sched_rt.c 40.5 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9 10 11 12
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

#ifdef CONFIG_RT_GROUP_SCHED

13 14
#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

15 16 17 18 19 20 21 22 23 24 25 26
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

27 28
#define rt_entity_is_task(rt_se) (1)

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
44
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
45

46
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
47
{
48
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
49
}
I
Ingo Molnar 已提交
50

S
Steven Rostedt 已提交
51 52
static inline void rt_set_overload(struct rq *rq)
{
53 54 55
	if (!rq->online)
		return;

56
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
57 58 59 60 61 62 63 64
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
65
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
66
}
I
Ingo Molnar 已提交
67

S
Steven Rostedt 已提交
68 69
static inline void rt_clear_overload(struct rq *rq)
{
70 71 72
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
73
	/* the order here really doesn't matter */
74
	atomic_dec(&rq->rd->rto_count);
75
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
76
}
77

78
static void update_rt_migration(struct rt_rq *rt_rq)
79
{
80
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
81 82 83
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
84
		}
85 86 87
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
88
	}
89
}
S
Steven Rostedt 已提交
90

91 92
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
93 94 95 96 97 98
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
99 100 101 102 103 104 105 106
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
107 108 109 110 111 112
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
113 114 115 116 117 118
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
}

#else

133
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
134
{
P
Peter Zijlstra 已提交
135 136
}

137 138 139 140
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

141
static inline
142 143 144 145
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

146
static inline
147 148 149
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
150

S
Steven Rostedt 已提交
151 152
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
153 154 155 156 157
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

158
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
159

P
Peter Zijlstra 已提交
160
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
161 162
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
163
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
164

P
Peter Zijlstra 已提交
165 166 167 168 169 170
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
171 172 173
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
174
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
175 176 177 178 179 180 181 182 183 184 185 186

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
187
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
188
{
189
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
P
Peter Zijlstra 已提交
190 191
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

192 193 194
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
			enqueue_rt_entity(rt_se);
195
		if (rt_rq->highest_prio.curr < curr->prio)
196
			resched_task(curr);
P
Peter Zijlstra 已提交
197 198 199
	}
}

P
Peter Zijlstra 已提交
200
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201 202 203 204 205 206 207
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

225
#ifdef CONFIG_SMP
226
static inline const struct cpumask *sched_rt_period_mask(void)
227 228 229
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
230
#else
231
static inline const struct cpumask *sched_rt_period_mask(void)
232
{
233
	return cpu_online_mask;
234 235
}
#endif
P
Peter Zijlstra 已提交
236

237 238
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
239
{
240 241
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
242

P
Peter Zijlstra 已提交
243 244 245 246 247
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

248
#else /* !CONFIG_RT_GROUP_SCHED */
249 250 251

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
252 253 254 255 256 257
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
271
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
272
{
273 274
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
275 276
}

P
Peter Zijlstra 已提交
277
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
278 279 280
{
}

P
Peter Zijlstra 已提交
281 282 283 284
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
285

286
static inline const struct cpumask *sched_rt_period_mask(void)
287
{
288
	return cpu_online_mask;
289 290 291 292 293 294 295 296
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
297 298 299 300 301
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

302
#endif /* CONFIG_RT_GROUP_SCHED */
303

P
Peter Zijlstra 已提交
304
#ifdef CONFIG_SMP
305 306 307
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
308
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
309 310 311 312 313 314
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

315
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
316 317 318

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
319
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
320 321 322 323 324 325 326
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
327 328 329 330 331
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
332 333 334
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

335 336 337 338
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
339 340
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
341
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
342 343 344 345 346 347 348 349 350 351
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
352
next:
P
Peter Zijlstra 已提交
353 354 355 356 357 358
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
359

360 361 362
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
378 379 380 381 382
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
383 384 385 386 387
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

388 389 390 391 392
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
393 394
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

395 396 397
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
398
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
399 400 401
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

402 403 404
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
405
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
424 425 426 427
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
428 429
		BUG_ON(want);
balanced:
430 431 432 433
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

456 457 458
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
459 460 461 462 463 464 465
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
466
		rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

481 482 483 484 485 486 487 488 489 490 491 492
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
493
#else /* !CONFIG_SMP */
494 495 496 497
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
498
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
499

500 501 502
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
503
	const struct cpumask *span;
504

505
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
506 507 508
		return 1;

	span = sched_rt_period_mask();
509
	for_each_cpu(i, span) {
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
530 531
		} else if (rt_rq->rt_nr_running)
			idle = 0;
532 533 534 535 536 537 538 539

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}
P
Peter Zijlstra 已提交
540

P
Peter Zijlstra 已提交
541 542
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
543
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
544 545 546
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
547
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
548 549 550 551 552
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
553
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
554
{
P
Peter Zijlstra 已提交
555
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
556 557

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
558
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
559

P
Peter Zijlstra 已提交
560 561 562
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

563 564 565 566
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
567

P
Peter Zijlstra 已提交
568
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
569
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
570
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
571
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
572 573
			return 1;
		}
P
Peter Zijlstra 已提交
574 575 576 577 578
	}

	return 0;
}

I
Ingo Molnar 已提交
579 580 581 582
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
583
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
584 585
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
586 587
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
588 589 590 591 592
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

593
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
594 595
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
596 597

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
598 599

	curr->se.sum_exec_runtime += delta_exec;
600 601
	account_group_exec_runtime(curr, delta_exec);

602
	curr->se.exec_start = rq->clock;
603
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
604

605 606 607
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
608 609 610
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

611
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
612
			spin_lock(&rt_rq->rt_runtime_lock);
613 614 615
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
616
			spin_unlock(&rt_rq->rt_runtime_lock);
617
		}
D
Dhaval Giani 已提交
618
	}
I
Ingo Molnar 已提交
619 620
}

621
#if defined CONFIG_SMP
622 623 624 625

static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);

static inline int next_prio(struct rq *rq)
626
{
627 628 629 630 631 632 633 634
	struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);

	if (next && rt_prio(next->prio))
		return next->prio;
	else
		return MAX_RT_PRIO;
}

635 636
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
637
{
G
Gregory Haskins 已提交
638
	struct rq *rq = rq_of_rt_rq(rt_rq);
639

640
	if (prio < prev_prio) {
G
Gregory Haskins 已提交
641

642 643
		/*
		 * If the new task is higher in priority than anything on the
644 645
		 * run-queue, we know that the previous high becomes our
		 * next-highest.
646
		 */
647
		rt_rq->highest_prio.next = prev_prio;
648 649

		if (rq->online)
G
Gregory Haskins 已提交
650
			cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
I
Ingo Molnar 已提交
651

652 653 654 655 656 657 658 659 660 661 662 663
	} else if (prio == rt_rq->highest_prio.curr)
		/*
		 * If the next task is equal in priority to the highest on
		 * the run-queue, then we implicitly know that the next highest
		 * task cannot be any lower than current
		 */
		rt_rq->highest_prio.next = prio;
	else if (prio < rt_rq->highest_prio.next)
		/*
		 * Otherwise, we need to recompute next-highest
		 */
		rt_rq->highest_prio.next = next_prio(rq);
664
}
665

666 667 668 669
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
670

671 672 673 674 675
	if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
		rt_rq->highest_prio.next = next_prio(rq);

	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
676 677
}

678 679
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
680
static inline
681 682 683 684 685
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
686

687
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
704
	if (rt_rq->rt_nr_running) {
705

706
		WARN_ON(prio < prev_prio);
707

708
		/*
709 710
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
711
		 */
712
		if (prio == prev_prio) {
713 714 715
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
716
				sched_find_first_bit(array->bitmap);
717 718
		}

719
	} else
720
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
721

722 723
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
724

725 726 727 728 729 730
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
731

732
#ifdef CONFIG_RT_GROUP_SCHED
733 734 735 736 737 738 739 740 741 742 743 744 745 746

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
747 748 749 750
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
789 790
}

791
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
792
{
P
Peter Zijlstra 已提交
793 794 795
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
796
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
797

798 799 800 801 802 803 804
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
805
		return;
806

807
	list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
808
	__set_bit(rt_se_prio(rt_se), array->bitmap);
809

P
Peter Zijlstra 已提交
810 811 812
	inc_rt_tasks(rt_se, rt_rq);
}

813
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
829
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
830
{
831
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
832

833 834 835 836 837 838 839
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
860
	}
I
Ingo Molnar 已提交
861 862 863 864 865
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
866 867 868 869 870 871 872
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

873
	enqueue_rt_entity(rt_se);
874

875 876 877
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);

878
	inc_cpu_load(rq, p->se.load.weight);
P
Peter Zijlstra 已提交
879 880
}

881
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
882
{
P
Peter Zijlstra 已提交
883
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
884

885
	update_curr_rt(rq);
886
	dequeue_rt_entity(rt_se);
887

888 889
	dequeue_pushable_task(rq, p);

890
	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
891 892 893 894 895 896
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
897 898
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
899
{
900
	if (on_rt_rq(rt_se)) {
901 902 903 904 905 906 907
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
908
	}
P
Peter Zijlstra 已提交
909 910
}

911
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
912
{
P
Peter Zijlstra 已提交
913 914
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
915

P
Peter Zijlstra 已提交
916 917
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
918
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
919
	}
I
Ingo Molnar 已提交
920 921
}

P
Peter Zijlstra 已提交
922
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
923
{
924
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
925 926
}

927
#ifdef CONFIG_SMP
928 929
static int find_lowest_rq(struct task_struct *task);

930 931
static int select_task_rq_rt(struct task_struct *p, int sync)
{
932 933 934
	struct rq *rq = task_rq(p);

	/*
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
950
	 */
951
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
952
	    (p->rt.nr_cpus_allowed > 1)) {
953 954 955 956 957 958 959 960 961
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
962 963
	return task_cpu(p);
}
964 965 966 967 968 969

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

970
	if (p->rt.nr_cpus_allowed != 1
971 972
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
973

974 975
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
976 977 978 979 980 981 982 983 984 985

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

986 987
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
988 989 990
/*
 * Preempt the current task with a newly woken task if needed:
 */
991
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
992
{
993
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
994
		resched_task(rq->curr);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1011 1012
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
1013
#endif
I
Ingo Molnar 已提交
1014 1015
}

P
Peter Zijlstra 已提交
1016 1017
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1018
{
P
Peter Zijlstra 已提交
1019 1020
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1021 1022 1023 1024
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1025
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1026 1027

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1028
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1029

P
Peter Zijlstra 已提交
1030 1031
	return next;
}
I
Ingo Molnar 已提交
1032

1033
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1034 1035 1036 1037
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1038

P
Peter Zijlstra 已提交
1039 1040 1041 1042 1043
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
1044
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1045 1046 1047 1048
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1049
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1050 1051 1052 1053 1054
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

P
Peter Zijlstra 已提交
1067
	return p;
I
Ingo Molnar 已提交
1068 1069
}

1070
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1071
{
1072
	update_curr_rt(rq);
I
Ingo Molnar 已提交
1073
	p->se.exec_start = 0;
1074 1075 1076 1077 1078 1079 1080

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
	if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1081 1082
}

1083
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1084

S
Steven Rostedt 已提交
1085 1086 1087 1088 1089
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1090 1091 1092
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1093
	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
1094
	    (p->rt.nr_cpus_allowed > 1))
1095 1096 1097 1098
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1099
/* Return the second highest RT task, NULL otherwise */
1100
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1101
{
P
Peter Zijlstra 已提交
1102 1103 1104 1105
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1106 1107
	int idx;

P
Peter Zijlstra 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1127 1128
	}

S
Steven Rostedt 已提交
1129 1130 1131
	return next;
}

1132
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1133

1134 1135
static inline int pick_optimal_cpu(int this_cpu,
				   const struct cpumask *mask)
G
Gregory Haskins 已提交
1136 1137 1138 1139
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
1140
	if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
G
Gregory Haskins 已提交
1141 1142
		return this_cpu;

1143 1144
	first = cpumask_first(mask);
	if (first < nr_cpu_ids)
G
Gregory Haskins 已提交
1145 1146 1147 1148 1149 1150 1151 1152
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1153
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1154 1155
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
1156
	cpumask_var_t domain_mask;
G
Gregory Haskins 已提交
1157

1158 1159
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1160

1161 1162
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1163

1164 1165 1166 1167 1168
	/*
	 * Only consider CPUs that are usable for migration.
	 * I guess we might want to change cpupri_find() to ignore those
	 * in the first place.
	 */
1169
	cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
1170

G
Gregory Haskins 已提交
1171 1172 1173 1174 1175 1176 1177 1178
	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1179
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

1189 1190 1191 1192
	if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
		for_each_domain(cpu, sd) {
			if (sd->flags & SD_WAKE_AFFINE) {
				int best_cpu;
G
Gregory Haskins 已提交
1193

1194 1195 1196
				cpumask_and(domain_mask,
					    sched_domain_span(sd),
					    lowest_mask);
G
Gregory Haskins 已提交
1197

1198 1199
				best_cpu = pick_optimal_cpu(this_cpu,
							    domain_mask);
G
Gregory Haskins 已提交
1200

1201 1202 1203 1204 1205
				if (best_cpu != -1) {
					free_cpumask_var(domain_mask);
					return best_cpu;
				}
			}
G
Gregory Haskins 已提交
1206
		}
1207
		free_cpumask_var(domain_mask);
G
Gregory Haskins 已提交
1208 1209 1210 1211 1212 1213 1214 1215
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
1216 1217 1218
}

/* Will lock the rq it finds */
1219
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1220 1221 1222
{
	struct rq *lowest_rq = NULL;
	int tries;
1223
	int cpu;
S
Steven Rostedt 已提交
1224

1225 1226 1227
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1228
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1229 1230
			break;

1231 1232
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1233
		/* if the prio of this runqueue changed, try again */
1234
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1235 1236 1237 1238 1239 1240
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1241
			if (unlikely(task_rq(task) != rq ||
1242 1243
				     !cpumask_test_cpu(lowest_rq->cpu,
						       &task->cpus_allowed) ||
1244
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1245
				     !task->se.on_rq)) {
1246

S
Steven Rostedt 已提交
1247 1248 1249 1250 1251 1252 1253
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1254
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1255 1256 1257
			break;

		/* try again */
1258
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1259 1260 1261 1262 1263 1264
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

	BUG_ON(!p->se.on_rq);
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1290 1291 1292 1293 1294
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1295
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1296 1297 1298 1299
{
	struct task_struct *next_task;
	struct rq *lowest_rq;

G
Gregory Haskins 已提交
1300 1301 1302
	if (!rq->rt.overloaded)
		return 0;

1303
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1304 1305 1306 1307
	if (!next_task)
		return 0;

 retry:
1308
	if (unlikely(next_task == rq->curr)) {
1309
		WARN_ON(1);
S
Steven Rostedt 已提交
1310
		return 0;
1311
	}
S
Steven Rostedt 已提交
1312 1313 1314 1315 1316 1317

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1318 1319
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1320 1321 1322
		return 0;
	}

1323
	/* We might release rq lock */
S
Steven Rostedt 已提交
1324 1325 1326
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1327
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1328 1329 1330
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1331
		 * find lock_lowest_rq releases rq->lock
1332 1333 1334 1335 1336
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1337
		 */
1338
		task = pick_next_pushable_task(rq);
1339 1340 1341 1342 1343 1344 1345 1346 1347
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
			 * If we get here, the task hasnt moved at all, but
			 * it has failed to push.  We will not try again,
			 * since the other cpus will pull from us when they
			 * are ready.
			 */
			dequeue_pushable_task(rq, next_task);
			goto out;
S
Steven Rostedt 已提交
1348
		}
1349

1350 1351 1352 1353
		if (!task)
			/* No more tasks, just exit */
			goto out;

1354
		/*
1355
		 * Something has shifted, try again.
1356
		 */
1357 1358 1359
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1360 1361
	}

1362
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1363 1364 1365 1366 1367
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1368
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1369 1370 1371 1372

out:
	put_task_struct(next_task);

1373
	return 1;
S
Steven Rostedt 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1383 1384
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1385
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1386
	struct task_struct *p;
1387 1388
	struct rq *src_rq;

1389
	if (likely(!rt_overloaded(this_rq)))
1390 1391
		return 0;

1392
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1393 1394 1395 1396
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1409 1410 1411
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1412
		 * alter this_rq
1413
		 */
1414
		double_lock_balance(this_rq, src_rq);
1415 1416 1417 1418

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1419 1420
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1421 1422 1423 1424 1425 1426 1427

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1428
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1429 1430 1431 1432 1433 1434 1435 1436 1437
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1438
			 * current task on the run queue
1439
			 */
1440
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1441
				goto skip;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
			 */
		}
M
Mike Galbraith 已提交
1455
 skip:
1456
		double_unlock_balance(this_rq, src_rq);
1457 1458 1459 1460 1461
	}

	return ret;
}

1462
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1463 1464
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1465
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1466 1467 1468
		pull_rt_task(rq);
}

1469 1470 1471 1472 1473
/*
 * assumes rq->lock is held
 */
static int needs_post_schedule_rt(struct rq *rq)
{
1474
	return has_pushable_tasks(rq);
1475 1476
}

1477
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1478 1479
{
	/*
1480 1481
	 * This is only called if needs_post_schedule_rt() indicates that
	 * we need to push tasks away
S
Steven Rostedt 已提交
1482
	 */
1483 1484 1485
	spin_lock_irq(&rq->lock);
	push_rt_tasks(rq);
	spin_unlock_irq(&rq->lock);
S
Steven Rostedt 已提交
1486 1487
}

1488 1489 1490 1491
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1492
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1493
{
1494
	if (!task_running(rq, p) &&
1495
	    !test_tsk_need_resched(rq->curr) &&
1496
	    has_pushable_tasks(rq) &&
1497
	    p->rt.nr_cpus_allowed > 1)
1498 1499 1500
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1501
static unsigned long
I
Ingo Molnar 已提交
1502
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1503 1504 1505
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1506
{
1507 1508
	/* don't touch RT tasks */
	return 0;
1509 1510 1511 1512 1513 1514
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1515 1516
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1517
}
1518

1519
static void set_cpus_allowed_rt(struct task_struct *p,
1520
				const struct cpumask *new_mask)
1521
{
1522
	int weight = cpumask_weight(new_mask);
1523 1524 1525 1526 1527 1528 1529

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1530
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1531 1532
		struct rq *rq = task_rq(p);

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1551
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1552
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1553
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1554 1555 1556 1557
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1558
		update_rt_migration(&rq->rt);
1559 1560
	}

1561
	cpumask_copy(&p->cpus_allowed, new_mask);
P
Peter Zijlstra 已提交
1562
	p->rt.nr_cpus_allowed = weight;
1563
}
1564

1565
/* Assumes rq->lock is held */
1566
static void rq_online_rt(struct rq *rq)
1567 1568 1569
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1570

P
Peter Zijlstra 已提交
1571 1572
	__enable_runtime(rq);

1573
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1574 1575 1576
}

/* Assumes rq->lock is held */
1577
static void rq_offline_rt(struct rq *rq)
1578 1579 1580
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1581

P
Peter Zijlstra 已提交
1582 1583
	__disable_runtime(rq);

1584
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1585
}
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
1604 1605 1606 1607 1608 1609

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1610
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1611
					GFP_KERNEL, cpu_to_node(i));
1612
}
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1661 1662 1663
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1664
		 */
1665
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1666 1667 1668 1669 1670
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1671
#endif /* CONFIG_SMP */
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1698
		if (p->rt.timeout > next)
1699
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1700 1701
	}
}
I
Ingo Molnar 已提交
1702

P
Peter Zijlstra 已提交
1703
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1704
{
1705 1706
	update_curr_rt(rq);

1707 1708
	watchdog(rq, p);

I
Ingo Molnar 已提交
1709 1710 1711 1712 1713 1714 1715
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1716
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1717 1718
		return;

P
Peter Zijlstra 已提交
1719
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1720

1721 1722 1723 1724
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1725
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1726
		requeue_task_rt(rq, p, 0);
1727 1728
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1729 1730
}

1731 1732 1733 1734 1735
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
1736 1737 1738

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1739 1740
}

1741
static const struct sched_class rt_sched_class = {
1742
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1752
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1753 1754
	.select_task_rq		= select_task_rq_rt,

I
Ingo Molnar 已提交
1755
	.load_balance		= load_balance_rt,
1756
	.move_one_task		= move_one_task_rt,
1757
	.set_cpus_allowed       = set_cpus_allowed_rt,
1758 1759
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1760
	.pre_schedule		= pre_schedule_rt,
1761
	.needs_post_schedule	= needs_post_schedule_rt,
1762 1763
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1764
	.switched_from		= switched_from_rt,
1765
#endif
I
Ingo Molnar 已提交
1766

1767
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1768
	.task_tick		= task_tick_rt,
1769 1770 1771

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1772
};
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1786
#endif /* CONFIG_SCHED_DEBUG */
1787