core.c 194.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
76

77
#include <asm/switch_to.h>
78
#include <asm/tlb.h>
79
#include <asm/irq_regs.h>
80
#include <asm/mutex.h>
G
Glauber Costa 已提交
81 82 83
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
84

85
#include "sched.h"
86
#include "../workqueue_sched.h"
87
#include "../smpboot.h"
88

89
#define CREATE_TRACE_POINTS
90
#include <trace/events/sched.h>
91

92
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93
{
94 95
	unsigned long delta;
	ktime_t soft, hard, now;
96

97 98 99 100 101 102
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
103

104 105 106 107 108 109 110 111
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

112 113
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114

115
static void update_rq_clock_task(struct rq *rq, s64 delta);
116

117
void update_rq_clock(struct rq *rq)
118
{
119
	s64 delta;
120

121
	if (rq->skip_clock_update > 0)
122
		return;
123

124 125 126
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
127 128
}

I
Ingo Molnar 已提交
129 130 131
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
132 133 134 135

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
136
const_debug unsigned int sysctl_sched_features =
137
#include "features.h"
P
Peter Zijlstra 已提交
138 139 140 141 142 143 144 145
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

146
static const char * const sched_feat_names[] = {
147
#include "features.h"
P
Peter Zijlstra 已提交
148 149 150 151
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
196 197 198 199 200
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
201
	char *cmp;
P
Peter Zijlstra 已提交
202 203 204 205 206 207 208 209 210 211
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
212
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
213

H
Hillf Danton 已提交
214
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
215 216 217 218
		neg = 1;
		cmp += 3;
	}

219
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
220
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
221
			if (neg) {
P
Peter Zijlstra 已提交
222
				sysctl_sched_features &= ~(1UL << i);
223 224
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
225
				sysctl_sched_features |= (1UL << i);
226 227
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
228 229 230 231
			break;
		}
	}

232
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
233 234
		return -EINVAL;

235
	*ppos += cnt;
P
Peter Zijlstra 已提交
236 237 238 239

	return cnt;
}

L
Li Zefan 已提交
240 241 242 243 244
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

245
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
246 247 248 249 250
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
251 252 253 254 255 256 257 258 259 260
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
261
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
262

263 264 265 266 267 268
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

269 270 271 272 273 274 275 276
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
277
/*
P
Peter Zijlstra 已提交
278
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
279 280
 * default: 1s
 */
P
Peter Zijlstra 已提交
281
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
282

283
__read_mostly int scheduler_running;
284

P
Peter Zijlstra 已提交
285 286 287 288 289
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
290 291


L
Linus Torvalds 已提交
292

293
/*
294
 * __task_rq_lock - lock the rq @p resides on.
295
 */
296
static inline struct rq *__task_rq_lock(struct task_struct *p)
297 298
	__acquires(rq->lock)
{
299 300
	struct rq *rq;

301 302
	lockdep_assert_held(&p->pi_lock);

303
	for (;;) {
304
		rq = task_rq(p);
305
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
306
		if (likely(rq == task_rq(p)))
307
			return rq;
308
		raw_spin_unlock(&rq->lock);
309 310 311
	}
}

L
Linus Torvalds 已提交
312
/*
313
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
314
 */
315
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
316
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
317 318
	__acquires(rq->lock)
{
319
	struct rq *rq;
L
Linus Torvalds 已提交
320

321
	for (;;) {
322
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
323
		rq = task_rq(p);
324
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
325
		if (likely(rq == task_rq(p)))
326
			return rq;
327 328
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
329 330 331
	}
}

A
Alexey Dobriyan 已提交
332
static void __task_rq_unlock(struct rq *rq)
333 334
	__releases(rq->lock)
{
335
	raw_spin_unlock(&rq->lock);
336 337
}

338 339
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
340
	__releases(rq->lock)
341
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
342
{
343 344
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
345 346 347
}

/*
348
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
349
 */
A
Alexey Dobriyan 已提交
350
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
351 352
	__acquires(rq->lock)
{
353
	struct rq *rq;
L
Linus Torvalds 已提交
354 355 356

	local_irq_disable();
	rq = this_rq();
357
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
358 359 360 361

	return rq;
}

P
Peter Zijlstra 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

390
	raw_spin_lock(&rq->lock);
391
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
392
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
394 395 396 397

	return HRTIMER_NORESTART;
}

398
#ifdef CONFIG_SMP
399 400 401 402
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
403
{
404
	struct rq *rq = arg;
405

406
	raw_spin_lock(&rq->lock);
407 408
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
409
	raw_spin_unlock(&rq->lock);
410 411
}

412 413 414 415 416
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
417
void hrtick_start(struct rq *rq, u64 delay)
418
{
419 420
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421

422
	hrtimer_set_expires(timer, time);
423 424 425 426

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
427
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
428 429
		rq->hrtick_csd_pending = 1;
	}
430 431 432 433 434 435 436 437 438 439 440 441 442 443
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
444
		hrtick_clear(cpu_rq(cpu));
445 446 447 448 449 450
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

451
static __init void init_hrtick(void)
452 453 454
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
455 456 457 458 459 460
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
461
void hrtick_start(struct rq *rq, u64 delay)
462
{
463
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
464
			HRTIMER_MODE_REL_PINNED, 0);
465
}
466

A
Andrew Morton 已提交
467
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
468 469
{
}
470
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
471

472
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
473
{
474 475
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
476

477 478 479 480
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
481

482 483
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
484
}
A
Andrew Morton 已提交
485
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
486 487 488 489 490 491 492 493
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

494 495 496
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
497
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
498

I
Ingo Molnar 已提交
499 500 501 502 503 504 505 506 507 508
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
509
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
510 511
#endif

512
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
513 514 515
{
	int cpu;

516
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
517

518
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
519 520
		return;

521
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
522 523 524 525 526 527 528 529 530 531 532

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

533
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
534 535 536 537
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

538
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
539 540
		return;
	resched_task(cpu_curr(cpu));
541
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
542
}
543 544

#ifdef CONFIG_NO_HZ
545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

559
	rcu_read_lock();
560
	for_each_domain(cpu, sd) {
561 562 563 564 565 566
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
567
	}
568 569
unlock:
	rcu_read_unlock();
570 571
	return cpu;
}
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
598 599

	/*
600 601 602
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
603
	 */
604
	set_tsk_need_resched(rq->idle);
605

606 607 608 609
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
610 611
}

612
static inline bool got_nohz_idle_kick(void)
613
{
614 615
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
616 617
}

618
#else /* CONFIG_NO_HZ */
619

620
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
621
{
622
	return false;
P
Peter Zijlstra 已提交
623 624
}

625
#endif /* CONFIG_NO_HZ */
626

627
void sched_avg_update(struct rq *rq)
628
{
629 630 631
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
632 633 634 635 636 637
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
638 639 640
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
641 642
}

643
#else /* !CONFIG_SMP */
644
void resched_task(struct task_struct *p)
645
{
646
	assert_raw_spin_locked(&task_rq(p)->lock);
647
	set_tsk_need_resched(p);
648
}
649
#endif /* CONFIG_SMP */
650

651 652
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653
/*
654 655 656 657
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
658
 */
659
int walk_tg_tree_from(struct task_group *from,
660
			     tg_visitor down, tg_visitor up, void *data)
661 662
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
663
	int ret;
664

665 666
	parent = from;

667
down:
P
Peter Zijlstra 已提交
668 669
	ret = (*down)(parent, data);
	if (ret)
670
		goto out;
671 672 673 674 675 676 677
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
678
	ret = (*up)(parent, data);
679 680
	if (ret || parent == from)
		goto out;
681 682 683 684 685

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
686
out:
P
Peter Zijlstra 已提交
687
	return ret;
688 689
}

690
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
691
{
692
	return 0;
P
Peter Zijlstra 已提交
693
}
694 695
#endif

696 697
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
698 699 700
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
701 702 703 704
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
705
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
706
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
707 708
		return;
	}
709

710
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
711
	load->inv_weight = prio_to_wmult[prio];
712 713
}

714
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715
{
716
	update_rq_clock(rq);
I
Ingo Molnar 已提交
717
	sched_info_queued(p);
718
	p->sched_class->enqueue_task(rq, p, flags);
719 720
}

721
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722
{
723
	update_rq_clock(rq);
724
	sched_info_dequeued(p);
725
	p->sched_class->dequeue_task(rq, p, flags);
726 727
}

728
void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 730 731 732
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

733
	enqueue_task(rq, p, flags);
734 735
}

736
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 738 739 740
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

741
	dequeue_task(rq, p, flags);
742 743
}

744
static void update_rq_clock_task(struct rq *rq, s64 delta)
745
{
746 747 748 749 750 751 752 753
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
754
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
776 777
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
778
	if (static_key_false((&paravirt_steal_rq_enabled))) {
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

796 797
	rq->clock_task += delta;

798 799 800 801
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

834
/*
I
Ingo Molnar 已提交
835
 * __normal_prio - return the priority that is based on the static prio
836 837 838
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
839
	return p->static_prio;
840 841
}

842 843 844 845 846 847 848
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
849
static inline int normal_prio(struct task_struct *p)
850 851 852
{
	int prio;

853
	if (task_has_rt_policy(p))
854 855 856 857 858 859 860 861 862 863 864 865 866
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
867
static int effective_prio(struct task_struct *p)
868 869 870 871 872 873 874 875 876 877 878 879
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
880 881 882 883
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
884
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
885 886 887 888
{
	return cpu_curr(task_cpu(p)) == p;
}

889 890
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
891
				       int oldprio)
892 893 894
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
895 896 897 898
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
899 900
}

901
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
922
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
923 924 925
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
926
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
927
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
928
{
929 930 931 932 933
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
934 935
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
936 937

#ifdef CONFIG_LOCKDEP
938 939 940 941 942
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
943
	 * see task_group().
944 945 946 947
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
948 949 950
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
951 952
#endif

953
	trace_sched_migrate_task(p, new_cpu);
954

955 956
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
957
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
958
	}
I
Ingo Molnar 已提交
959 960

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
961 962
}

963
struct migration_arg {
964
	struct task_struct *task;
L
Linus Torvalds 已提交
965
	int dest_cpu;
966
};
L
Linus Torvalds 已提交
967

968 969
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
970 971 972
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
973 974 975 976 977 978 979
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
980 981 982 983 984 985
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
986
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
987 988
{
	unsigned long flags;
I
Ingo Molnar 已提交
989
	int running, on_rq;
R
Roland McGrath 已提交
990
	unsigned long ncsw;
991
	struct rq *rq;
L
Linus Torvalds 已提交
992

993 994 995 996 997 998 999 1000
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1013 1014 1015
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1016
			cpu_relax();
R
Roland McGrath 已提交
1017
		}
1018

1019 1020 1021 1022 1023 1024
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1025
		trace_sched_wait_task(p);
1026
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1027
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1028
		ncsw = 0;
1029
		if (!match_state || p->state == match_state)
1030
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1031
		task_rq_unlock(rq, p, &flags);
1032

R
Roland McGrath 已提交
1033 1034 1035 1036 1037 1038
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1049

1050 1051 1052 1053 1054
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1055
		 * So if it was still runnable (but just not actively
1056 1057 1058 1059
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1060 1061 1062 1063
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1064 1065
			continue;
		}
1066

1067 1068 1069 1070 1071 1072 1073
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1074 1075

	return ncsw;
L
Linus Torvalds 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1085
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1086 1087 1088 1089 1090
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1091
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1101
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1102
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1103

1104
#ifdef CONFIG_SMP
1105
/*
1106
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1107
 */
1108 1109 1110
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1111 1112
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1113 1114

	/* Look for allowed, online CPU in same node. */
1115
	for_each_cpu(dest_cpu, nodemask) {
1116 1117 1118 1119
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1120
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1121
			return dest_cpu;
1122
	}
1123

1124 1125
	for (;;) {
		/* Any allowed, online CPU? */
1126
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1127 1128 1129 1130 1131 1132
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1163 1164 1165 1166 1167
	}

	return dest_cpu;
}

1168
/*
1169
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1170
 */
1171
static inline
1172
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1173
{
1174
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1186
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1187
		     !cpu_online(cpu)))
1188
		cpu = select_fallback_rq(task_cpu(p), p);
1189 1190

	return cpu;
1191
}
1192 1193 1194 1195 1196 1197

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1198 1199
#endif

P
Peter Zijlstra 已提交
1200
static void
1201
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1202
{
P
Peter Zijlstra 已提交
1203
#ifdef CONFIG_SCHEDSTATS
1204 1205
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1216
		rcu_read_lock();
P
Peter Zijlstra 已提交
1217 1218 1219 1220 1221 1222
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1223
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1224
	}
1225 1226 1227 1228

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1229 1230 1231
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1232
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1233 1234

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1235
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1236 1237 1238 1239 1240 1241

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1242
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1243
	p->on_rq = 1;
1244 1245 1246 1247

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1248 1249
}

1250 1251 1252
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1253
static void
1254
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1255
{
1256
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1257 1258 1259 1260 1261 1262 1263
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1264
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1310
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1311
static void sched_ttwu_pending(void)
1312 1313
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1314 1315
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1316 1317 1318

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1319 1320 1321
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1322 1323 1324 1325 1326 1327 1328 1329
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1330
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1347
	sched_ttwu_pending();
1348 1349 1350 1351

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1352 1353
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1354
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1355
	}
1356
	irq_exit();
1357 1358 1359 1360
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1361
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1362 1363
		smp_send_reschedule(cpu);
}
1364

1365
bool cpus_share_cache(int this_cpu, int that_cpu)
1366 1367 1368
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1369
#endif /* CONFIG_SMP */
1370

1371 1372 1373 1374
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1375
#if defined(CONFIG_SMP)
1376
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1377
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1378 1379 1380 1381 1382
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1383 1384 1385
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1386 1387 1388
}

/**
L
Linus Torvalds 已提交
1389
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1390
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1391
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1392
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1393 1394 1395 1396 1397 1398 1399
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1400 1401
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1402
 */
1403 1404
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1405 1406
{
	unsigned long flags;
1407
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1408

1409
	smp_wmb();
1410
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1411
	if (!(p->state & state))
L
Linus Torvalds 已提交
1412 1413
		goto out;

1414
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1415 1416
	cpu = task_cpu(p);

1417 1418
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1419 1420

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1421
	/*
1422 1423
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1424
	 */
1425
	while (p->on_cpu)
1426
		cpu_relax();
1427
	/*
1428
	 * Pairs with the smp_wmb() in finish_lock_switch().
1429
	 */
1430
	smp_rmb();
L
Linus Torvalds 已提交
1431

1432
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1433
	p->state = TASK_WAKING;
1434

1435
	if (p->sched_class->task_waking)
1436
		p->sched_class->task_waking(p);
1437

1438
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1439 1440
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1441
		set_task_cpu(p, cpu);
1442
	}
L
Linus Torvalds 已提交
1443 1444
#endif /* CONFIG_SMP */

1445 1446
	ttwu_queue(p, cpu);
stat:
1447
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1448
out:
1449
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1450 1451 1452 1453

	return success;
}

T
Tejun Heo 已提交
1454 1455 1456 1457
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1458
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1459
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1460
 * the current task.
T
Tejun Heo 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1470 1471 1472 1473 1474 1475
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1476
	if (!(p->state & TASK_NORMAL))
1477
		goto out;
T
Tejun Heo 已提交
1478

P
Peter Zijlstra 已提交
1479
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1480 1481
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1482
	ttwu_do_wakeup(rq, p, 0);
1483
	ttwu_stat(p, smp_processor_id(), 0);
1484 1485
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1486 1487
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1499
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1500
{
1501
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1502 1503 1504
}
EXPORT_SYMBOL(wake_up_process);

1505
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511 1512
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1513 1514 1515 1516 1517
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1518 1519 1520
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1521 1522
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1523
	p->se.prev_sum_exec_runtime	= 0;
1524
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1525
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1526
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1527 1528

#ifdef CONFIG_SCHEDSTATS
1529
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1530
#endif
N
Nick Piggin 已提交
1531

P
Peter Zijlstra 已提交
1532
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1533

1534 1535 1536
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1537 1538 1539 1540 1541
}

/*
 * fork()/clone()-time setup:
 */
1542
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1543
{
1544
	unsigned long flags;
I
Ingo Molnar 已提交
1545 1546 1547
	int cpu = get_cpu();

	__sched_fork(p);
1548
	/*
1549
	 * We mark the process as running here. This guarantees that
1550 1551 1552
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1553
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1554

1555 1556 1557 1558 1559
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1560 1561 1562 1563
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1564
		if (task_has_rt_policy(p)) {
1565
			p->policy = SCHED_NORMAL;
1566
			p->static_prio = NICE_TO_PRIO(0);
1567 1568 1569 1570 1571 1572
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1573

1574 1575 1576 1577 1578 1579
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1580

H
Hiroshi Shimamoto 已提交
1581 1582
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1583

P
Peter Zijlstra 已提交
1584 1585 1586
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1587 1588 1589 1590 1591 1592 1593
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1594
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595
	set_task_cpu(p, cpu);
1596
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1597

1598
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1599
	if (likely(sched_info_on()))
1600
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1601
#endif
P
Peter Zijlstra 已提交
1602 1603
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1604
#endif
1605
#ifdef CONFIG_PREEMPT_COUNT
1606
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1607
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1608
#endif
1609
#ifdef CONFIG_SMP
1610
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1611
#endif
1612

N
Nick Piggin 已提交
1613
	put_cpu();
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1623
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1624 1625
{
	unsigned long flags;
I
Ingo Molnar 已提交
1626
	struct rq *rq;
1627

1628
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1629 1630 1631 1632 1633 1634
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1635
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1636 1637
#endif

1638
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1639
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1640
	p->on_rq = 1;
1641
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1642
	check_preempt_curr(rq, p, WF_FORK);
1643
#ifdef CONFIG_SMP
1644 1645
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1646
#endif
1647
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1648 1649
}

1650 1651 1652
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1653
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1654
 * @notifier: notifier struct to register
1655 1656 1657 1658 1659 1660 1661 1662 1663
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1664
 * @notifier: notifier struct to unregister
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1694
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1706
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1707

1708 1709 1710
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1711
 * @prev: the current task that is being switched out
1712 1713 1714 1715 1716 1717 1718 1719 1720
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1721 1722 1723
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1724
{
1725
	trace_sched_switch(prev, next);
1726 1727
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1728
	fire_sched_out_preempt_notifiers(prev, next);
1729 1730 1731 1732
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1733 1734
/**
 * finish_task_switch - clean up after a task-switch
1735
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1736 1737
 * @prev: the thread we just switched away from.
 *
1738 1739 1740 1741
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1742 1743
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1744
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1745 1746 1747
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1748
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1749 1750 1751
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1752
	long prev_state;
L
Linus Torvalds 已提交
1753 1754 1755 1756 1757

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1758
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1759 1760
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1761
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1767
	prev_state = prev->state;
1768
	vtime_task_switch(prev);
1769
	finish_arch_switch(prev);
1770
	perf_event_task_sched_in(prev, current);
1771
	finish_lock_switch(rq, prev);
1772
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1773

1774
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1775 1776
	if (mm)
		mmdrop(mm);
1777
	if (unlikely(prev_state == TASK_DEAD)) {
1778 1779 1780
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1781
		 */
1782
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1783
		put_task_struct(prev);
1784
	}
L
Linus Torvalds 已提交
1785 1786
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1802
		raw_spin_lock_irqsave(&rq->lock, flags);
1803 1804
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1805
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1806 1807 1808 1809 1810 1811

		rq->post_schedule = 0;
	}
}

#else
1812

1813 1814 1815 1816 1817 1818
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1819 1820
}

1821 1822
#endif

L
Linus Torvalds 已提交
1823 1824 1825 1826
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1827
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1828 1829
	__releases(rq->lock)
{
1830 1831
	struct rq *rq = this_rq();

1832
	finish_task_switch(rq, prev);
1833

1834 1835 1836 1837 1838
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1839

1840 1841 1842 1843
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1844
	if (current->set_child_tid)
1845
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1852
static inline void
1853
context_switch(struct rq *rq, struct task_struct *prev,
1854
	       struct task_struct *next)
L
Linus Torvalds 已提交
1855
{
I
Ingo Molnar 已提交
1856
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1857

1858
	prepare_task_switch(rq, prev, next);
1859

I
Ingo Molnar 已提交
1860 1861
	mm = next->mm;
	oldmm = prev->active_mm;
1862 1863 1864 1865 1866
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1867
	arch_start_context_switch(prev);
1868

1869
	if (!mm) {
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1876
	if (!prev->mm) {
L
Linus Torvalds 已提交
1877 1878 1879
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1880 1881 1882 1883 1884 1885 1886
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1887
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1888
#endif
L
Linus Torvalds 已提交
1889

1890
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
1891 1892 1893
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1894 1895 1896 1897 1898 1899 1900
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1918
}
L
Linus Torvalds 已提交
1919 1920

unsigned long nr_uninterruptible(void)
1921
{
L
Linus Torvalds 已提交
1922
	unsigned long i, sum = 0;
1923

1924
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1925
		sum += cpu_rq(i)->nr_uninterruptible;
1926 1927

	/*
L
Linus Torvalds 已提交
1928 1929
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1930
	 */
L
Linus Torvalds 已提交
1931 1932
	if (unlikely((long)sum < 0))
		sum = 0;
1933

L
Linus Torvalds 已提交
1934
	return sum;
1935 1936
}

L
Linus Torvalds 已提交
1937
unsigned long long nr_context_switches(void)
1938
{
1939 1940
	int i;
	unsigned long long sum = 0;
1941

1942
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1943
		sum += cpu_rq(i)->nr_switches;
1944

L
Linus Torvalds 已提交
1945 1946
	return sum;
}
1947

L
Linus Torvalds 已提交
1948 1949 1950
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
1951

1952
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1953
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1954

L
Linus Torvalds 已提交
1955 1956
	return sum;
}
1957

1958
unsigned long nr_iowait_cpu(int cpu)
1959
{
1960
	struct rq *this = cpu_rq(cpu);
1961 1962
	return atomic_read(&this->nr_iowait);
}
1963

1964 1965 1966 1967 1968
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
1969

1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2018 2019 2020 2021
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2054 2055 2056
/*
 * a1 = a0 * e + a * (1 - e)
 */
2057 2058 2059 2060 2061 2062 2063 2064 2065
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2066 2067
#ifdef CONFIG_NO_HZ
/*
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2106 2107 2108
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2109 2110
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2111

2112
static inline int calc_load_write_idx(void)
2113
{
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2140 2141
	long delta;

2142 2143 2144 2145
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2146
	delta = calc_load_fold_active(this_rq);
2147 2148 2149 2150
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2151 2152
}

2153
void calc_load_exit_idle(void)
2154
{
2155 2156 2157 2158 2159 2160 2161
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2162 2163

	/*
2164 2165 2166
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2167
	 */
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2180 2181 2182

	return delta;
}
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2261
static void calc_global_nohz(void)
2262 2263 2264
{
	long delta, active, n;

2265 2266 2267 2268 2269 2270
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2271

2272 2273
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2274

2275 2276 2277
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2278

2279 2280
		calc_load_update += n * LOAD_FREQ;
	}
2281

2282 2283 2284 2285 2286 2287 2288 2289 2290
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2291
}
2292
#else /* !CONFIG_NO_HZ */
2293

2294 2295
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2296

2297
#endif /* CONFIG_NO_HZ */
2298 2299

/*
2300 2301
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2302
 */
2303
void calc_global_load(unsigned long ticks)
2304
{
2305
	long active, delta;
L
Linus Torvalds 已提交
2306

2307
	if (time_before(jiffies, calc_load_update + 10))
2308
		return;
L
Linus Torvalds 已提交
2309

2310 2311 2312 2313 2314 2315 2316
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2317 2318
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2319

2320 2321 2322
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2323

2324
	calc_load_update += LOAD_FREQ;
2325 2326

	/*
2327
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2328 2329
	 */
	calc_global_nohz();
2330
}
L
Linus Torvalds 已提交
2331

2332
/*
2333 2334
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2335 2336 2337
 */
static void calc_load_account_active(struct rq *this_rq)
{
2338
	long delta;
2339

2340 2341
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2342

2343 2344
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2345
		atomic_long_add(delta, &calc_load_tasks);
2346 2347

	this_rq->calc_load_update += LOAD_FREQ;
2348 2349
}

2350 2351 2352 2353
/*
 * End of global load-average stuff
 */

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2421
/*
I
Ingo Molnar 已提交
2422
 * Update rq->cpu_load[] statistics. This function is usually called every
2423 2424
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2425
 */
2426 2427
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2428
{
I
Ingo Molnar 已提交
2429
	int i, scale;
2430

I
Ingo Molnar 已提交
2431
	this_rq->nr_load_updates++;
2432

I
Ingo Molnar 已提交
2433
	/* Update our load: */
2434 2435
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2436
		unsigned long old_load, new_load;
2437

I
Ingo Molnar 已提交
2438
		/* scale is effectively 1 << i now, and >> i divides by scale */
2439

I
Ingo Molnar 已提交
2440
		old_load = this_rq->cpu_load[i];
2441
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2442
		new_load = this_load;
I
Ingo Molnar 已提交
2443 2444 2445 2446 2447 2448
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2449 2450 2451
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2452
	}
2453 2454

	sched_avg_update(this_rq);
2455 2456
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2471 2472 2473 2474 2475 2476
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2477
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2478 2479 2480 2481
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2482
	 * bail if there's load or we're actually up-to-date.
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2519 2520 2521
/*
 * Called from scheduler_tick()
 */
2522 2523
static void update_cpu_load_active(struct rq *this_rq)
{
2524
	/*
2525
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2526 2527 2528
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2529

2530
	calc_load_account_active(this_rq);
2531 2532
}

I
Ingo Molnar 已提交
2533
#ifdef CONFIG_SMP
2534

2535
/*
P
Peter Zijlstra 已提交
2536 2537
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2538
 */
P
Peter Zijlstra 已提交
2539
void sched_exec(void)
2540
{
P
Peter Zijlstra 已提交
2541
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2542
	unsigned long flags;
2543
	int dest_cpu;
2544

2545
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2546
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2547 2548
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2549

2550
	if (likely(cpu_active(dest_cpu))) {
2551
		struct migration_arg arg = { p, dest_cpu };
2552

2553 2554
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2555 2556
		return;
	}
2557
unlock:
2558
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2559
}
I
Ingo Molnar 已提交
2560

L
Linus Torvalds 已提交
2561 2562 2563
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2564
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2565 2566

EXPORT_PER_CPU_SYMBOL(kstat);
2567
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2568 2569

/*
2570
 * Return any ns on the sched_clock that have not yet been accounted in
2571
 * @p in case that task is currently running.
2572 2573
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2574
 */
2575 2576 2577 2578 2579 2580
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2581
		ns = rq->clock_task - p->se.exec_start;
2582 2583 2584 2585 2586 2587 2588
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2589
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2590 2591
{
	unsigned long flags;
2592
	struct rq *rq;
2593
	u64 ns = 0;
2594

2595
	rq = task_rq_lock(p, &flags);
2596
	ns = do_task_delta_exec(p, rq);
2597
	task_rq_unlock(rq, p, &flags);
2598

2599 2600
	return ns;
}
2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2615
	task_rq_unlock(rq, p, &flags);
2616 2617 2618

	return ns;
}
2619

2620 2621 2622 2623 2624 2625 2626 2627
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2628
	struct task_struct *curr = rq->curr;
2629 2630

	sched_clock_tick();
I
Ingo Molnar 已提交
2631

2632
	raw_spin_lock(&rq->lock);
2633
	update_rq_clock(rq);
2634
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2635
	curr->sched_class->task_tick(rq, curr, 0);
2636
	raw_spin_unlock(&rq->lock);
2637

2638
	perf_event_task_tick();
2639

2640
#ifdef CONFIG_SMP
2641
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2642
	trigger_load_balance(rq, cpu);
2643
#endif
L
Linus Torvalds 已提交
2644 2645
}

2646
notrace unsigned long get_parent_ip(unsigned long addr)
2647 2648 2649 2650 2651 2652 2653 2654
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2655

2656 2657 2658
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2659
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2660
{
2661
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2662 2663 2664
	/*
	 * Underflow?
	 */
2665 2666
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2667
#endif
L
Linus Torvalds 已提交
2668
	preempt_count() += val;
2669
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2670 2671 2672
	/*
	 * Spinlock count overflowing soon?
	 */
2673 2674
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2675 2676 2677
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2678 2679 2680
}
EXPORT_SYMBOL(add_preempt_count);

2681
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2682
{
2683
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2684 2685 2686
	/*
	 * Underflow?
	 */
2687
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2688
		return;
L
Linus Torvalds 已提交
2689 2690 2691
	/*
	 * Is the spinlock portion underflowing?
	 */
2692 2693 2694
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2695
#endif
2696

2697 2698
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703 2704 2705
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2706
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2707
 */
I
Ingo Molnar 已提交
2708
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2709
{
2710 2711 2712
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2713 2714
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2715

I
Ingo Molnar 已提交
2716
	debug_show_held_locks(prev);
2717
	print_modules();
I
Ingo Molnar 已提交
2718 2719
	if (irqs_disabled())
		print_irqtrace_events(prev);
2720
	dump_stack();
2721
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2722
}
L
Linus Torvalds 已提交
2723

I
Ingo Molnar 已提交
2724 2725 2726 2727 2728
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2729
	/*
I
Ingo Molnar 已提交
2730
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2731 2732 2733
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2734
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2735
		__schedule_bug(prev);
2736
	rcu_sleep_check();
I
Ingo Molnar 已提交
2737

L
Linus Torvalds 已提交
2738 2739
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2740
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2741 2742
}

P
Peter Zijlstra 已提交
2743
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2744
{
2745
	if (prev->on_rq || rq->skip_clock_update < 0)
2746
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2747
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2748 2749
}

I
Ingo Molnar 已提交
2750 2751 2752 2753
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2754
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2755
{
2756
	const struct sched_class *class;
I
Ingo Molnar 已提交
2757
	struct task_struct *p;
L
Linus Torvalds 已提交
2758 2759

	/*
I
Ingo Molnar 已提交
2760 2761
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2762
	 */
2763
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2764
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2765 2766
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2767 2768
	}

2769
	for_each_class(class) {
2770
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2771 2772 2773
		if (p)
			return p;
	}
2774 2775

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2776
}
L
Linus Torvalds 已提交
2777

I
Ingo Molnar 已提交
2778
/*
2779
 * __schedule() is the main scheduler function.
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2814
 */
2815
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2816 2817
{
	struct task_struct *prev, *next;
2818
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2819
	struct rq *rq;
2820
	int cpu;
I
Ingo Molnar 已提交
2821

2822 2823
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2824 2825
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2826
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2827 2828 2829
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2830

2831
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2832
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2833

2834
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2835

2836
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2837
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2838
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2839
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2840
		} else {
2841 2842 2843
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2844
			/*
2845 2846 2847
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2857
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2858 2859
	}

2860
	pre_schedule(rq, prev);
2861

I
Ingo Molnar 已提交
2862
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2863 2864
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2865
	put_prev_task(rq, prev);
2866
	next = pick_next_task(rq);
2867 2868
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2875
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2876
		/*
2877 2878 2879 2880
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2881 2882 2883
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2884
	} else
2885
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2886

2887
	post_schedule(rq);
L
Linus Torvalds 已提交
2888

2889
	sched_preempt_enable_no_resched();
2890
	if (need_resched())
L
Linus Torvalds 已提交
2891 2892
		goto need_resched;
}
2893

2894 2895
static inline void sched_submit_work(struct task_struct *tsk)
{
2896
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2897 2898 2899 2900 2901 2902 2903 2904 2905
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2906
asmlinkage void __sched schedule(void)
2907
{
2908 2909 2910
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2911 2912
	__schedule();
}
L
Linus Torvalds 已提交
2913 2914
EXPORT_SYMBOL(schedule);

2915
#ifdef CONFIG_CONTEXT_TRACKING
2916 2917 2918 2919 2920 2921 2922 2923
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2924
	user_exit();
2925
	schedule();
2926
	user_enter();
2927 2928 2929
}
#endif

2930 2931 2932 2933 2934 2935 2936
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2937
	sched_preempt_enable_no_resched();
2938 2939 2940 2941
	schedule();
	preempt_disable();
}

2942
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2943

2944 2945 2946
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2947
		return false;
2948 2949

	/*
2950 2951 2952 2953
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
2954
	 */
2955
	barrier();
2956

2957
	return owner->on_cpu;
2958
}
2959

2960 2961 2962 2963 2964 2965 2966 2967
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
2968

2969
	rcu_read_lock();
2970 2971
	while (owner_running(lock, owner)) {
		if (need_resched())
2972
			break;
2973

2974
		arch_mutex_cpu_relax();
2975
	}
2976
	rcu_read_unlock();
2977

2978
	/*
2979 2980 2981
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
2982
	 */
2983
	return lock->owner == NULL;
2984 2985 2986
}
#endif

L
Linus Torvalds 已提交
2987 2988
#ifdef CONFIG_PREEMPT
/*
2989
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2990
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2991 2992
 * occur there and call schedule directly.
 */
2993
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2994 2995
{
	struct thread_info *ti = current_thread_info();
2996

L
Linus Torvalds 已提交
2997 2998
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2999
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3000
	 */
N
Nick Piggin 已提交
3001
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3002 3003
		return;

3004
	do {
3005
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3006
		__schedule();
3007
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3008

3009 3010 3011 3012 3013
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3014
	} while (need_resched());
L
Linus Torvalds 已提交
3015 3016 3017 3018
}
EXPORT_SYMBOL(preempt_schedule);

/*
3019
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3020 3021 3022 3023 3024 3025 3026
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3027

3028
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3029 3030
	BUG_ON(ti->preempt_count || !irqs_disabled());

3031
	user_exit();
3032 3033 3034
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3035
		__schedule();
3036 3037
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3038

3039 3040 3041 3042 3043
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3044
	} while (need_resched());
L
Linus Torvalds 已提交
3045 3046 3047 3048
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3049
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3050
			  void *key)
L
Linus Torvalds 已提交
3051
{
P
Peter Zijlstra 已提交
3052
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3053 3054 3055 3056
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3057 3058
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3059 3060 3061
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3062
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3063 3064
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3065
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3066
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3067
{
3068
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3069

3070
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3071 3072
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3073
		if (curr->func(curr, mode, wake_flags, key) &&
3074
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3084
 * @key: is directly passed to the wakeup function
3085 3086 3087
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3088
 */
3089
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3090
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3103
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3104
{
3105
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3106
}
3107
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3108

3109 3110 3111 3112
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3113
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3114

L
Linus Torvalds 已提交
3115
/**
3116
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3117 3118 3119
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3120
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3121 3122 3123 3124 3125 3126 3127
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3128 3129 3130
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3131
 */
3132 3133
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3134 3135
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3136
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3137 3138 3139 3140 3141

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3142
		wake_flags = 0;
L
Linus Torvalds 已提交
3143 3144

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3145
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3146 3147
	spin_unlock_irqrestore(&q->lock, flags);
}
3148 3149 3150 3151 3152 3153 3154 3155 3156
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3157 3158
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3159 3160 3161 3162 3163 3164 3165 3166
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3167 3168 3169
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3170
 */
3171
void complete(struct completion *x)
L
Linus Torvalds 已提交
3172 3173 3174 3175 3176
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3177
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3178 3179 3180 3181
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3182 3183 3184 3185 3186
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3187 3188 3189
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3190
 */
3191
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3192 3193 3194 3195 3196
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3197
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3198 3199 3200 3201
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3202 3203
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3204 3205 3206 3207
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3208
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3209
		do {
3210
			if (signal_pending_state(state, current)) {
3211 3212
				timeout = -ERESTARTSYS;
				break;
3213 3214
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3215 3216 3217
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3218
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3219
		__remove_wait_queue(&x->wait, &wait);
3220 3221
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3222 3223
	}
	x->done--;
3224
	return timeout ?: 1;
L
Linus Torvalds 已提交
3225 3226
}

3227 3228
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3229 3230 3231 3232
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3233
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3234
	spin_unlock_irq(&x->wait.lock);
3235 3236
	return timeout;
}
L
Linus Torvalds 已提交
3237

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3248
void __sched wait_for_completion(struct completion *x)
3249 3250
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3251
}
3252
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3253

3254 3255 3256 3257 3258 3259 3260 3261
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3262 3263 3264
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3265
 */
3266
unsigned long __sched
3267
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3268
{
3269
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3270
}
3271
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3272

3273 3274 3275 3276 3277 3278
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3279 3280
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3281
 */
3282
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3283
{
3284 3285 3286 3287
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3288
}
3289
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3290

3291 3292 3293 3294 3295 3296 3297
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3298 3299 3300
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3301
 */
3302
long __sched
3303 3304
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3305
{
3306
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3307
}
3308
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3309

3310 3311 3312 3313 3314 3315
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3316 3317
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3318
 */
M
Matthew Wilcox 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3328 3329 3330 3331 3332 3333 3334 3335
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3336 3337 3338
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3339
 */
3340
long __sched
3341 3342 3343 3344 3345 3346 3347
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3362
	unsigned long flags;
3363 3364
	int ret = 1;

3365
	spin_lock_irqsave(&x->wait.lock, flags);
3366 3367 3368 3369
	if (!x->done)
		ret = 0;
	else
		x->done--;
3370
	spin_unlock_irqrestore(&x->wait.lock, flags);
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3385
	unsigned long flags;
3386 3387
	int ret = 1;

3388
	spin_lock_irqsave(&x->wait.lock, flags);
3389 3390
	if (!x->done)
		ret = 0;
3391
	spin_unlock_irqrestore(&x->wait.lock, flags);
3392 3393 3394 3395
	return ret;
}
EXPORT_SYMBOL(completion_done);

3396 3397
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3398
{
I
Ingo Molnar 已提交
3399 3400 3401 3402
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3403

3404
	__set_current_state(state);
L
Linus Torvalds 已提交
3405

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3420 3421 3422
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3423
long __sched
I
Ingo Molnar 已提交
3424
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3425
{
3426
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3427 3428 3429
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3430
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3431
{
3432
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3433 3434 3435
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3436
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3437
{
3438
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3439 3440 3441
}
EXPORT_SYMBOL(sleep_on_timeout);

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3454
void rt_mutex_setprio(struct task_struct *p, int prio)
3455
{
3456
	int oldprio, on_rq, running;
3457
	struct rq *rq;
3458
	const struct sched_class *prev_class;
3459 3460 3461

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3462
	rq = __task_rq_lock(p);
3463

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3482
	trace_sched_pi_setprio(p, prio);
3483
	oldprio = p->prio;
3484
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3485
	on_rq = p->on_rq;
3486
	running = task_current(rq, p);
3487
	if (on_rq)
3488
		dequeue_task(rq, p, 0);
3489 3490
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3491 3492 3493 3494 3495 3496

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3497 3498
	p->prio = prio;

3499 3500
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3501
	if (on_rq)
3502
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3503

P
Peter Zijlstra 已提交
3504
	check_class_changed(rq, p, prev_class, oldprio);
3505
out_unlock:
3506
	__task_rq_unlock(rq);
3507 3508
}
#endif
3509
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3510
{
I
Ingo Molnar 已提交
3511
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3512
	unsigned long flags;
3513
	struct rq *rq;
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3526
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3527
	 */
3528
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3529 3530 3531
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3532
	on_rq = p->on_rq;
3533
	if (on_rq)
3534
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3535 3536

	p->static_prio = NICE_TO_PRIO(nice);
3537
	set_load_weight(p);
3538 3539 3540
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3541

I
Ingo Molnar 已提交
3542
	if (on_rq) {
3543
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3544
		/*
3545 3546
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3547
		 */
3548
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3549 3550 3551
			resched_task(rq->curr);
	}
out_unlock:
3552
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3553 3554 3555
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3556 3557 3558 3559 3560
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3561
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3562
{
3563 3564
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3565

3566
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3567 3568 3569
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3570 3571 3572 3573 3574 3575 3576 3577 3578
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3579
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3580
{
3581
	long nice, retval;
L
Linus Torvalds 已提交
3582 3583 3584 3585 3586 3587

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3588 3589
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3590 3591 3592
	if (increment > 40)
		increment = 40;

3593
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3594 3595 3596 3597 3598
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3599 3600 3601
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3620
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3621 3622 3623 3624 3625 3626 3627 3628
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3629
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3630 3631 3632
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3633
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3634 3635 3636 3637 3638 3639 3640

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3655 3656 3657 3658 3659 3660
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3661
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3662 3663 3664 3665 3666 3667 3668 3669
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3670
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3671
{
3672
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3673 3674 3675
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3676 3677
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3678 3679 3680
{
	p->policy = policy;
	p->rt_priority = prio;
3681 3682 3683
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3684 3685 3686 3687
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3688
	set_load_weight(p);
L
Linus Torvalds 已提交
3689 3690
}

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3701 3702
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3703 3704 3705 3706
	rcu_read_unlock();
	return match;
}

3707
static int __sched_setscheduler(struct task_struct *p, int policy,
3708
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3709
{
3710
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3711
	unsigned long flags;
3712
	const struct sched_class *prev_class;
3713
	struct rq *rq;
3714
	int reset_on_fork;
L
Linus Torvalds 已提交
3715

3716 3717
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3718 3719
recheck:
	/* double check policy once rq lock held */
3720 3721
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3722
		policy = oldpolicy = p->policy;
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3733 3734
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3735 3736
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3737 3738
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3739
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3740
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3741
		return -EINVAL;
3742
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3743 3744
		return -EINVAL;

3745 3746 3747
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3748
	if (user && !capable(CAP_SYS_NICE)) {
3749
		if (rt_policy(policy)) {
3750 3751
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3762

I
Ingo Molnar 已提交
3763
		/*
3764 3765
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3766
		 */
3767 3768 3769 3770
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3771

3772
		/* can't change other user's priorities */
3773
		if (!check_same_owner(p))
3774
			return -EPERM;
3775 3776 3777 3778

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3779
	}
L
Linus Torvalds 已提交
3780

3781
	if (user) {
3782
		retval = security_task_setscheduler(p);
3783 3784 3785 3786
		if (retval)
			return retval;
	}

3787 3788 3789
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3790
	 *
L
Lucas De Marchi 已提交
3791
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3792 3793
	 * runqueue lock must be held.
	 */
3794
	rq = task_rq_lock(p, &flags);
3795

3796 3797 3798 3799
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3800
		task_rq_unlock(rq, p, &flags);
3801 3802 3803
		return -EINVAL;
	}

3804 3805 3806 3807 3808
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3809
		task_rq_unlock(rq, p, &flags);
3810 3811 3812
		return 0;
	}

3813 3814 3815 3816 3817 3818 3819
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3820 3821
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3822
			task_rq_unlock(rq, p, &flags);
3823 3824 3825 3826 3827
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3828 3829 3830
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3831
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3832 3833
		goto recheck;
	}
P
Peter Zijlstra 已提交
3834
	on_rq = p->on_rq;
3835
	running = task_current(rq, p);
3836
	if (on_rq)
3837
		dequeue_task(rq, p, 0);
3838 3839
	if (running)
		p->sched_class->put_prev_task(rq, p);
3840

3841 3842
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3843
	oldprio = p->prio;
3844
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3845
	__setscheduler(rq, p, policy, param->sched_priority);
3846

3847 3848
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3849
	if (on_rq)
3850
		enqueue_task(rq, p, 0);
3851

P
Peter Zijlstra 已提交
3852
	check_class_changed(rq, p, prev_class, oldprio);
3853
	task_rq_unlock(rq, p, &flags);
3854

3855 3856
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3857 3858
	return 0;
}
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3869
		       const struct sched_param *param)
3870 3871 3872
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3873 3874
EXPORT_SYMBOL_GPL(sched_setscheduler);

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3887
			       const struct sched_param *param)
3888 3889 3890 3891
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3892 3893
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3894 3895 3896
{
	struct sched_param lparam;
	struct task_struct *p;
3897
	int retval;
L
Linus Torvalds 已提交
3898 3899 3900 3901 3902

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3903 3904 3905

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3906
	p = find_process_by_pid(pid);
3907 3908 3909
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3910

L
Linus Torvalds 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3920 3921
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3922
{
3923 3924 3925 3926
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3927 3928 3929 3930 3931 3932 3933 3934
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3935
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3936 3937 3938 3939 3940 3941 3942 3943
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3944
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3945
{
3946
	struct task_struct *p;
3947
	int retval;
L
Linus Torvalds 已提交
3948 3949

	if (pid < 0)
3950
		return -EINVAL;
L
Linus Torvalds 已提交
3951 3952

	retval = -ESRCH;
3953
	rcu_read_lock();
L
Linus Torvalds 已提交
3954 3955 3956 3957
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3958 3959
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3960
	}
3961
	rcu_read_unlock();
L
Linus Torvalds 已提交
3962 3963 3964 3965
	return retval;
}

/**
3966
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3967 3968 3969
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
3970
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3971 3972
{
	struct sched_param lp;
3973
	struct task_struct *p;
3974
	int retval;
L
Linus Torvalds 已提交
3975 3976

	if (!param || pid < 0)
3977
		return -EINVAL;
L
Linus Torvalds 已提交
3978

3979
	rcu_read_lock();
L
Linus Torvalds 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
3990
	rcu_read_unlock();
L
Linus Torvalds 已提交
3991 3992 3993 3994 3995 3996 3997 3998 3999

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4000
	rcu_read_unlock();
L
Linus Torvalds 已提交
4001 4002 4003
	return retval;
}

4004
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4005
{
4006
	cpumask_var_t cpus_allowed, new_mask;
4007 4008
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4009

4010
	get_online_cpus();
4011
	rcu_read_lock();
L
Linus Torvalds 已提交
4012 4013 4014

	p = find_process_by_pid(pid);
	if (!p) {
4015
		rcu_read_unlock();
4016
		put_online_cpus();
L
Linus Torvalds 已提交
4017 4018 4019
		return -ESRCH;
	}

4020
	/* Prevent p going away */
L
Linus Torvalds 已提交
4021
	get_task_struct(p);
4022
	rcu_read_unlock();
L
Linus Torvalds 已提交
4023

4024 4025 4026 4027 4028 4029 4030 4031
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4032
	retval = -EPERM;
4033
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4034 4035
		goto out_unlock;

4036
	retval = security_task_setscheduler(p);
4037 4038 4039
	if (retval)
		goto out_unlock;

4040 4041
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4042
again:
4043
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4044

P
Paul Menage 已提交
4045
	if (!retval) {
4046 4047
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4048 4049 4050 4051 4052
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4053
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4054 4055 4056
			goto again;
		}
	}
L
Linus Torvalds 已提交
4057
out_unlock:
4058 4059 4060 4061
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4062
	put_task_struct(p);
4063
	put_online_cpus();
L
Linus Torvalds 已提交
4064 4065 4066 4067
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4068
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4069
{
4070 4071 4072 4073 4074
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4075 4076 4077 4078 4079 4080 4081 4082 4083
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4084 4085
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4086
{
4087
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4088 4089
	int retval;

4090 4091
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4092

4093 4094 4095 4096 4097
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4098 4099
}

4100
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4101
{
4102
	struct task_struct *p;
4103
	unsigned long flags;
L
Linus Torvalds 已提交
4104 4105
	int retval;

4106
	get_online_cpus();
4107
	rcu_read_lock();
L
Linus Torvalds 已提交
4108 4109 4110 4111 4112 4113

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4114 4115 4116 4117
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4118
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4119
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4120
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4121 4122

out_unlock:
4123
	rcu_read_unlock();
4124
	put_online_cpus();
L
Linus Torvalds 已提交
4125

4126
	return retval;
L
Linus Torvalds 已提交
4127 4128 4129 4130 4131 4132 4133 4134
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4135 4136
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4137 4138
{
	int ret;
4139
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4140

A
Anton Blanchard 已提交
4141
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4142 4143
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4144 4145
		return -EINVAL;

4146 4147
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4148

4149 4150
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4151
		size_t retlen = min_t(size_t, len, cpumask_size());
4152 4153

		if (copy_to_user(user_mask_ptr, mask, retlen))
4154 4155
			ret = -EFAULT;
		else
4156
			ret = retlen;
4157 4158
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4159

4160
	return ret;
L
Linus Torvalds 已提交
4161 4162 4163 4164 4165
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4166 4167
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4168
 */
4169
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4170
{
4171
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4172

4173
	schedstat_inc(rq, yld_count);
4174
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4181
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4182
	do_raw_spin_unlock(&rq->lock);
4183
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4184 4185 4186 4187 4188 4189

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4190 4191 4192 4193 4194
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4195
static void __cond_resched(void)
L
Linus Torvalds 已提交
4196
{
4197
	add_preempt_count(PREEMPT_ACTIVE);
4198
	__schedule();
4199
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4200 4201
}

4202
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4203
{
P
Peter Zijlstra 已提交
4204
	if (should_resched()) {
L
Linus Torvalds 已提交
4205 4206 4207 4208 4209
		__cond_resched();
		return 1;
	}
	return 0;
}
4210
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4211 4212

/*
4213
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4214 4215
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4216
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4217 4218 4219
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4220
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4221
{
P
Peter Zijlstra 已提交
4222
	int resched = should_resched();
J
Jan Kara 已提交
4223 4224
	int ret = 0;

4225 4226
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4227
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4228
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4229
		if (resched)
N
Nick Piggin 已提交
4230 4231 4232
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4233
		ret = 1;
L
Linus Torvalds 已提交
4234 4235
		spin_lock(lock);
	}
J
Jan Kara 已提交
4236
	return ret;
L
Linus Torvalds 已提交
4237
}
4238
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4239

4240
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4241 4242 4243
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4244
	if (should_resched()) {
4245
		local_bh_enable();
L
Linus Torvalds 已提交
4246 4247 4248 4249 4250 4251
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4252
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4253 4254 4255 4256

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279 4280 4281 4282
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4283 4284 4285 4286
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4287 4288
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4323
	if (yielded) {
4324
		schedstat_inc(rq, yld_count);
4325 4326 4327 4328 4329 4330 4331
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4344
/*
I
Ingo Molnar 已提交
4345
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4346 4347 4348 4349
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4350
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4351

4352
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4353
	atomic_inc(&rq->nr_iowait);
4354
	blk_flush_plug(current);
4355
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4356
	schedule();
4357
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4358
	atomic_dec(&rq->nr_iowait);
4359
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4360 4361 4362 4363 4364
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4365
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4366 4367
	long ret;

4368
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4369
	atomic_inc(&rq->nr_iowait);
4370
	blk_flush_plug(current);
4371
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4372
	ret = schedule_timeout(timeout);
4373
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4374
	atomic_dec(&rq->nr_iowait);
4375
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4386
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4396
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4397
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4411
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4421
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4422
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4436
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4437
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4438
{
4439
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4440
	unsigned int time_slice;
4441 4442
	unsigned long flags;
	struct rq *rq;
4443
	int retval;
L
Linus Torvalds 已提交
4444 4445 4446
	struct timespec t;

	if (pid < 0)
4447
		return -EINVAL;
L
Linus Torvalds 已提交
4448 4449

	retval = -ESRCH;
4450
	rcu_read_lock();
L
Linus Torvalds 已提交
4451 4452 4453 4454 4455 4456 4457 4458
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4459 4460
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4461
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4462

4463
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4464
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4465 4466
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4467

L
Linus Torvalds 已提交
4468
out_unlock:
4469
	rcu_read_unlock();
L
Linus Torvalds 已提交
4470 4471 4472
	return retval;
}

4473
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4474

4475
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4476 4477
{
	unsigned long free = 0;
4478
	int ppid;
4479
	unsigned state;
L
Linus Torvalds 已提交
4480 4481

	state = p->state ? __ffs(p->state) + 1 : 0;
4482
	printk(KERN_INFO "%-15.15s %c", p->comm,
4483
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4484
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4485
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4486
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4487
	else
P
Peter Zijlstra 已提交
4488
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4489 4490
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4491
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4492
	else
P
Peter Zijlstra 已提交
4493
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4494 4495
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4496
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4497
#endif
4498 4499 4500
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4501
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4502
		task_pid_nr(p), ppid,
4503
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4504

4505
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4506 4507
}

I
Ingo Molnar 已提交
4508
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4509
{
4510
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4511

4512
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4513 4514
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4515
#else
P
Peter Zijlstra 已提交
4516 4517
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4518
#endif
4519
	rcu_read_lock();
L
Linus Torvalds 已提交
4520 4521 4522
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4523
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4524 4525
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4526
		if (!state_filter || (p->state & state_filter))
4527
			sched_show_task(p);
L
Linus Torvalds 已提交
4528 4529
	} while_each_thread(g, p);

4530 4531
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4532 4533 4534
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4535
	rcu_read_unlock();
I
Ingo Molnar 已提交
4536 4537 4538
	/*
	 * Only show locks if all tasks are dumped:
	 */
4539
	if (!state_filter)
I
Ingo Molnar 已提交
4540
		debug_show_all_locks();
L
Linus Torvalds 已提交
4541 4542
}

I
Ingo Molnar 已提交
4543 4544
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4545
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4546 4547
}

4548 4549 4550 4551 4552 4553 4554 4555
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4556
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4557
{
4558
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4559 4560
	unsigned long flags;

4561
	raw_spin_lock_irqsave(&rq->lock, flags);
4562

I
Ingo Molnar 已提交
4563
	__sched_fork(idle);
4564
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4565 4566
	idle->se.exec_start = sched_clock();

4567
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4579
	__set_task_cpu(idle, cpu);
4580
	rcu_read_unlock();
L
Linus Torvalds 已提交
4581 4582

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4583 4584
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4585
#endif
4586
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4587 4588

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4589
	task_thread_info(idle)->preempt_count = 0;
4590

I
Ingo Molnar 已提交
4591 4592 4593 4594
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4595
	ftrace_graph_init_idle_task(idle, cpu);
4596 4597 4598
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4599 4600
}

L
Linus Torvalds 已提交
4601
#ifdef CONFIG_SMP
4602 4603 4604 4605
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4606 4607

	cpumask_copy(&p->cpus_allowed, new_mask);
4608
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4609 4610
}

L
Linus Torvalds 已提交
4611 4612 4613
/*
 * This is how migration works:
 *
4614 4615 4616 4617 4618 4619
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4620
 *    it and puts it into the right queue.
4621 4622
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4623 4624 4625 4626 4627 4628 4629 4630
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4631
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4632 4633
 * call is not atomic; no spinlocks may be held.
 */
4634
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4635 4636
{
	unsigned long flags;
4637
	struct rq *rq;
4638
	unsigned int dest_cpu;
4639
	int ret = 0;
L
Linus Torvalds 已提交
4640 4641

	rq = task_rq_lock(p, &flags);
4642

4643 4644 4645
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4646
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4647 4648 4649 4650
		ret = -EINVAL;
		goto out;
	}

4651
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4652 4653 4654 4655
		ret = -EINVAL;
		goto out;
	}

4656
	do_set_cpus_allowed(p, new_mask);
4657

L
Linus Torvalds 已提交
4658
	/* Can the task run on the task's current CPU? If so, we're done */
4659
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4660 4661
		goto out;

4662
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4663
	if (p->on_rq) {
4664
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4665
		/* Need help from migration thread: drop lock and wait. */
4666
		task_rq_unlock(rq, p, &flags);
4667
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4668 4669 4670 4671
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4672
	task_rq_unlock(rq, p, &flags);
4673

L
Linus Torvalds 已提交
4674 4675
	return ret;
}
4676
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4677 4678

/*
I
Ingo Molnar 已提交
4679
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4680 4681 4682 4683 4684 4685
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4686 4687
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4688
 */
4689
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4690
{
4691
	struct rq *rq_dest, *rq_src;
4692
	int ret = 0;
L
Linus Torvalds 已提交
4693

4694
	if (unlikely(!cpu_active(dest_cpu)))
4695
		return ret;
L
Linus Torvalds 已提交
4696 4697 4698 4699

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4700
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4701 4702 4703
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4704
		goto done;
L
Linus Torvalds 已提交
4705
	/* Affinity changed (again). */
4706
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4707
		goto fail;
L
Linus Torvalds 已提交
4708

4709 4710 4711 4712
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4713
	if (p->on_rq) {
4714
		dequeue_task(rq_src, p, 0);
4715
		set_task_cpu(p, dest_cpu);
4716
		enqueue_task(rq_dest, p, 0);
4717
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4718
	}
L
Linus Torvalds 已提交
4719
done:
4720
	ret = 1;
L
Linus Torvalds 已提交
4721
fail:
L
Linus Torvalds 已提交
4722
	double_rq_unlock(rq_src, rq_dest);
4723
	raw_spin_unlock(&p->pi_lock);
4724
	return ret;
L
Linus Torvalds 已提交
4725 4726 4727
}

/*
4728 4729 4730
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4731
 */
4732
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4733
{
4734
	struct migration_arg *arg = data;
4735

4736 4737 4738 4739
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4740
	local_irq_disable();
4741
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4742
	local_irq_enable();
L
Linus Torvalds 已提交
4743
	return 0;
4744 4745
}

L
Linus Torvalds 已提交
4746
#ifdef CONFIG_HOTPLUG_CPU
4747

4748
/*
4749 4750
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4751
 */
4752
void idle_task_exit(void)
L
Linus Torvalds 已提交
4753
{
4754
	struct mm_struct *mm = current->active_mm;
4755

4756
	BUG_ON(cpu_online(smp_processor_id()));
4757

4758 4759 4760
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4761 4762 4763
}

/*
4764 4765 4766 4767 4768
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4769
 */
4770
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4771
{
4772 4773 4774
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4775 4776
}

4777
/*
4778 4779 4780 4781 4782 4783
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4784
 */
4785
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4786
{
4787
	struct rq *rq = cpu_rq(dead_cpu);
4788 4789
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4790 4791

	/*
4792 4793 4794 4795 4796 4797 4798
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4799
	 */
4800
	rq->stop = NULL;
4801

I
Ingo Molnar 已提交
4802
	for ( ; ; ) {
4803 4804 4805 4806 4807
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4808
			break;
4809

4810
		next = pick_next_task(rq);
4811
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4812
		next->sched_class->put_prev_task(rq, next);
4813

4814 4815 4816 4817 4818 4819 4820
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4821
	}
4822

4823
	rq->stop = stop;
4824
}
4825

L
Linus Torvalds 已提交
4826 4827
#endif /* CONFIG_HOTPLUG_CPU */

4828 4829 4830
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4831 4832
	{
		.procname	= "sched_domain",
4833
		.mode		= 0555,
4834
	},
4835
	{}
4836 4837 4838
};

static struct ctl_table sd_ctl_root[] = {
4839 4840
	{
		.procname	= "kernel",
4841
		.mode		= 0555,
4842 4843
		.child		= sd_ctl_dir,
	},
4844
	{}
4845 4846 4847 4848 4849
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4850
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4851 4852 4853 4854

	return entry;
}

4855 4856
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4857
	struct ctl_table *entry;
4858

4859 4860 4861
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4862
	 * will always be set. In the lowest directory the names are
4863 4864 4865
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4866 4867
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4868 4869 4870
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4871 4872 4873 4874 4875

	kfree(*tablep);
	*tablep = NULL;
}

4876 4877 4878
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4879
static void
4880
set_table_entry(struct ctl_table *entry,
4881
		const char *procname, void *data, int maxlen,
4882 4883
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4884 4885 4886 4887 4888 4889
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4890 4891 4892 4893 4894

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4895 4896 4897 4898 4899
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4900
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4901

4902 4903 4904
	if (table == NULL)
		return NULL;

4905
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4906
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4907
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4908
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4909
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4910
		sizeof(int), 0644, proc_dointvec_minmax, true);
4911
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4912
		sizeof(int), 0644, proc_dointvec_minmax, true);
4913
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4914
		sizeof(int), 0644, proc_dointvec_minmax, true);
4915
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4916
		sizeof(int), 0644, proc_dointvec_minmax, true);
4917
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4918
		sizeof(int), 0644, proc_dointvec_minmax, true);
4919
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4920
		sizeof(int), 0644, proc_dointvec_minmax, false);
4921
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4922
		sizeof(int), 0644, proc_dointvec_minmax, false);
4923
	set_table_entry(&table[9], "cache_nice_tries",
4924
		&sd->cache_nice_tries,
4925
		sizeof(int), 0644, proc_dointvec_minmax, false);
4926
	set_table_entry(&table[10], "flags", &sd->flags,
4927
		sizeof(int), 0644, proc_dointvec_minmax, false);
4928
	set_table_entry(&table[11], "name", sd->name,
4929
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4930
	/* &table[12] is terminator */
4931 4932 4933 4934

	return table;
}

4935
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4936 4937 4938 4939 4940 4941 4942 4943 4944
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4945 4946
	if (table == NULL)
		return NULL;
4947 4948 4949 4950 4951

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4952
		entry->mode = 0555;
4953 4954 4955 4956 4957 4958 4959 4960
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4961
static void register_sched_domain_sysctl(void)
4962
{
4963
	int i, cpu_num = num_possible_cpus();
4964 4965 4966
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4967 4968 4969
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4970 4971 4972
	if (entry == NULL)
		return;

4973
	for_each_possible_cpu(i) {
4974 4975
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4976
		entry->mode = 0555;
4977
		entry->child = sd_alloc_ctl_cpu_table(i);
4978
		entry++;
4979
	}
4980 4981

	WARN_ON(sd_sysctl_header);
4982 4983
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4984

4985
/* may be called multiple times per register */
4986 4987
static void unregister_sched_domain_sysctl(void)
{
4988 4989
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4990
	sd_sysctl_header = NULL;
4991 4992
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4993
}
4994
#else
4995 4996 4997 4998
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4999 5000 5001 5002
{
}
#endif

5003 5004 5005 5006 5007
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5008
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5028
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5029 5030 5031 5032
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5033 5034 5035 5036
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5037 5038
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5039
{
5040
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5041
	unsigned long flags;
5042
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5043

5044
	switch (action & ~CPU_TASKS_FROZEN) {
5045

L
Linus Torvalds 已提交
5046
	case CPU_UP_PREPARE:
5047
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5048
		break;
5049

L
Linus Torvalds 已提交
5050
	case CPU_ONLINE:
5051
		/* Update our root-domain */
5052
		raw_spin_lock_irqsave(&rq->lock, flags);
5053
		if (rq->rd) {
5054
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5055 5056

			set_rq_online(rq);
5057
		}
5058
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5059
		break;
5060

L
Linus Torvalds 已提交
5061
#ifdef CONFIG_HOTPLUG_CPU
5062
	case CPU_DYING:
5063
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5064
		/* Update our root-domain */
5065
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5066
		if (rq->rd) {
5067
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5068
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5069
		}
5070 5071
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5072
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5073
		break;
5074

5075
	case CPU_DEAD:
5076
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5077
		break;
L
Linus Torvalds 已提交
5078 5079
#endif
	}
5080 5081 5082

	update_max_interval();

L
Linus Torvalds 已提交
5083 5084 5085
	return NOTIFY_OK;
}

5086 5087 5088
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5089
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5090
 */
5091
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5092
	.notifier_call = migration_call,
5093
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5094 5095
};

5096 5097 5098 5099
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5100
	case CPU_STARTING:
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5121
static int __init migration_init(void)
L
Linus Torvalds 已提交
5122 5123
{
	void *cpu = (void *)(long)smp_processor_id();
5124
	int err;
5125

5126
	/* Initialize migration for the boot CPU */
5127 5128
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5129 5130
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5131

5132 5133 5134 5135
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5136
	return 0;
L
Linus Torvalds 已提交
5137
}
5138
early_initcall(migration_init);
L
Linus Torvalds 已提交
5139 5140 5141
#endif

#ifdef CONFIG_SMP
5142

5143 5144
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5145
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5146

5147
static __read_mostly int sched_debug_enabled;
5148

5149
static int __init sched_debug_setup(char *str)
5150
{
5151
	sched_debug_enabled = 1;
5152 5153 5154

	return 0;
}
5155 5156 5157 5158 5159 5160
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5161

5162
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5163
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5164
{
I
Ingo Molnar 已提交
5165
	struct sched_group *group = sd->groups;
5166
	char str[256];
L
Linus Torvalds 已提交
5167

R
Rusty Russell 已提交
5168
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5169
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5170 5171 5172 5173

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5174
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5175
		if (sd->parent)
P
Peter Zijlstra 已提交
5176 5177
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5178
		return -1;
N
Nick Piggin 已提交
5179 5180
	}

P
Peter Zijlstra 已提交
5181
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5182

5183
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5184 5185
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5186
	}
5187
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5188 5189
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5190
	}
L
Linus Torvalds 已提交
5191

I
Ingo Molnar 已提交
5192
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5193
	do {
I
Ingo Molnar 已提交
5194
		if (!group) {
P
Peter Zijlstra 已提交
5195 5196
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5197 5198 5199
			break;
		}

5200 5201 5202 5203 5204 5205
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5206 5207 5208
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5209 5210
			break;
		}
L
Linus Torvalds 已提交
5211

5212
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5213 5214
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5215 5216
			break;
		}
L
Linus Torvalds 已提交
5217

5218 5219
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5220 5221
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5222 5223
			break;
		}
L
Linus Torvalds 已提交
5224

5225
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5226

R
Rusty Russell 已提交
5227
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5228

P
Peter Zijlstra 已提交
5229
		printk(KERN_CONT " %s", str);
5230
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5231
			printk(KERN_CONT " (cpu_power = %d)",
5232
				group->sgp->power);
5233
		}
L
Linus Torvalds 已提交
5234

I
Ingo Molnar 已提交
5235 5236
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5237
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5238

5239
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5240
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5241

5242 5243
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5244 5245
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5246 5247
	return 0;
}
L
Linus Torvalds 已提交
5248

I
Ingo Molnar 已提交
5249 5250 5251
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5252

5253
	if (!sched_debug_enabled)
5254 5255
		return;

I
Ingo Molnar 已提交
5256 5257 5258 5259
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5260

I
Ingo Molnar 已提交
5261 5262 5263
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5264
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5265
			break;
L
Linus Torvalds 已提交
5266 5267
		level++;
		sd = sd->parent;
5268
		if (!sd)
I
Ingo Molnar 已提交
5269 5270
			break;
	}
L
Linus Torvalds 已提交
5271
}
5272
#else /* !CONFIG_SCHED_DEBUG */
5273
# define sched_domain_debug(sd, cpu) do { } while (0)
5274 5275 5276 5277
static inline bool sched_debug(void)
{
	return false;
}
5278
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5279

5280
static int sd_degenerate(struct sched_domain *sd)
5281
{
5282
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5283 5284 5285 5286 5287 5288
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5289 5290 5291
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5292 5293 5294 5295 5296
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5297
	if (sd->flags & (SD_WAKE_AFFINE))
5298 5299 5300 5301 5302
		return 0;

	return 1;
}

5303 5304
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5305 5306 5307 5308 5309 5310
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5311
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5312 5313 5314 5315 5316 5317 5318
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5319 5320 5321
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5322 5323
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5324 5325 5326 5327 5328 5329 5330
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5331
static void free_rootdomain(struct rcu_head *rcu)
5332
{
5333
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5334

5335
	cpupri_cleanup(&rd->cpupri);
5336 5337 5338 5339 5340 5341
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5342 5343
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5344
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5345 5346
	unsigned long flags;

5347
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5348 5349

	if (rq->rd) {
I
Ingo Molnar 已提交
5350
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5351

5352
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5353
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5354

5355
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5356

I
Ingo Molnar 已提交
5357 5358 5359 5360 5361 5362 5363
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5364 5365 5366 5367 5368
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5369
	cpumask_set_cpu(rq->cpu, rd->span);
5370
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5371
		set_rq_online(rq);
G
Gregory Haskins 已提交
5372

5373
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5374 5375

	if (old_rd)
5376
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5377 5378
}

5379
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5380 5381 5382
{
	memset(rd, 0, sizeof(*rd));

5383
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5384
		goto out;
5385
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5386
		goto free_span;
5387
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5388
		goto free_online;
5389

5390
	if (cpupri_init(&rd->cpupri) != 0)
5391
		goto free_rto_mask;
5392
	return 0;
5393

5394 5395
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5396 5397 5398 5399
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5400
out:
5401
	return -ENOMEM;
G
Gregory Haskins 已提交
5402 5403
}

5404 5405 5406 5407 5408 5409
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5410 5411
static void init_defrootdomain(void)
{
5412
	init_rootdomain(&def_root_domain);
5413

G
Gregory Haskins 已提交
5414 5415 5416
	atomic_set(&def_root_domain.refcount, 1);
}

5417
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5418 5419 5420 5421 5422 5423 5424
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5425
	if (init_rootdomain(rd) != 0) {
5426 5427 5428
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5429 5430 5431 5432

	return rd;
}

5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5452 5453 5454
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5455 5456 5457 5458 5459 5460 5461 5462

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5463
		kfree(sd->groups->sgp);
5464
		kfree(sd->groups);
5465
	}
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5480 5481 5482 5483 5484 5485 5486
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5487
 * two cpus are in the same cache domain, see cpus_share_cache().
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5498
	if (sd)
5499 5500 5501 5502 5503 5504
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5505
/*
I
Ingo Molnar 已提交
5506
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5507 5508
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5509 5510
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5511
{
5512
	struct rq *rq = cpu_rq(cpu);
5513 5514 5515
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5516
	for (tmp = sd; tmp; ) {
5517 5518 5519
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5520

5521
		if (sd_parent_degenerate(tmp, parent)) {
5522
			tmp->parent = parent->parent;
5523 5524
			if (parent->parent)
				parent->parent->child = tmp;
5525
			destroy_sched_domain(parent, cpu);
5526 5527
		} else
			tmp = tmp->parent;
5528 5529
	}

5530
	if (sd && sd_degenerate(sd)) {
5531
		tmp = sd;
5532
		sd = sd->parent;
5533
		destroy_sched_domain(tmp, cpu);
5534 5535 5536
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5537

5538
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5539

G
Gregory Haskins 已提交
5540
	rq_attach_root(rq, rd);
5541
	tmp = rq->sd;
N
Nick Piggin 已提交
5542
	rcu_assign_pointer(rq->sd, sd);
5543
	destroy_sched_domains(tmp, cpu);
5544 5545

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5546 5547 5548
}

/* cpus with isolated domains */
5549
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5550 5551 5552 5553

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5554
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5555
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5556 5557 5558
	return 1;
}

I
Ingo Molnar 已提交
5559
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5560

5561 5562 5563 5564 5565
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5566 5567 5568
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5569
	struct sched_group_power **__percpu sgp;
5570 5571
};

5572
struct s_data {
5573
	struct sched_domain ** __percpu sd;
5574 5575 5576
	struct root_domain	*rd;
};

5577 5578
enum s_alloc {
	sa_rootdomain,
5579
	sa_sd,
5580
	sa_sd_storage,
5581 5582 5583
	sa_none,
};

5584 5585 5586
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5587 5588
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5589 5590
#define SDTL_OVERLAP	0x01

5591
struct sched_domain_topology_level {
5592 5593
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5594
	int		    flags;
5595
	int		    numa_level;
5596
	struct sd_data      data;
5597 5598
};

P
Peter Zijlstra 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5655 5656 5657 5658 5659 5660
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5661
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5662
				GFP_KERNEL, cpu_to_node(cpu));
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5676
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5677 5678 5679
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5680 5681 5682 5683 5684 5685
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5686

P
Peter Zijlstra 已提交
5687 5688 5689 5690 5691
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5692
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5693
		    group_balance_cpu(sg) == cpu)
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5713
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5714
{
5715 5716
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5717

5718 5719
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5720

5721
	if (sg) {
5722
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5723
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5724
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5725
	}
5726 5727

	return cpu;
5728 5729
}

5730
/*
5731 5732 5733
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5734 5735
 *
 * Assumes the sched_domain tree is fully constructed
5736
 */
5737 5738
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5739
{
5740 5741 5742
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5743
	struct cpumask *covered;
5744
	int i;
5745

5746 5747 5748 5749 5750 5751
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5752 5753 5754
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5755
	cpumask_clear(covered);
5756

5757 5758 5759 5760
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5761

5762 5763
		if (cpumask_test_cpu(i, covered))
			continue;
5764

5765
		cpumask_clear(sched_group_cpus(sg));
5766
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5767
		cpumask_setall(sched_group_mask(sg));
5768

5769 5770 5771
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5772

5773 5774 5775
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5776

5777 5778 5779 5780 5781 5782 5783
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5784 5785

	return 0;
5786
}
5787

5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5800
	struct sched_group *sg = sd->groups;
5801

5802 5803 5804 5805 5806 5807
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5808

P
Peter Zijlstra 已提交
5809
	if (cpu != group_balance_cpu(sg))
5810
		return;
5811

5812
	update_group_power(sd, cpu);
5813
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5814 5815
}

5816 5817 5818
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5819 5820
}

5821 5822 5823 5824 5825
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5826 5827 5828 5829 5830 5831
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5832 5833 5834 5835 5836 5837 5838 5839 5840
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5841 5842 5843 5844 5845 5846 5847 5848 5849
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5850 5851 5852
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5853

5854
static int default_relax_domain_level = -1;
5855
int sched_domain_level_max;
5856 5857 5858

static int __init setup_relax_domain_level(char *str)
{
5859 5860
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5861

5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5880
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5881 5882
	} else {
		/* turn on idle balance on this domain */
5883
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5884 5885 5886
	}
}

5887 5888 5889
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5890 5891 5892 5893 5894
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5895 5896
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5897 5898
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5899
	case sa_sd_storage:
5900
		__sdt_free(cpu_map); /* fall through */
5901 5902 5903 5904
	case sa_none:
		break;
	}
}
5905

5906 5907 5908
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5909 5910
	memset(d, 0, sizeof(*d));

5911 5912
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5913 5914 5915
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5916
	d->rd = alloc_rootdomain();
5917
	if (!d->rd)
5918
		return sa_sd;
5919 5920
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5921

5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5934
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5935
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5936 5937

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5938
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5939 5940
}

5941 5942
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5943
{
5944
	return topology_thread_cpumask(cpu);
5945
}
5946
#endif
5947

5948 5949 5950
/*
 * Topology list, bottom-up.
 */
5951
static struct sched_domain_topology_level default_topology[] = {
5952 5953
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5954
#endif
5955
#ifdef CONFIG_SCHED_MC
5956
	{ sd_init_MC, cpu_coregroup_mask, },
5957
#endif
5958 5959 5960 5961
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5962 5963 5964 5965 5966
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5967 5968 5969 5970 5971 5972 5973 5974 5975
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5976
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
5994
		.imbalance_pct		= 125,
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6114
		}
6115 6116 6117 6118 6119 6120

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6121 6122 6123 6124 6125 6126 6127 6128 6129
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6156
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6157 6158 6159 6160 6161 6162
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6163
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6195 6196

	sched_domains_numa_levels = level;
6197
}
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6245 6246 6247 6248 6249
}
#else
static inline void sched_init_numa(void)
{
}
6250 6251 6252 6253 6254 6255 6256

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6257 6258
#endif /* CONFIG_NUMA */

6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6275 6276 6277 6278
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6279 6280 6281
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6282
			struct sched_group_power *sgp;
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6296 6297
			sg->next = sg;

6298
			*per_cpu_ptr(sdd->sg, j) = sg;
6299

P
Peter Zijlstra 已提交
6300
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6301 6302 6303 6304 6305
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6334 6335
		}
		free_percpu(sdd->sd);
6336
		sdd->sd = NULL;
6337
		free_percpu(sdd->sg);
6338
		sdd->sg = NULL;
6339
		free_percpu(sdd->sgp);
6340
		sdd->sgp = NULL;
6341 6342 6343
	}
}

6344 6345
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6346
		struct sched_domain_attr *attr, struct sched_domain *child,
6347 6348
		int cpu)
{
6349
	struct sched_domain *sd = tl->init(tl, cpu);
6350
	if (!sd)
6351
		return child;
6352 6353

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6354 6355 6356
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6357
		child->parent = sd;
6358
	}
6359
	sd->child = child;
6360
	set_domain_attribute(sd, attr);
6361 6362 6363 6364

	return sd;
}

6365 6366 6367 6368
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6369 6370
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6371 6372
{
	enum s_alloc alloc_state = sa_none;
6373
	struct sched_domain *sd;
6374
	struct s_data d;
6375
	int i, ret = -ENOMEM;
6376

6377 6378 6379
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6380

6381
	/* Set up domains for cpus specified by the cpu_map. */
6382
	for_each_cpu(i, cpu_map) {
6383 6384
		struct sched_domain_topology_level *tl;

6385
		sd = NULL;
6386
		for (tl = sched_domain_topology; tl->init; tl++) {
6387
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6388 6389
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6390 6391
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6392
		}
6393

6394 6395 6396
		while (sd->child)
			sd = sd->child;

6397
		*per_cpu_ptr(d.sd, i) = sd;
6398 6399 6400 6401 6402 6403
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6404 6405 6406 6407 6408 6409 6410
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6411
		}
6412
	}
6413

L
Linus Torvalds 已提交
6414
	/* Calculate CPU power for physical packages and nodes */
6415 6416 6417
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6418

6419 6420
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6421
			init_sched_groups_power(i, sd);
6422
		}
6423
	}
6424

L
Linus Torvalds 已提交
6425
	/* Attach the domains */
6426
	rcu_read_lock();
6427
	for_each_cpu(i, cpu_map) {
6428
		sd = *per_cpu_ptr(d.sd, i);
6429
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6430
	}
6431
	rcu_read_unlock();
6432

6433
	ret = 0;
6434
error:
6435
	__free_domain_allocs(&d, alloc_state, cpu_map);
6436
	return ret;
L
Linus Torvalds 已提交
6437
}
P
Paul Jackson 已提交
6438

6439
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6440
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6441 6442
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6443 6444 6445

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6446 6447
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6448
 */
6449
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6450

6451 6452 6453 6454 6455 6456
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6457
{
6458
	return 0;
6459 6460
}

6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6486
/*
I
Ingo Molnar 已提交
6487
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6488 6489
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6490
 */
6491
static int init_sched_domains(const struct cpumask *cpu_map)
6492
{
6493 6494
	int err;

6495
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6496
	ndoms_cur = 1;
6497
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6498
	if (!doms_cur)
6499 6500
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6501
	err = build_sched_domains(doms_cur[0], NULL);
6502
	register_sched_domain_sysctl();
6503 6504

	return err;
6505 6506 6507 6508 6509 6510
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6511
static void detach_destroy_domains(const struct cpumask *cpu_map)
6512 6513 6514
{
	int i;

6515
	rcu_read_lock();
6516
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6517
		cpu_attach_domain(NULL, &def_root_domain, i);
6518
	rcu_read_unlock();
6519 6520
}

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6537 6538
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6539
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6540 6541 6542
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6543
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6544 6545 6546
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6547 6548 6549
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6550 6551 6552 6553 6554 6555
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6556
 *
6557
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6558 6559
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6560
 *
P
Paul Jackson 已提交
6561 6562
 * Call with hotplug lock held
 */
6563
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6564
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6565
{
6566
	int i, j, n;
6567
	int new_topology;
P
Paul Jackson 已提交
6568

6569
	mutex_lock(&sched_domains_mutex);
6570

6571 6572 6573
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6574 6575 6576
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6577
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6578 6579 6580

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6581
		for (j = 0; j < n && !new_topology; j++) {
6582
			if (cpumask_equal(doms_cur[i], doms_new[j])
6583
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6584 6585 6586
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6587
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6588 6589 6590 6591
match1:
		;
	}

6592 6593
	if (doms_new == NULL) {
		ndoms_cur = 0;
6594
		doms_new = &fallback_doms;
6595
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6596
		WARN_ON_ONCE(dattr_new);
6597 6598
	}

P
Paul Jackson 已提交
6599 6600
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6601
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6602
			if (cpumask_equal(doms_new[i], doms_cur[j])
6603
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6604 6605 6606
				goto match2;
		}
		/* no match - add a new doms_new */
6607
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6608 6609 6610 6611 6612
match2:
		;
	}

	/* Remember the new sched domains */
6613 6614
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6615
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6616
	doms_cur = doms_new;
6617
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6618
	ndoms_cur = ndoms_new;
6619 6620

	register_sched_domain_sysctl();
6621

6622
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6623 6624
}

6625 6626
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6627
/*
6628 6629 6630
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6631 6632 6633
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6634
 */
6635 6636
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6637
{
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6660
	case CPU_ONLINE:
6661
	case CPU_DOWN_FAILED:
6662
		cpuset_update_active_cpus(true);
6663
		break;
6664 6665 6666
	default:
		return NOTIFY_DONE;
	}
6667
	return NOTIFY_OK;
6668
}
6669

6670 6671
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6672
{
6673
	switch (action) {
6674
	case CPU_DOWN_PREPARE:
6675
		cpuset_update_active_cpus(false);
6676 6677 6678 6679 6680
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6681 6682 6683
	default:
		return NOTIFY_DONE;
	}
6684
	return NOTIFY_OK;
6685 6686
}

L
Linus Torvalds 已提交
6687 6688
void __init sched_init_smp(void)
{
6689 6690 6691
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6692
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6693

6694 6695
	sched_init_numa();

6696
	get_online_cpus();
6697
	mutex_lock(&sched_domains_mutex);
6698
	init_sched_domains(cpu_active_mask);
6699 6700 6701
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6702
	mutex_unlock(&sched_domains_mutex);
6703
	put_online_cpus();
6704

6705
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6706 6707
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6708 6709 6710 6711

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6712
	init_hrtick();
6713 6714

	/* Move init over to a non-isolated CPU */
6715
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6716
		BUG();
I
Ingo Molnar 已提交
6717
	sched_init_granularity();
6718
	free_cpumask_var(non_isolated_cpus);
6719

6720
	init_sched_rt_class();
L
Linus Torvalds 已提交
6721 6722 6723 6724
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6725
	sched_init_granularity();
L
Linus Torvalds 已提交
6726 6727 6728
}
#endif /* CONFIG_SMP */

6729 6730
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6731 6732 6733 6734 6735 6736 6737
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6738 6739
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6740
LIST_HEAD(task_groups);
6741
#endif
P
Peter Zijlstra 已提交
6742

6743
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6744

L
Linus Torvalds 已提交
6745 6746
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6747
	int i, j;
6748 6749 6750 6751 6752 6753 6754
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6755
#endif
6756
#ifdef CONFIG_CPUMASK_OFFSTACK
6757
	alloc_size += num_possible_cpus() * cpumask_size();
6758 6759
#endif
	if (alloc_size) {
6760
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6761 6762

#ifdef CONFIG_FAIR_GROUP_SCHED
6763
		root_task_group.se = (struct sched_entity **)ptr;
6764 6765
		ptr += nr_cpu_ids * sizeof(void **);

6766
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6767
		ptr += nr_cpu_ids * sizeof(void **);
6768

6769
#endif /* CONFIG_FAIR_GROUP_SCHED */
6770
#ifdef CONFIG_RT_GROUP_SCHED
6771
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6772 6773
		ptr += nr_cpu_ids * sizeof(void **);

6774
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6775 6776
		ptr += nr_cpu_ids * sizeof(void **);

6777
#endif /* CONFIG_RT_GROUP_SCHED */
6778 6779 6780 6781 6782 6783
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6784
	}
I
Ingo Molnar 已提交
6785

G
Gregory Haskins 已提交
6786 6787 6788 6789
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6790 6791 6792 6793
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6794
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6795
			global_rt_period(), global_rt_runtime());
6796
#endif /* CONFIG_RT_GROUP_SCHED */
6797

D
Dhaval Giani 已提交
6798
#ifdef CONFIG_CGROUP_SCHED
6799 6800
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6801
	INIT_LIST_HEAD(&root_task_group.siblings);
6802
	autogroup_init(&init_task);
6803

D
Dhaval Giani 已提交
6804
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6805

6806 6807 6808 6809 6810 6811
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6812
	for_each_possible_cpu(i) {
6813
		struct rq *rq;
L
Linus Torvalds 已提交
6814 6815

		rq = cpu_rq(i);
6816
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6817
		rq->nr_running = 0;
6818 6819
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6820
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6821
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6822
#ifdef CONFIG_FAIR_GROUP_SCHED
6823
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6824
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6825
		/*
6826
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6827 6828 6829 6830
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6831
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6832 6833 6834
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6835
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6836 6837 6838
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6839
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6840
		 *
6841 6842
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6843
		 */
6844
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6845
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6846 6847 6848
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6849
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6850
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6851
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6852
#endif
L
Linus Torvalds 已提交
6853

I
Ingo Molnar 已提交
6854 6855
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6856 6857 6858

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6859
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6860
		rq->sd = NULL;
G
Gregory Haskins 已提交
6861
		rq->rd = NULL;
6862
		rq->cpu_power = SCHED_POWER_SCALE;
6863
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6864
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6865
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6866
		rq->push_cpu = 0;
6867
		rq->cpu = i;
6868
		rq->online = 0;
6869 6870
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6871 6872 6873

		INIT_LIST_HEAD(&rq->cfs_tasks);

6874
		rq_attach_root(rq, &def_root_domain);
6875
#ifdef CONFIG_NO_HZ
6876
		rq->nohz_flags = 0;
6877
#endif
L
Linus Torvalds 已提交
6878
#endif
P
Peter Zijlstra 已提交
6879
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6880 6881 6882
		atomic_set(&rq->nr_iowait, 0);
	}

6883
	set_load_weight(&init_task);
6884

6885 6886 6887 6888
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6889
#ifdef CONFIG_RT_MUTEXES
6890
	plist_head_init(&init_task.pi_waiters);
6891 6892
#endif

L
Linus Torvalds 已提交
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6906 6907 6908

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6909 6910 6911 6912
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6913

6914
#ifdef CONFIG_SMP
6915
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6916 6917 6918
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6919
	idle_thread_set_boot_cpu();
6920 6921
#endif
	init_sched_fair_class();
6922

6923
	scheduler_running = 1;
L
Linus Torvalds 已提交
6924 6925
}

6926
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6927 6928
static inline int preempt_count_equals(int preempt_offset)
{
6929
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6930

A
Arnd Bergmann 已提交
6931
	return (nested == preempt_offset);
6932 6933
}

6934
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6935 6936 6937
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6938
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6939 6940
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6941 6942 6943 6944 6945
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6946 6947 6948 6949 6950 6951 6952
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6953 6954 6955 6956 6957

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6958 6959 6960 6961 6962
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6963 6964
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6965 6966
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6967
	int on_rq;
6968

P
Peter Zijlstra 已提交
6969
	on_rq = p->on_rq;
6970
	if (on_rq)
6971
		dequeue_task(rq, p, 0);
6972 6973
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
6974
		enqueue_task(rq, p, 0);
6975 6976
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6977 6978

	check_class_changed(rq, p, prev_class, old_prio);
6979 6980
}

L
Linus Torvalds 已提交
6981 6982
void normalize_rt_tasks(void)
{
6983
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6984
	unsigned long flags;
6985
	struct rq *rq;
L
Linus Torvalds 已提交
6986

6987
	read_lock_irqsave(&tasklist_lock, flags);
6988
	do_each_thread(g, p) {
6989 6990 6991 6992 6993 6994
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6995 6996
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6997 6998 6999
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7000
#endif
I
Ingo Molnar 已提交
7001 7002 7003 7004 7005 7006 7007 7008

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7009
			continue;
I
Ingo Molnar 已提交
7010
		}
L
Linus Torvalds 已提交
7011

7012
		raw_spin_lock(&p->pi_lock);
7013
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7014

7015
		normalize_task(rq, p);
7016

7017
		__task_rq_unlock(rq);
7018
		raw_spin_unlock(&p->pi_lock);
7019 7020
	} while_each_thread(g, p);

7021
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7022 7023 7024
}

#endif /* CONFIG_MAGIC_SYSRQ */
7025

7026
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7027
/*
7028
 * These functions are only useful for the IA64 MCA handling, or kdb.
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7043
struct task_struct *curr_task(int cpu)
7044 7045 7046 7047
{
	return cpu_curr(cpu);
}

7048 7049 7050
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7051 7052 7053 7054 7055 7056
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7057 7058
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7059 7060 7061 7062 7063 7064 7065
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7066
void set_curr_task(int cpu, struct task_struct *p)
7067 7068 7069 7070 7071
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7072

D
Dhaval Giani 已提交
7073
#ifdef CONFIG_CGROUP_SCHED
7074 7075 7076
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7077 7078 7079 7080
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7081
	autogroup_free(tg);
7082 7083 7084 7085
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7086
struct task_group *sched_create_group(struct task_group *parent)
7087 7088 7089 7090 7091 7092 7093 7094
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7095
	if (!alloc_fair_sched_group(tg, parent))
7096 7097
		goto err;

7098
	if (!alloc_rt_sched_group(tg, parent))
7099 7100
		goto err;

7101
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7102
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7103 7104 7105 7106 7107

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7108
	list_add_rcu(&tg->siblings, &parent->children);
7109
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7110

7111
	return tg;
S
Srivatsa Vaddagiri 已提交
7112 7113

err:
P
Peter Zijlstra 已提交
7114
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7115 7116 7117
	return ERR_PTR(-ENOMEM);
}

7118
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7119
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7120 7121
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7122
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7123 7124
}

7125
/* Destroy runqueue etc associated with a task group */
7126
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7127
{
7128
	unsigned long flags;
7129
	int i;
S
Srivatsa Vaddagiri 已提交
7130

7131 7132
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7133
		unregister_fair_sched_group(tg, i);
7134 7135

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7136
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7137
	list_del_rcu(&tg->siblings);
7138
	spin_unlock_irqrestore(&task_group_lock, flags);
7139 7140

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7141
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7142 7143
}

7144
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7145 7146 7147
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7148 7149
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7150
{
P
Peter Zijlstra 已提交
7151
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7152 7153 7154 7155 7156 7157
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7158
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7159
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7160

7161
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7162
		dequeue_task(rq, tsk, 0);
7163 7164
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7165

P
Peter Zijlstra 已提交
7166 7167 7168 7169 7170 7171
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7172
#ifdef CONFIG_FAIR_GROUP_SCHED
7173 7174 7175
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7176
#endif
7177
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7178

7179 7180 7181
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7182
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7183

7184
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7185
}
D
Dhaval Giani 已提交
7186
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7187

7188
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7189 7190 7191
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7192
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7193

P
Peter Zijlstra 已提交
7194
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7195
}
7196 7197 7198 7199 7200 7201 7202
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7203

P
Peter Zijlstra 已提交
7204 7205
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7206
{
P
Peter Zijlstra 已提交
7207
	struct task_struct *g, *p;
7208

P
Peter Zijlstra 已提交
7209
	do_each_thread(g, p) {
7210
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7211 7212
			return 1;
	} while_each_thread(g, p);
7213

P
Peter Zijlstra 已提交
7214 7215
	return 0;
}
7216

P
Peter Zijlstra 已提交
7217 7218 7219 7220 7221
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7222

7223
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7224 7225 7226 7227 7228
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7229

P
Peter Zijlstra 已提交
7230 7231
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7232

P
Peter Zijlstra 已提交
7233 7234 7235
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7236 7237
	}

7238 7239 7240 7241 7242
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7243

7244 7245 7246
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7247 7248
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7249

P
Peter Zijlstra 已提交
7250
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7251

7252 7253 7254 7255 7256
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7257

7258 7259 7260
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7261 7262 7263
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7264

P
Peter Zijlstra 已提交
7265 7266 7267 7268
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7269

P
Peter Zijlstra 已提交
7270
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7271
	}
P
Peter Zijlstra 已提交
7272

P
Peter Zijlstra 已提交
7273 7274 7275 7276
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7277 7278
}

P
Peter Zijlstra 已提交
7279
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7280
{
7281 7282
	int ret;

P
Peter Zijlstra 已提交
7283 7284 7285 7286 7287 7288
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7289 7290 7291 7292 7293
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7294 7295
}

7296
static int tg_set_rt_bandwidth(struct task_group *tg,
7297
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7298
{
P
Peter Zijlstra 已提交
7299
	int i, err = 0;
P
Peter Zijlstra 已提交
7300 7301

	mutex_lock(&rt_constraints_mutex);
7302
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7303 7304
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7305
		goto unlock;
P
Peter Zijlstra 已提交
7306

7307
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7308 7309
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7310 7311 7312 7313

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7314
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7315
		rt_rq->rt_runtime = rt_runtime;
7316
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7317
	}
7318
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7319
unlock:
7320
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7321 7322 7323
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7324 7325
}

7326 7327 7328 7329 7330 7331 7332 7333 7334
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7335
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7336 7337
}

P
Peter Zijlstra 已提交
7338 7339 7340 7341
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7342
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7343 7344
		return -1;

7345
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7346 7347 7348
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7349 7350 7351 7352 7353 7354 7355 7356

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7357 7358 7359
	if (rt_period == 0)
		return -EINVAL;

7360
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7374
	u64 runtime, period;
7375 7376
	int ret = 0;

7377 7378 7379
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7380 7381 7382 7383 7384 7385 7386 7387
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7388

7389
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7390
	read_lock(&tasklist_lock);
7391
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7392
	read_unlock(&tasklist_lock);
7393 7394 7395 7396
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7397 7398 7399 7400 7401 7402 7403 7404 7405 7406

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7407
#else /* !CONFIG_RT_GROUP_SCHED */
7408 7409
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7410 7411 7412
	unsigned long flags;
	int i;

7413 7414 7415
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7416 7417 7418 7419 7420 7421 7422
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7423
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7424 7425 7426
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7427
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7428
		rt_rq->rt_runtime = global_rt_runtime();
7429
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7430
	}
7431
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7432

7433 7434
	return 0;
}
7435
#endif /* CONFIG_RT_GROUP_SCHED */
7436 7437

int sched_rt_handler(struct ctl_table *table, int write,
7438
		void __user *buffer, size_t *lenp,
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7449
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7466

7467
#ifdef CONFIG_CGROUP_SCHED
7468 7469

/* return corresponding task_group object of a cgroup */
7470
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7471
{
7472 7473
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7474 7475
}

7476
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7477
{
7478
	struct task_group *tg, *parent;
7479

7480
	if (!cgrp->parent) {
7481
		/* This is early initialization for the top cgroup */
7482
		return &root_task_group.css;
7483 7484
	}

7485 7486
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7487 7488 7489 7490 7491 7492
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7493
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7494
{
7495
	struct task_group *tg = cgroup_tg(cgrp);
7496 7497 7498 7499

	sched_destroy_group(tg);
}

7500
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7501
				 struct cgroup_taskset *tset)
7502
{
7503 7504 7505
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7506
#ifdef CONFIG_RT_GROUP_SCHED
7507 7508
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7509
#else
7510 7511 7512
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7513
#endif
7514
	}
7515 7516
	return 0;
}
7517

7518
static void cpu_cgroup_attach(struct cgroup *cgrp,
7519
			      struct cgroup_taskset *tset)
7520
{
7521 7522 7523 7524
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7525 7526
}

7527
static void
7528 7529
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7542
#ifdef CONFIG_FAIR_GROUP_SCHED
7543
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7544
				u64 shareval)
7545
{
7546
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7547 7548
}

7549
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7550
{
7551
	struct task_group *tg = cgroup_tg(cgrp);
7552

7553
	return (u64) scale_load_down(tg->shares);
7554
}
7555 7556

#ifdef CONFIG_CFS_BANDWIDTH
7557 7558
static DEFINE_MUTEX(cfs_constraints_mutex);

7559 7560 7561
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7562 7563
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7564 7565
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7566
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7567
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7588 7589 7590 7591 7592
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7593
	runtime_enabled = quota != RUNTIME_INF;
7594 7595
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7596 7597 7598
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7599

P
Paul Turner 已提交
7600
	__refill_cfs_bandwidth_runtime(cfs_b);
7601 7602 7603 7604 7605 7606
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7607 7608 7609 7610
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7611
		struct rq *rq = cfs_rq->rq;
7612 7613

		raw_spin_lock_irq(&rq->lock);
7614
		cfs_rq->runtime_enabled = runtime_enabled;
7615
		cfs_rq->runtime_remaining = 0;
7616

7617
		if (cfs_rq->throttled)
7618
			unthrottle_cfs_rq(cfs_rq);
7619 7620
		raw_spin_unlock_irq(&rq->lock);
	}
7621 7622
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7623

7624
	return ret;
7625 7626 7627 7628 7629 7630
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7631
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7644
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7645 7646
		return -1;

7647
	quota_us = tg->cfs_bandwidth.quota;
7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7658
	quota = tg->cfs_bandwidth.quota;
7659 7660 7661 7662 7663 7664 7665 7666

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7667
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7727
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7728 7729 7730 7731 7732
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7733
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7754
	int ret;
7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7766 7767 7768 7769 7770
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7771
}
7772 7773 7774 7775 7776

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7777
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7778 7779 7780 7781 7782 7783 7784

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7785
#endif /* CONFIG_CFS_BANDWIDTH */
7786
#endif /* CONFIG_FAIR_GROUP_SCHED */
7787

7788
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7789
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7790
				s64 val)
P
Peter Zijlstra 已提交
7791
{
7792
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7793 7794
}

7795
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7796
{
7797
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7798
}
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7810
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7811

7812
static struct cftype cpu_files[] = {
7813
#ifdef CONFIG_FAIR_GROUP_SCHED
7814 7815
	{
		.name = "shares",
7816 7817
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7818
	},
7819
#endif
7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7831 7832 7833 7834
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7835
#endif
7836
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7837
	{
P
Peter Zijlstra 已提交
7838
		.name = "rt_runtime_us",
7839 7840
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7841
	},
7842 7843
	{
		.name = "rt_period_us",
7844 7845
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7846
	},
7847
#endif
7848
	{ }	/* terminate */
7849 7850 7851
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7852 7853 7854
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7855 7856
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7857
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7858
	.subsys_id	= cpu_cgroup_subsys_id,
7859
	.base_cftypes	= cpu_files,
7860 7861 7862
	.early_init	= 1,
};

7863
#endif	/* CONFIG_CGROUP_SCHED */
7864 7865 7866 7867 7868 7869 7870 7871 7872 7873

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7874 7875
struct cpuacct root_cpuacct;

7876
/* create a new cpu accounting group */
7877
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7878
{
7879
	struct cpuacct *ca;
7880

7881 7882 7883 7884
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7885
	if (!ca)
7886
		goto out;
7887 7888

	ca->cpuusage = alloc_percpu(u64);
7889 7890 7891
	if (!ca->cpuusage)
		goto out_free_ca;

7892 7893 7894
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7895

7896
	return &ca->css;
7897

7898
out_free_cpuusage:
7899 7900 7901 7902 7903
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7904 7905 7906
}

/* destroy an existing cpu accounting group */
7907
static void cpuacct_destroy(struct cgroup *cgrp)
7908
{
7909
	struct cpuacct *ca = cgroup_ca(cgrp);
7910

7911
	free_percpu(ca->cpustat);
7912 7913 7914 7915
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7916 7917
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7918
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7919 7920 7921 7922 7923 7924
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7925
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7926
	data = *cpuusage;
7927
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7928 7929 7930 7931 7932 7933 7934 7935 7936
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7937
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7938 7939 7940 7941 7942

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7943
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7944
	*cpuusage = val;
7945
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7946 7947 7948 7949 7950
#else
	*cpuusage = val;
#endif
}

7951
/* return total cpu usage (in nanoseconds) of a group */
7952
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7953
{
7954
	struct cpuacct *ca = cgroup_ca(cgrp);
7955 7956 7957
	u64 totalcpuusage = 0;
	int i;

7958 7959
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7960 7961 7962 7963

	return totalcpuusage;
}

7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

7976 7977
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
7978 7979 7980 7981 7982

out:
	return err;
}

7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

7998 7999 8000 8001 8002 8003
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8004
			      struct cgroup_map_cb *cb)
8005 8006
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8007 8008
	int cpu;
	s64 val = 0;
8009

8010 8011 8012 8013
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8014
	}
8015 8016
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8017

8018 8019 8020 8021 8022 8023
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8024
	}
8025 8026 8027 8028

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8029 8030 8031
	return 0;
}

8032 8033 8034
static struct cftype files[] = {
	{
		.name = "usage",
8035 8036
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8037
	},
8038 8039 8040 8041
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8042 8043 8044 8045
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8046
	{ }	/* terminate */
8047 8048 8049 8050 8051 8052 8053
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8054
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8055 8056
{
	struct cpuacct *ca;
8057
	int cpu;
8058

L
Li Zefan 已提交
8059
	if (unlikely(!cpuacct_subsys.active))
8060 8061
		return;

8062
	cpu = task_cpu(tsk);
8063 8064 8065

	rcu_read_lock();

8066 8067
	ca = task_ca(tsk);

8068
	for (; ca; ca = parent_ca(ca)) {
8069
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8070 8071
		*cpuusage += cputime;
	}
8072 8073

	rcu_read_unlock();
8074 8075 8076 8077 8078 8079 8080
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8081
	.base_cftypes = files,
8082 8083
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8084 8085 8086 8087 8088 8089

void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}