042
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1043 1044 1045
}

/* time in seconds when suspend began */
1046
static struct timespec64 timekeeping_suspend_time;
1047

1048 1049 1050 1051 1052 1053 1054
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1055
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1056
					   struct timespec64 *delta)
1057
{
1058
	if (!timespec64_valid_strict(delta)) {
1059 1060 1061
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1062 1063
		return;
	}
1064
	tk_xtime_add(tk, delta);
1065
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1066
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1067
	tk_debug_account_sleep_time(delta);
1068 1069 1070
}

/**
1071 1072
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1073 1074 1075 1076 1077 1078 1079
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1080
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1081
{
1082
	struct timekeeper *tk = &tk_core.timekeeper;
1083
	unsigned long flags;
1084

1085 1086 1087 1088 1089
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1090 1091
		return;

1092
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1093
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1094

1095
	timekeeping_forward_now(tk);
1096

1097
	__timekeeping_inject_sleeptime(tk, delta);
1098

1099
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1100

1101
	write_seqcount_end(&tk_core.seq);
1102
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1103 1104 1105 1106 1107

	/* signal hrtimers about time change */
	clock_was_set();
}

1108 1109 1110 1111 1112 1113 1114
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1115
static void timekeeping_resume(void)
1116
{
1117
	struct timekeeper *tk = &tk_core.timekeeper;
1118
	struct clocksource *clock = tk->tkr.clock;
1119
	unsigned long flags;
1120 1121
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1122 1123
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1124

1125 1126
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1127

1128
	clockevents_resume();
1129 1130
	clocksource_resume();

1131
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1132
	write_seqcount_begin(&tk_core.seq);
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1146
	cycle_now = tk->tkr.read(clock);
1147
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1148
		cycle_now > tk->tkr.cycle_last) {
1149 1150 1151 1152 1153
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1154 1155
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1170
		ts_delta = ns_to_timespec64(nsec);
1171
		suspendtime_found = true;
1172 1173
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1174
		suspendtime_found = true;
1175
	}
1176 1177 1178 1179 1180

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1181
	tk->tkr.cycle_last = cycle_now;
1182
	tk->ntp_error = 0;
1183
	timekeeping_suspended = 0;
1184
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1185
	write_seqcount_end(&tk_core.seq);
1186
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1187 1188 1189 1190 1191 1192

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1193
	hrtimers_resume();
1194 1195
}

1196
static int timekeeping_suspend(void)
1197
{
1198
	struct timekeeper *tk = &tk_core.timekeeper;
1199
	unsigned long flags;
1200 1201 1202
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1203

1204 1205
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1206

1207 1208 1209 1210 1211 1212 1213 1214
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1215
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1216
	write_seqcount_begin(&tk_core.seq);
1217
	timekeeping_forward_now(tk);
1218
	timekeeping_suspended = 1;
1219 1220 1221 1222 1223 1224 1225

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1226 1227
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1228 1229 1230 1231 1232 1233 1234 1235 1236
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1237
			timespec64_add(timekeeping_suspend_time, delta_delta);
1238
	}
1239 1240

	timekeeping_update(tk, TK_MIRROR);
1241
	write_seqcount_end(&tk_core.seq);
1242
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1243 1244

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1245
	clocksource_suspend();
1246
	clockevents_suspend();
1247 1248 1249 1250 1251

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1252
static struct syscore_ops timekeeping_syscore_ops = {
1253 1254 1255 1256
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1257
static int __init timekeeping_init_ops(void)
1258
{
1259 1260
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1261
}
1262
device_initcall(timekeeping_init_ops);
1263 1264

/*
1265
 * Apply a multiplier adjustment to the timekeeper
1266
 */
1267 1268 1269 1270
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1271
{
1272 1273
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1274

1275 1276 1277 1278
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1279
	}
1280 1281 1282
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1283

1284 1285 1286
	/*
	 * So the following can be confusing.
	 *
1287
	 * To keep things simple, lets assume mult_adj == 1 for now.
1288
	 *
1289
	 * When mult_adj != 1, remember that the interval and offset values
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1333
	if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1334 1335 1336 1337 1338
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1339
	tk->tkr.mult += mult_adj;
1340
	tk->xtime_interval += interval;
1341
	tk->tkr.xtime_nsec -= offset;
1342
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1362 1363
	tk->ntp_tick = ntp_tick_length();

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
1404 1405
		(abs(tk->tkr.mult - tk->tkr.clock->mult)
			> tk->tkr.clock->maxadj))) {
1406 1407 1408 1409 1410
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1426 1427 1428
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1429
		tk->ntp_error += neg << tk->ntp_error_shift;
1430
	}
1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1441
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1442
{
1443
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1444
	unsigned int clock_set = 0;
1445

1446
	while (tk->tkr.xtime_nsec >= nsecps) {
1447 1448
		int leap;

1449
		tk->tkr.xtime_nsec -= nsecps;
1450 1451 1452 1453
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1454
		if (unlikely(leap)) {
1455
			struct timespec64 ts;
1456 1457

			tk->xtime_sec += leap;
1458

1459 1460 1461
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1462
				timespec64_sub(tk->wall_to_monotonic, ts));
1463

1464 1465
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1466
			clock_set = TK_CLOCK_WAS_SET;
1467
		}
1468
	}
1469
	return clock_set;
1470 1471
}

1472 1473 1474 1475 1476 1477 1478 1479 1480
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1481
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1482 1483
						u32 shift,
						unsigned int *clock_set)
1484
{
T
Thomas Gleixner 已提交
1485
	cycle_t interval = tk->cycle_interval << shift;
1486
	u64 raw_nsecs;
1487

1488
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1489
	if (offset < interval)
1490 1491 1492
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1493
	offset -= interval;
1494
	tk->tkr.cycle_last += interval;
1495

1496
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1497
	*clock_set |= accumulate_nsecs_to_secs(tk);
1498

1499
	/* Accumulate raw time */
1500
	raw_nsecs = (u64)tk->raw_interval << shift;
1501
	raw_nsecs += tk->raw_time.tv_nsec;
1502 1503 1504
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1505
		tk->raw_time.tv_sec += raw_secs;
1506
	}
1507
	tk->raw_time.tv_nsec = raw_nsecs;
1508 1509

	/* Accumulate error between NTP and clock interval */
1510
	tk->ntp_error += tk->ntp_tick << shift;
1511 1512
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1513 1514 1515 1516

	return offset;
}

1517 1518 1519 1520
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1521
void update_wall_time(void)
1522
{
1523
	struct timekeeper *real_tk = &tk_core.timekeeper;
1524
	struct timekeeper *tk = &shadow_timekeeper;
1525
	cycle_t offset;
1526
	int shift = 0, maxshift;
1527
	unsigned int clock_set = 0;
J
John Stultz 已提交
1528 1529
	unsigned long flags;

1530
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1531 1532 1533

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1534
		goto out;
1535

J
John Stultz 已提交
1536
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1537
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1538
#else
1539 1540
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1541 1542
#endif

1543
	/* Check if there's really nothing to do */
1544
	if (offset < real_tk->cycle_interval)
1545 1546
		goto out;

1547 1548 1549 1550
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1551
	 * that is smaller than the offset.  We then accumulate that
1552 1553
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1554
	 */
1555
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1556
	shift = max(0, shift);
1557
	/* Bound shift to one less than what overflows tick_length */
1558
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1559
	shift = min(shift, maxshift);
1560
	while (offset >= tk->cycle_interval) {
1561 1562
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1563
		if (offset < tk->cycle_interval<<shift)
1564
			shift--;
1565 1566 1567
	}

	/* correct the clock when NTP error is too big */
1568
	timekeeping_adjust(tk, offset);
1569

J
John Stultz 已提交
1570
	/*
1571 1572 1573 1574
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1575

J
John Stultz 已提交
1576 1577
	/*
	 * Finally, make sure that after the rounding
1578
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1579
	 */
1580
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1581

1582
	write_seqcount_begin(&tk_core.seq);
1583 1584 1585 1586 1587 1588 1589
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1590
	 * memcpy under the tk_core.seq against one before we start
1591 1592 1593
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1594
	timekeeping_update(real_tk, clock_set);
1595
	write_seqcount_end(&tk_core.seq);
1596
out:
1597
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1598
	if (clock_set)
1599 1600
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1601
}
T
Tomas Janousek 已提交
1602 1603 1604 1605 1606

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1607
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1608 1609 1610 1611 1612 1613 1614 1615
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1616
	struct timekeeper *tk = &tk_core.timekeeper;
1617 1618 1619
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

	*ts = ktime_to_timespec(t);
T
Tomas Janousek 已提交
1620
}
1621
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1622

1623 1624
unsigned long get_seconds(void)
{
1625
	struct timekeeper *tk = &tk_core.timekeeper;
1626 1627

	return tk->xtime_sec;
1628 1629 1630
}
EXPORT_SYMBOL(get_seconds);

1631 1632
struct timespec __current_kernel_time(void)
{
1633
	struct timekeeper *tk = &tk_core.timekeeper;
1634

1635
	return timespec64_to_timespec(tk_xtime(tk));
1636
}
1637

1638 1639
struct timespec current_kernel_time(void)
{
1640
	struct timekeeper *tk = &tk_core.timekeeper;
1641
	struct timespec64 now;
1642 1643 1644
	unsigned long seq;

	do {
1645
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1646

1647
		now = tk_xtime(tk);
1648
	} while (read_seqcount_retry(&tk_core.seq, seq));
1649

1650
	return timespec64_to_timespec(now);
1651 1652
}
EXPORT_SYMBOL(current_kernel_time);
1653

1654
struct timespec64 get_monotonic_coarse64(void)
1655
{
1656
	struct timekeeper *tk = &tk_core.timekeeper;
1657
	struct timespec64 now, mono;
1658 1659 1660
	unsigned long seq;

	do {
1661
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1662

1663 1664
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1665
	} while (read_seqcount_retry(&tk_core.seq, seq));
1666

1667
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1668
				now.tv_nsec + mono.tv_nsec);
1669

1670
	return now;
1671
}
1672 1673

/*
1674
 * Must hold jiffies_lock
1675 1676 1677 1678 1679 1680
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1681 1682

/**
1683 1684 1685 1686 1687 1688
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1689
 */
1690 1691
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1692
{
1693
	struct timekeeper *tk = &tk_core.timekeeper;
1694
	unsigned int seq;
1695 1696
	ktime_t base;
	u64 nsecs;
1697 1698

	do {
1699
		seq = read_seqcount_begin(&tk_core.seq);
1700

1701 1702
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1703

1704 1705 1706
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1707
	} while (read_seqcount_retry(&tk_core.seq, seq));
1708

1709
	return ktime_add_ns(base, nsecs);
1710
}
T
Torben Hohn 已提交
1711

1712 1713
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1714
 * ktime_get_update_offsets_now - hrtimer helper
1715 1716
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1717
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1718 1719
 *
 * Returns current monotonic time and updates the offsets
1720
 * Called from hrtimer_interrupt() or retrigger_next_event()
1721
 */
1722
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1723
							ktime_t *offs_tai)
1724
{
1725
	struct timekeeper *tk = &tk_core.timekeeper;
1726
	unsigned int seq;
1727 1728
	ktime_t base;
	u64 nsecs;
1729 1730

	do {
1731
		seq = read_seqcount_begin(&tk_core.seq);
1732

1733
		base = tk->tkr.base_mono;
1734
		nsecs = timekeeping_get_ns(&tk->tkr);
1735

1736 1737
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1738
		*offs_tai = tk->offs_tai;
1739
	} while (read_seqcount_retry(&tk_core.seq, seq));
1740

1741
	return ktime_add_ns(base, nsecs);
1742 1743 1744
}
#endif

1745 1746 1747 1748 1749
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1750
	struct timekeeper *tk = &tk_core.timekeeper;
1751
	unsigned long flags;
1752
	struct timespec64 ts;
1753
	s32 orig_tai, tai;
1754 1755 1756 1757 1758 1759 1760
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1772
	getnstimeofday64(&ts);
1773

1774
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1775
	write_seqcount_begin(&tk_core.seq);
1776

1777
	orig_tai = tai = tk->tai_offset;
1778
	ret = __do_adjtimex(txc, &ts, &tai);
1779

1780 1781
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1782
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1783
	}
1784
	write_seqcount_end(&tk_core.seq);
1785 1786
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1787 1788 1789
	if (tai != orig_tai)
		clock_was_set();

1790 1791
	ntp_notify_cmos_timer();

1792 1793
	return ret;
}
1794 1795 1796 1797 1798 1799 1800

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1801 1802 1803
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1804
	write_seqcount_begin(&tk_core.seq);
1805

1806
	__hardpps(phase_ts, raw_ts);
1807

1808
	write_seqcount_end(&tk_core.seq);
1809
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1810 1811 1812 1813
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1814 1815 1816 1817 1818 1819 1820 1821
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1822
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1823
	do_timer(ticks);
1824
	write_sequnlock(&jiffies_lock);
1825
	update_wall_time();
T
Torben Hohn 已提交
1826
}