tick-sched.c 23.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24

25 26
#include <asm/irq_regs.h>

27 28 29 30 31
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
32
DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 34

/*
35
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
36 37 38
 */
static ktime_t last_jiffies_update;

39 40 41 42 43
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

44 45 46 47 48 49 50 51
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

52
	/*
53
	 * Do a quick check without holding jiffies_lock:
54 55 56 57 58
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

59 60
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
79 80 81

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82
	}
83
	write_sequnlock(&jiffies_lock);
84 85 86 87 88 89 90 91 92
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

93
	write_seqlock(&jiffies_lock);
94 95 96 97
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
98
	write_sequnlock(&jiffies_lock);
99 100 101
	return period;
}

102 103 104 105 106 107 108 109 110 111 112

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

#ifdef CONFIG_NO_HZ
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
113
	 * jiffies_lock.
114 115 116 117 118 119 120 121 122 123
	 */
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

124 125
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
126
#ifdef CONFIG_NO_HZ
127 128 129 130 131 132 133 134 135 136 137 138 139
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
140
#endif
141 142 143 144
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}

145 146 147 148 149 150 151
/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ
/*
 * NO HZ enabled ?
 */
152
int tick_nohz_enabled __read_mostly  = 1;
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
180
static void tick_nohz_update_jiffies(ktime_t now)
181 182 183 184 185
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

186
	ts->idle_waketime = now;
187 188 189 190

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
191 192

	touch_softlockup_watchdog();
193 194
}

195 196 197
/*
 * Updates the per cpu time idle statistics counters
 */
198
static void
199
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
200
{
201
	ktime_t delta;
202

203 204
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
205
		if (nr_iowait_cpu(cpu) > 0)
206
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
207 208
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
209
		ts->idle_entrytime = now;
210
	}
211

212
	if (last_update_time)
213 214
		*last_update_time = ktime_to_us(now);

215 216 217 218 219 220
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

221
	update_ts_time_stats(cpu, ts, now, NULL);
222
	ts->idle_active = 0;
223

224
	sched_clock_idle_wakeup_event(0);
225 226
}

227
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
228
{
229
	ktime_t now = ktime_get();
230

231 232
	ts->idle_entrytime = now;
	ts->idle_active = 1;
233
	sched_clock_idle_sleep_event();
234 235 236
	return now;
}

237 238 239
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
240 241
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
242 243
 *
 * Return the cummulative idle time (since boot) for a given
244
 * CPU, in microseconds.
245 246 247 248 249 250
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
251 252 253
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
254
	ktime_t now, idle;
255

256 257 258
	if (!tick_nohz_enabled)
		return -1;

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
274

275
}
276
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
277

278
/**
279 280
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
281 282
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
283 284 285 286 287 288 289 290 291 292 293 294
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
295
	ktime_t now, iowait;
296 297 298 299

	if (!tick_nohz_enabled)
		return -1;

300 301 302 303 304 305 306
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
307

308 309 310 311 312
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
313

314
	return ktime_to_us(iowait);
315 316 317
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

318 319
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
320
{
321
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
322
	ktime_t last_update, expires, ret = { .tv64 = 0 };
323
	unsigned long rcu_delta_jiffies;
324
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
325
	u64 time_delta;
326 327 328

	/* Read jiffies and the time when jiffies were updated last */
	do {
329
		seq = read_seqbegin(&jiffies_lock);
330 331
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
332
		time_delta = timekeeping_max_deferment();
333
	} while (read_seqretry(&jiffies_lock, seq));
334

335
	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
336
	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
337
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
338
		delta_jiffies = 1;
339 340 341 342
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
343 344 345 346
		if (rcu_delta_jiffies < delta_jiffies) {
			next_jiffies = last_jiffies + rcu_delta_jiffies;
			delta_jiffies = rcu_delta_jiffies;
		}
347
	}
348 349 350 351
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
352
	if (!ts->tick_stopped && delta_jiffies == 1)
353 354 355 356 357
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

358 359 360 361 362 363
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
364 365 366 367 368 369
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
370
		 */
T
Thomas Gleixner 已提交
371
		if (cpu == tick_do_timer_cpu) {
372
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
373 374 375 376 377 378 379 380
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

381
		/*
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
399

T
Thomas Gleixner 已提交
400 401 402 403
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
404 405 406 407 408

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

409 410
		ret = expires;

411 412 413 414 415 416 417 418
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
419
			nohz_balance_enter_idle(cpu);
420
			calc_load_enter_idle();
421

422
			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
423 424
			ts->tick_stopped = 1;
		}
425

426
		/*
427 428
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
429
		 */
430
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
431 432 433 434 435
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

436 437
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
438
				      HRTIMER_MODE_ABS_PINNED);
439 440 441
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
442
		} else if (!tick_program_event(expires, 0))
443 444 445 446 447 448 449 450 451 452 453 454
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
455
	ts->sleep_length = ktime_sub(dev->next_event, now);
456 457

	return ret;
458 459
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
	}

	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		return false;

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

483 484
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
485 486 487 488 489 490 491 492 493 494
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
			       (unsigned int) local_softirq_pending());
			ratelimit++;
		}
		return false;
	}

	return true;
}

495 496
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
497
	ktime_t now, expires;
498
	int cpu = smp_processor_id();
499

500
	now = tick_nohz_start_idle(cpu, ts);
501

502 503 504 505
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
506 507 508 509 510 511

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
512 513 514 515

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
516 517 518 519 520 521 522
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
523
 *
524
 * The arch is responsible of calling:
525 526 527 528
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
529
 */
530
void tick_nohz_idle_enter(void)
531 532 533
{
	struct tick_sched *ts;

534 535
	WARN_ON_ONCE(irqs_disabled());

536 537 538 539 540 541 542 543
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

544 545
	local_irq_disable();

546 547 548 549 550 551 552
	ts = &__get_cpu_var(tick_cpu_sched);
	/*
	 * set ts->inidle unconditionally. even if the system did not
	 * switch to nohz mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;
553
	__tick_nohz_idle_enter(ts);
554 555

	local_irq_enable();
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
}

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!ts->inidle)
		return;

573
	/* Cancel the timer because CPU already waken up from the C-states*/
574
	menu_hrtimer_cancel();
575
	__tick_nohz_idle_enter(ts);
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

590 591 592
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
593
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
594 595 596 597 598 599

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
600
			hrtimer_start_expires(&ts->sched_timer,
601
					      HRTIMER_MODE_ABS_PINNED);
602 603 604 605
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
606 607
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
608 609
				break;
		}
610
		/* Reread time and update jiffies */
611
		now = ktime_get();
612
		tick_do_update_jiffies64(now);
613 614 615
	}
}

616
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
617 618 619
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
620
	update_cpu_load_nohz();
621

622
	calc_load_exit_idle();
623 624 625 626 627 628 629 630 631 632 633 634
	touch_softlockup_watchdog();
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}

static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
635
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
636
	unsigned long ticks;
637 638 639

	if (vtime_accounting_enabled())
		return;
640 641 642 643 644 645 646 647 648
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
649 650 651
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
652 653
}

654
/**
655
 * tick_nohz_idle_exit - restart the idle tick from the idle task
656 657
 *
 * Restart the idle tick when the CPU is woken up from idle
658 659
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
660
 */
661
void tick_nohz_idle_exit(void)
662 663 664
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
665
	ktime_t now;
666

667
	local_irq_disable();
668

669 670 671 672
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

673 674
	/* Cancel the timer because CPU already waken up from the C-states*/
	menu_hrtimer_cancel();
675
	if (ts->idle_active || ts->tick_stopped)
676 677 678 679
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
680

681
	if (ts->tick_stopped) {
682
		tick_nohz_restart_sched_tick(ts, now);
683
		tick_nohz_account_idle_ticks(ts);
684
	}
685 686 687 688 689 690 691

	local_irq_enable();
}

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
692
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
693 694 695 696 697 698 699 700 701 702 703 704 705
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

706
	tick_sched_do_timer(now);
707
	tick_sched_handle(ts, regs);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
743
		hrtimer_set_expires(&ts->sched_timer, next);
744 745 746 747 748 749 750
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

751 752 753 754 755 756 757 758 759 760 761
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
762
static void tick_nohz_kick_tick(int cpu, ktime_t now)
763
{
764 765 766
#if 0
	/* Switch back to 2.6.27 behaviour */

767
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
768
	ktime_t delta;
769

770 771 772 773
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
774
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
775 776 777 778
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
779
#endif
780 781
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

798 799 800
#else

static inline void tick_nohz_switch_to_nohz(void) { }
801
static inline void tick_check_nohz(int cpu) { }
802 803 804

#endif /* NO_HZ */

805 806 807 808 809
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
810
	tick_check_oneshot_broadcast(cpu);
811
	tick_check_nohz(cpu);
812 813
}

814 815 816 817 818
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
819
 * We rearm the timer until we get disabled by the idle code.
820
 * Called with interrupts disabled.
821 822 823 824 825 826 827
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
828

829
	tick_sched_do_timer(now);
830 831 832 833 834

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
835 836
	if (regs)
		tick_sched_handle(ts, regs);
837 838 839 840 841 842

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
843 844
static int sched_skew_tick;

845 846 847 848 849 850 851 852
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

853 854 855 856 857 858 859 860 861 862 863 864 865 866
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

867
	/* Get the next period (per cpu) */
868
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
869

870
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
871 872 873 874 875 876 877
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

878 879
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
880 881
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
882 883 884 885 886 887 888
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

#ifdef CONFIG_NO_HZ
889
	if (tick_nohz_enabled)
890 891 892
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
893
#endif /* HIGH_RES_TIMERS */
894

895
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
896 897 898 899
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

900
# ifdef CONFIG_HIGH_RES_TIMERS
901 902
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
903
# endif
904

905 906
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
907
#endif
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

948
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
949 950 951 952 953 954 955 956
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}