intel_pm.c 177.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56 57
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
58
 *
59 60
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
61
 *
62 63
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
64 65
 */

66 67
static void gen9_init_clock_gating(struct drm_device *dev)
{
68 69 70 71 72 73 74 75
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * WaDisableSDEUnitClockGating:skl
	 * This seems to be a pre-production w/a.
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
76

77 78 79 80 81 82 83 84
	/*
	 * WaDisableDgMirrorFixInHalfSliceChicken5:skl
	 * This is a pre-production w/a.
	 */
	I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
		   I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
		   ~GEN9_DG_MIRROR_FIX_ENABLE);

85 86 87
	/* Wa4x4STCOptimizationDisable:skl */
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
88 89
}

90
static void i8xx_disable_fbc(struct drm_device *dev)
91 92 93 94
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

95 96
	dev_priv->fbc.enabled = false;

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

114
static void i8xx_enable_fbc(struct drm_crtc *crtc)
115 116 117
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
118
	struct drm_framebuffer *fb = crtc->primary->fb;
119
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
120 121
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
122
	int i;
123
	u32 fbc_ctl;
124

125 126
	dev_priv->fbc.enabled = true;

127
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
128 129 130
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

131 132 133 134 135
	/* FBC_CTL wants 32B or 64B units */
	if (IS_GEN2(dev))
		cfb_pitch = (cfb_pitch / 32) - 1;
	else
		cfb_pitch = (cfb_pitch / 64) - 1;
136 137 138 139 140

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

141 142 143 144 145
	if (IS_GEN4(dev)) {
		u32 fbc_ctl2;

		/* Set it up... */
		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
146
		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
147 148 149
		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
		I915_WRITE(FBC_FENCE_OFF, crtc->y);
	}
150 151

	/* enable it... */
152 153 154
	fbc_ctl = I915_READ(FBC_CONTROL);
	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
155 156 157 158 159 160
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

161
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
162
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
163 164
}

165
static bool i8xx_fbc_enabled(struct drm_device *dev)
166 167 168 169 170 171
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

172
static void g4x_enable_fbc(struct drm_crtc *crtc)
173 174 175
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
176
	struct drm_framebuffer *fb = crtc->primary->fb;
177
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
178 179 180
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

181 182
	dev_priv->fbc.enabled = true;

183 184 185 186 187
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
	else
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
188 189 190 191 192
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;

	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
193
	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
194

195
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
196 197
}

198
static void g4x_disable_fbc(struct drm_device *dev)
199 200 201 202
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

203 204
	dev_priv->fbc.enabled = false;

205 206 207 208 209 210 211 212 213 214
	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

215
static bool g4x_fbc_enabled(struct drm_device *dev)
216 217 218 219 220 221 222 223 224 225 226 227
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
228 229 230 231

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
232

233 234 235 236 237 238 239 240 241 242
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
243

244
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
245 246
}

247
static void ironlake_enable_fbc(struct drm_crtc *crtc)
248 249 250
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
251
	struct drm_framebuffer *fb = crtc->primary->fb;
252
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
253 254 255
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

256 257
	dev_priv->fbc.enabled = true;

258
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
259
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
260 261 262 263 264 265 266 267
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
268
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
269 270
		break;
	case 1:
271
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
272 273
		break;
	}
274 275 276
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
277 278

	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
279
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
280 281 282 283 284 285 286 287 288 289
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

290
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
291 292
}

293
static void ironlake_disable_fbc(struct drm_device *dev)
294 295 296 297
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

298 299
	dev_priv->fbc.enabled = false;

300 301 302 303 304 305 306 307 308 309
	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

310
static bool ironlake_fbc_enabled(struct drm_device *dev)
311 312 313 314 315 316
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

317
static void gen7_enable_fbc(struct drm_crtc *crtc)
318 319 320
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
321
	struct drm_framebuffer *fb = crtc->primary->fb;
322
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
323
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
324
	u32 dpfc_ctl;
325

326 327
	dev_priv->fbc.enabled = true;

328 329
	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
330 331 332 333 334 335 336 337
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
338
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
339 340
		break;
	case 1:
341
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
342 343 344
		break;
	}

345 346
	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;

347 348 349
	if (dev_priv->fbc.false_color)
		dpfc_ctl |= FBC_CTL_FALSE_COLOR;

350
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
351

R
Rodrigo Vivi 已提交
352
	if (IS_IVYBRIDGE(dev)) {
353
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
354 355 356
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
357
	} else {
358
		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
359 360 361
		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
			   HSW_FBCQ_DIS);
R
Rodrigo Vivi 已提交
362
	}
363

364 365 366 367 368 369
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

370
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
371 372
}

373 374 375 376
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

377
	return dev_priv->fbc.enabled;
378 379
}

380
void bdw_fbc_sw_flush(struct drm_device *dev, u32 value)
R
Rodrigo Vivi 已提交
381 382 383 384 385 386
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!IS_GEN8(dev))
		return;

387 388 389
	if (!intel_fbc_enabled(dev))
		return;

R
Rodrigo Vivi 已提交
390 391 392
	I915_WRITE(MSG_FBC_REND_STATE, value);
}

393 394 395 396 397 398 399 400 401
static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
402
	if (work == dev_priv->fbc.fbc_work) {
403 404 405
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
406
		if (work->crtc->primary->fb == work->fb) {
407
			dev_priv->display.enable_fbc(work->crtc);
408

409
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
410
			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
411
			dev_priv->fbc.y = work->crtc->y;
412 413
		}

414
		dev_priv->fbc.fbc_work = NULL;
415 416 417 418 419 420 421 422
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
423
	if (dev_priv->fbc.fbc_work == NULL)
424 425 426 427 428
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
429
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
430 431
	 * entirely asynchronously.
	 */
432
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
433
		/* tasklet was killed before being run, clean up */
434
		kfree(dev_priv->fbc.fbc_work);
435 436 437 438 439 440

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
441
	dev_priv->fbc.fbc_work = NULL;
442 443
}

444
static void intel_enable_fbc(struct drm_crtc *crtc)
445 446 447 448 449 450 451 452 453 454
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

455
	work = kzalloc(sizeof(*work), GFP_KERNEL);
456
	if (work == NULL) {
457
		DRM_ERROR("Failed to allocate FBC work structure\n");
458
		dev_priv->display.enable_fbc(crtc);
459 460 461 462
		return;
	}

	work->crtc = crtc;
463
	work->fb = crtc->primary->fb;
464 465
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

466
	dev_priv->fbc.fbc_work = work;
467 468 469 470 471 472 473 474 475 476 477

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
478 479
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
480 481 482 483 484 485 486 487 488 489 490 491 492 493
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
494
	dev_priv->fbc.plane = -1;
495 496
}

497 498 499 500 501 502 503 504 505 506
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

507 508 509 510 511 512 513 514 515 516
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
517
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct drm_i915_gem_object *obj;
533
	const struct drm_display_mode *adjusted_mode;
534
	unsigned int max_width, max_height;
535

536
	if (!HAS_FBC(dev)) {
537
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
538
		return;
539
	}
540

541
	if (!i915.powersave) {
542 543
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
544
		return;
545
	}
546 547 548 549 550 551 552 553 554 555

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
556
	for_each_crtc(dev, tmp_crtc) {
557
		if (intel_crtc_active(tmp_crtc) &&
558
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
559
			if (crtc) {
560 561
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
562 563 564 565 566 567
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

568
	if (!crtc || crtc->primary->fb == NULL) {
569 570
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
571 572 573 574
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
575
	fb = crtc->primary->fb;
576
	obj = intel_fb_obj(fb);
577
	adjusted_mode = &intel_crtc->config.adjusted_mode;
578

579
	if (i915.enable_fbc < 0) {
580 581
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
582
		goto out_disable;
583
	}
584
	if (!i915.enable_fbc) {
585 586
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
587 588
		goto out_disable;
	}
589 590
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
591 592 593
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
594 595
		goto out_disable;
	}
596

597 598 599 600
	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
		max_width = 4096;
		max_height = 4096;
	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
601 602
		max_width = 4096;
		max_height = 2048;
603
	} else {
604 605
		max_width = 2048;
		max_height = 1536;
606
	}
607 608
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
609 610
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
611 612
		goto out_disable;
	}
B
Ben Widawsky 已提交
613
	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
614
	    intel_crtc->plane != PLANE_A) {
615
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
616
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
617 618 619 620 621 622 623 624
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
625 626
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
627 628
		goto out_disable;
	}
629 630 631 632 633 634
	if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
	    to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
		goto out_disable;
	}
635 636 637 638 639

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

640
	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
B
Ben Widawsky 已提交
641
					      drm_format_plane_cpp(fb->pixel_format, 0))) {
642 643
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
644 645 646
		goto out_disable;
	}

647 648 649 650 651
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
652 653 654
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

685
	intel_enable_fbc(crtc);
686
	dev_priv->fbc.no_fbc_reason = FBC_OK;
687 688 689 690 691 692 693 694
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
695
	i915_gem_stolen_cleanup_compression(dev);
696 697
}

698 699
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
700
	struct drm_i915_private *dev_priv = dev->dev_private;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
739
	struct drm_i915_private *dev_priv = dev->dev_private;
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

765
	dev_priv->ips.r_t = dev_priv->mem_freq;
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
797
		dev_priv->ips.c_m = 0;
798
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
799
		dev_priv->ips.c_m = 1;
800
	} else {
801
		dev_priv->ips.c_m = 2;
802 803 804
	}
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

843
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

867
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
868
{
869 870
	struct drm_device *dev = dev_priv->dev;
	u32 val;
871

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
891

892 893
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
910
static const int pessimal_latency_ns = 5000;
911

912
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

928
static int i830_get_fifo_size(struct drm_device *dev, int plane)
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

945
static int i845_get_fifo_size(struct drm_device *dev, int plane)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
963 964 965 966 967
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
968 969
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
970 971 972 973 974
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
975 976
};
static const struct intel_watermark_params pineview_cursor_wm = {
977 978 979 980 981
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
982 983
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
984 985 986 987 988
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
989 990
};
static const struct intel_watermark_params g4x_wm_info = {
991 992 993 994 995
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
996 997
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
998 999 1000 1001 1002
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
1003 1004
};
static const struct intel_watermark_params valleyview_wm_info = {
1005 1006 1007 1008 1009
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
1010 1011
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
1012 1013 1014 1015 1016
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
1017 1018
};
static const struct intel_watermark_params i965_cursor_wm_info = {
1019 1020 1021 1022 1023
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1024 1025
};
static const struct intel_watermark_params i945_wm_info = {
1026 1027 1028 1029 1030
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1031 1032
};
static const struct intel_watermark_params i915_wm_info = {
1033 1034 1035 1036 1037
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1038
};
1039
static const struct intel_watermark_params i830_a_wm_info = {
1040 1041 1042 1043 1044
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1045
};
1046 1047 1048 1049 1050 1051 1052
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
1053
static const struct intel_watermark_params i845_wm_info = {
1054 1055 1056 1057 1058
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

1119 1120 1121 1122 1123 1124 1125
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

1126
	for_each_crtc(dev, crtc) {
1127
		if (intel_crtc_active(crtc)) {
1128 1129 1130 1131 1132 1133 1134 1135 1136
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1137
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1138
{
1139
	struct drm_device *dev = unused_crtc->dev;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1150
		intel_set_memory_cxsr(dev_priv, false);
1151 1152 1153 1154 1155
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1156
		const struct drm_display_mode *adjusted_mode;
1157
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1158 1159 1160 1161
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

1201
		intel_set_memory_cxsr(dev_priv, true);
1202
	} else {
1203
		intel_set_memory_cxsr(dev_priv, false);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1217
	const struct drm_display_mode *adjusted_mode;
1218 1219 1220 1221 1222
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1223
	if (!intel_crtc_active(crtc)) {
1224 1225 1226 1227 1228
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1229
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1230
	clock = adjusted_mode->crtc_clock;
1231
	htotal = adjusted_mode->crtc_htotal;
1232
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1233
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
1246
	line_time_us = max(htotal * 1000 / clock, 1);
1247
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1248
	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1303
	const struct drm_display_mode *adjusted_mode;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1316
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1317
	clock = adjusted_mode->crtc_clock;
1318
	htotal = adjusted_mode->crtc_htotal;
1319
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1320
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1321

1322
	line_time_us = max(htotal * 1000 / clock, 1);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
1334
	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1335 1336 1337 1338 1339 1340 1341 1342
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

1343 1344 1345 1346
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
				      int pixel_size,
				      int *prec_mult,
				      int *drain_latency)
1347 1348
{
	int entries;
1349
	int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1350

1351
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
1352 1353
		return false;

1354 1355
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
		return false;
1356

1357
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1358 1359 1360
	*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
				       DRAIN_LATENCY_PRECISION_32;
	*drain_latency = (64 * (*prec_mult) * 4) / entries;
1361

1362 1363
	if (*drain_latency > DRAIN_LATENCY_MASK)
		*drain_latency = DRAIN_LATENCY_MASK;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

1376
static void vlv_update_drain_latency(struct drm_crtc *crtc)
1377
{
1378 1379 1380 1381 1382 1383
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pixel_size;
	int drain_latency;
	enum pipe pipe = intel_crtc->pipe;
	int plane_prec, prec_mult, plane_dl;
1384

1385 1386 1387 1388 1389 1390 1391 1392
	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));

	if (!intel_crtc_active(crtc)) {
		I915_WRITE(VLV_DDL(pipe), plane_dl);
		return;
	}
1393

1394 1395 1396 1397 1398 1399 1400
	/* Primary plane Drain Latency */
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_PLANE_PRECISION_64 :
					   DDL_PLANE_PRECISION_32;
		plane_dl |= plane_prec | drain_latency;
1401 1402
	}

1403 1404 1405 1406
	/* Cursor Drain Latency
	 * BPP is always 4 for cursor
	 */
	pixel_size = 4;
1407

1408 1409 1410 1411 1412 1413 1414
	/* Program cursor DL only if it is enabled */
	if (intel_crtc->cursor_base &&
	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_CURSOR_PRECISION_64 :
					   DDL_CURSOR_PRECISION_32;
		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1415
	}
1416 1417

	I915_WRITE(VLV_DDL(pipe), plane_dl);
1418 1419 1420 1421
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1422
static void valleyview_update_wm(struct drm_crtc *crtc)
1423
{
1424
	struct drm_device *dev = crtc->dev;
1425 1426 1427 1428
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1429
	int ignore_plane_sr, ignore_cursor_sr;
1430
	unsigned int enabled = 0;
1431
	bool cxsr_enabled;
1432

1433
	vlv_update_drain_latency(crtc);
1434

1435
	if (g4x_compute_wm0(dev, PIPE_A,
1436 1437
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1438
			    &planea_wm, &cursora_wm))
1439
		enabled |= 1 << PIPE_A;
1440

1441
	if (g4x_compute_wm0(dev, PIPE_B,
1442 1443
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1444
			    &planeb_wm, &cursorb_wm))
1445
		enabled |= 1 << PIPE_B;
1446 1447 1448 1449 1450 1451

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1452 1453 1454 1455 1456
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1457
			     &ignore_plane_sr, &cursor_sr)) {
1458
		cxsr_enabled = true;
1459
	} else {
1460
		cxsr_enabled = false;
1461
		intel_set_memory_cxsr(dev_priv, false);
1462 1463
		plane_sr = cursor_sr = 0;
	}
1464

1465 1466
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1467 1468 1469 1470 1471 1472 1473 1474
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1475
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1476
	I915_WRITE(DSPFW2,
1477
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1478 1479
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1480 1481
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1482 1483 1484

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
1502 1503
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1504 1505 1506 1507
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
1508 1509
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1510 1511 1512 1513
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
1514 1515
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe = to_intel_plane(plane)->pipe;
	int sprite = to_intel_plane(plane)->plane;
	int drain_latency;
	int plane_prec;
	int sprite_dl;
	int prec_mult;

	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));

	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
						 &drain_latency)) {
		plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
					   DDL_SPRITE_PRECISION_64(sprite) :
					   DDL_SPRITE_PRECISION_32(sprite);
		sprite_dl |= plane_prec |
			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
	}

	I915_WRITE(VLV_DDL(pipe), sprite_dl);
}

1597
static void g4x_update_wm(struct drm_crtc *crtc)
1598
{
1599
	struct drm_device *dev = crtc->dev;
1600 1601 1602 1603 1604
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1605
	bool cxsr_enabled;
1606

1607
	if (g4x_compute_wm0(dev, PIPE_A,
1608 1609
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1610
			    &planea_wm, &cursora_wm))
1611
		enabled |= 1 << PIPE_A;
1612

1613
	if (g4x_compute_wm0(dev, PIPE_B,
1614 1615
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1616
			    &planeb_wm, &cursorb_wm))
1617
		enabled |= 1 << PIPE_B;
1618 1619 1620 1621 1622 1623

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1624
			     &plane_sr, &cursor_sr)) {
1625
		cxsr_enabled = true;
1626
	} else {
1627
		cxsr_enabled = false;
1628
		intel_set_memory_cxsr(dev_priv, false);
1629 1630
		plane_sr = cursor_sr = 0;
	}
1631

1632 1633
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1634 1635 1636 1637 1638 1639 1640 1641
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1642
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1643
	I915_WRITE(DSPFW2,
1644
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1645 1646 1647
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1648
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1649
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1650 1651 1652

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1653 1654
}

1655
static void i965_update_wm(struct drm_crtc *unused_crtc)
1656
{
1657
	struct drm_device *dev = unused_crtc->dev;
1658 1659 1660 1661
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1662
	bool cxsr_enabled;
1663 1664 1665 1666 1667 1668

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1669 1670
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1671
		int clock = adjusted_mode->crtc_clock;
1672
		int htotal = adjusted_mode->crtc_htotal;
1673
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1674
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1675 1676 1677
		unsigned long line_time_us;
		int entries;

1678
		line_time_us = max(htotal * 1000 / clock, 1);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1692
			pixel_size * to_intel_crtc(crtc)->cursor_width;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1704
		cxsr_enabled = true;
1705
	} else {
1706
		cxsr_enabled = false;
1707
		/* Turn off self refresh if both pipes are enabled */
1708
		intel_set_memory_cxsr(dev_priv, false);
1709 1710 1711 1712 1713 1714 1715
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1716 1717 1718 1719 1720
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1721 1722
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1723 1724 1725

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1726 1727
}

1728
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1729
{
1730
	struct drm_device *dev = unused_crtc->dev;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1745
		wm_info = &i830_a_wm_info;
1746 1747 1748

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1749
	if (intel_crtc_active(crtc)) {
1750
		const struct drm_display_mode *adjusted_mode;
1751
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1752 1753 1754
		if (IS_GEN2(dev))
			cpp = 4;

1755 1756
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1757
					       wm_info, fifo_size, cpp,
1758
					       pessimal_latency_ns);
1759
		enabled = crtc;
1760
	} else {
1761
		planea_wm = fifo_size - wm_info->guard_size;
1762 1763 1764 1765 1766 1767
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1768 1769 1770

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1771
	if (intel_crtc_active(crtc)) {
1772
		const struct drm_display_mode *adjusted_mode;
1773
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1774 1775 1776
		if (IS_GEN2(dev))
			cpp = 4;

1777 1778
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1779
					       wm_info, fifo_size, cpp,
1780
					       pessimal_latency_ns);
1781 1782 1783 1784
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1785
	} else {
1786
		planeb_wm = fifo_size - wm_info->guard_size;
1787 1788 1789
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1790 1791 1792

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1793
	if (IS_I915GM(dev) && enabled) {
1794
		struct drm_i915_gem_object *obj;
1795

1796
		obj = intel_fb_obj(enabled->primary->fb);
1797 1798

		/* self-refresh seems busted with untiled */
1799
		if (obj->tiling_mode == I915_TILING_NONE)
1800 1801 1802
			enabled = NULL;
	}

1803 1804 1805 1806 1807 1808
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1809
	intel_set_memory_cxsr(dev_priv, false);
1810 1811 1812 1813 1814

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1815 1816
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1817
		int clock = adjusted_mode->crtc_clock;
1818
		int htotal = adjusted_mode->crtc_htotal;
1819
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1820
		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1821 1822 1823
		unsigned long line_time_us;
		int entries;

1824
		line_time_us = max(htotal * 1000 / clock, 1);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1855 1856
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1857 1858
}

1859
static void i845_update_wm(struct drm_crtc *unused_crtc)
1860
{
1861
	struct drm_device *dev = unused_crtc->dev;
1862 1863
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1864
	const struct drm_display_mode *adjusted_mode;
1865 1866 1867 1868 1869 1870 1871
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1872 1873
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1874
				       &i845_wm_info,
1875
				       dev_priv->display.get_fifo_size(dev, 0),
1876
				       4, pessimal_latency_ns);
1877 1878 1879 1880 1881 1882 1883 1884
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1885 1886
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1887 1888
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1889
	uint32_t pixel_rate;
1890

1891
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1892 1893 1894 1895

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1896
	if (intel_crtc->config.pch_pfit.enabled) {
1897
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1898
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1899

1900 1901
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1916
/* latency must be in 0.1us units. */
1917
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1918 1919 1920 1921
			       uint32_t latency)
{
	uint64_t ret;

1922 1923 1924
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1925 1926 1927 1928 1929 1930
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1931
/* latency must be in 0.1us units. */
1932
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1933 1934 1935 1936 1937
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1938 1939 1940
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1941 1942 1943 1944 1945 1946
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1947
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1948 1949 1950 1951 1952
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1953
struct ilk_pipe_wm_parameters {
1954 1955 1956
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1957 1958 1959
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1960 1961
};

1962
struct ilk_wm_maximums {
1963 1964 1965 1966 1967 1968
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1969 1970 1971 1972 1973 1974 1975
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1976 1977 1978 1979
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1980
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1981 1982
				   uint32_t mem_value,
				   bool is_lp)
1983
{
1984 1985
	uint32_t method1, method2;

1986
	if (!params->active || !params->pri.enabled)
1987 1988
		return 0;

1989
	method1 = ilk_wm_method1(params->pixel_rate,
1990
				 params->pri.bytes_per_pixel,
1991 1992 1993 1994 1995
				 mem_value);

	if (!is_lp)
		return method1;

1996
	method2 = ilk_wm_method2(params->pixel_rate,
1997
				 params->pipe_htotal,
1998 1999
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
2000 2001 2002
				 mem_value);

	return min(method1, method2);
2003 2004
}

2005 2006 2007 2008
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2009
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
2010 2011 2012 2013
				   uint32_t mem_value)
{
	uint32_t method1, method2;

2014
	if (!params->active || !params->spr.enabled)
2015 2016
		return 0;

2017
	method1 = ilk_wm_method1(params->pixel_rate,
2018
				 params->spr.bytes_per_pixel,
2019
				 mem_value);
2020
	method2 = ilk_wm_method2(params->pixel_rate,
2021
				 params->pipe_htotal,
2022 2023
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
2024 2025 2026 2027
				 mem_value);
	return min(method1, method2);
}

2028 2029 2030 2031
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2032
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
2033 2034
				   uint32_t mem_value)
{
2035
	if (!params->active || !params->cur.enabled)
2036 2037
		return 0;

2038
	return ilk_wm_method2(params->pixel_rate,
2039
			      params->pipe_htotal,
2040 2041
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
2042 2043 2044
			      mem_value);
}

2045
/* Only for WM_LP. */
2046
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2047
				   uint32_t pri_val)
2048
{
2049
	if (!params->active || !params->pri.enabled)
2050 2051
		return 0;

2052
	return ilk_wm_fbc(pri_val,
2053 2054
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
2055 2056
}

2057 2058
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
2059 2060 2061
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
2062 2063 2064 2065 2066
		return 768;
	else
		return 512;
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

2101 2102 2103
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2104
				     const struct intel_wm_config *config,
2105 2106 2107 2108 2109 2110
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
2111
	if (is_sprite && !config->sprites_enabled)
2112 2113 2114
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2115
	if (level == 0 || config->num_pipes_active > 1) {
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2127
	if (config->sprites_enabled) {
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2139
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2140 2141 2142 2143
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2144 2145
				      int level,
				      const struct intel_wm_config *config)
2146 2147
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2148
	if (level > 0 && config->num_pipes_active > 1)
2149 2150 2151
		return 64;

	/* otherwise just report max that registers can hold */
2152
	return ilk_cursor_wm_reg_max(dev, level);
2153 2154
}

2155
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2156 2157 2158
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2159
				    struct ilk_wm_maximums *max)
2160
{
2161 2162 2163
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2164
	max->fbc = ilk_fbc_wm_reg_max(dev);
2165 2166
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2177
static bool ilk_validate_wm_level(int level,
2178
				  const struct ilk_wm_maximums *max,
2179
				  struct intel_wm_level *result)
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2218
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2219
				 int level,
2220
				 const struct ilk_pipe_wm_parameters *p,
2221
				 struct intel_wm_level *result)
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2241 2242
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2243 2244
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2245 2246
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2247
	u32 linetime, ips_linetime;
2248

2249 2250
	if (!intel_crtc_active(crtc))
		return 0;
2251

2252 2253 2254
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2255 2256 2257
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2258
					 intel_ddi_get_cdclk_freq(dev_priv));
2259

2260 2261
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2262 2263
}

2264 2265 2266 2267
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2268
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2269 2270 2271 2272 2273
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2274 2275 2276 2277
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2278 2279 2280 2281 2282 2283 2284
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2285 2286 2287 2288 2289 2290 2291
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2292 2293 2294
	}
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2313
int ilk_wm_max_level(const struct drm_device *dev)
2314 2315
{
	/* how many WM levels are we expecting */
2316
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2317
		return 4;
2318
	else if (INTEL_INFO(dev)->gen >= 6)
2319
		return 3;
2320
	else
2321 2322
		return 2;
}
2323

2324 2325 2326 2327 2328
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2386
static void ilk_setup_wm_latency(struct drm_device *dev)
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2399 2400 2401 2402

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2403 2404 2405

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2406 2407
}

2408
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2409
				      struct ilk_pipe_wm_parameters *p)
2410
{
2411 2412 2413 2414
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2415

2416 2417
	if (!intel_crtc_active(crtc))
		return;
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	p->active = true;
	p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
	p->cur.bytes_per_pixel = 4;
	p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
	p->cur.horiz_pixels = intel_crtc->cursor_width;
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
2429

2430
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2431 2432
		struct intel_plane *intel_plane = to_intel_plane(plane);

2433
		if (intel_plane->pipe == pipe) {
2434
			p->spr = intel_plane->wm;
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2446
	for_each_intel_crtc(dev, intel_crtc) {
2447
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2448

2449 2450
		if (!wm->pipe_enabled)
			continue;
2451

2452 2453 2454
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2455
	}
2456 2457
}

2458 2459
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2460
				  const struct ilk_pipe_wm_parameters *params,
2461 2462 2463
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2464
	const struct drm_i915_private *dev_priv = dev->dev_private;
2465 2466 2467 2468 2469 2470 2471
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2472
	struct ilk_wm_maximums max;
2473

2474 2475 2476 2477
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2478 2479 2480 2481 2482 2483 2484 2485
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2486
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2487

2488
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2489
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2490

2491 2492 2493
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2494
	/* At least LP0 must be valid */
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2528 2529
	ret_wm->enable = true;

2530
	for_each_intel_crtc(dev, intel_crtc) {
2531 2532 2533 2534 2535
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2536

2537 2538 2539 2540 2541
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2542
		if (!wm->enable)
2543
			ret_wm->enable = false;
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2556
			 const struct intel_wm_config *config,
2557
			 const struct ilk_wm_maximums *max,
2558 2559 2560
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2561
	int last_enabled_level = max_level;
2562

2563 2564 2565 2566 2567
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2568 2569
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2570 2571 2572 2573 2574 2575 2576

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2577 2578 2579 2580 2581
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2582 2583 2584 2585 2586 2587

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2588 2589
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2590 2591 2592
			wm->fbc_val = 0;
		}
	}
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2607 2608
}

2609 2610 2611 2612 2613 2614
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2615 2616 2617 2618 2619
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2620
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2621 2622 2623 2624 2625
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2626
static void ilk_compute_wm_results(struct drm_device *dev,
2627
				   const struct intel_pipe_wm *merged,
2628
				   enum intel_ddb_partitioning partitioning,
2629
				   struct ilk_wm_values *results)
2630
{
2631 2632
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2633

2634
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2635
	results->partitioning = partitioning;
2636

2637
	/* LP1+ register values */
2638
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2639
		const struct intel_wm_level *r;
2640

2641
		level = ilk_wm_lp_to_level(wm_lp, merged);
2642

2643
		r = &merged->wm[level];
2644

2645 2646 2647 2648 2649
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2650
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2651 2652 2653
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2654 2655 2656
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2657 2658 2659 2660 2661 2662 2663
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2664 2665 2666 2667
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2668 2669 2670 2671 2672
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2673
	}
2674

2675
	/* LP0 register values */
2676
	for_each_intel_crtc(dev, intel_crtc) {
2677 2678 2679 2680 2681 2682 2683 2684
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2685

2686 2687 2688 2689
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2690 2691 2692
	}
}

2693 2694
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2695
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2696 2697
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2698
{
2699 2700
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2701

2702 2703 2704 2705 2706
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2707 2708
	}

2709 2710
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2711 2712 2713
			return r2;
		else
			return r1;
2714
	} else if (level1 > level2) {
2715 2716 2717 2718 2719 2720
		return r1;
	} else {
		return r2;
	}
}

2721 2722 2723 2724 2725 2726 2727 2728
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2729
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2730 2731
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2732 2733 2734 2735 2736
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2737
	for_each_pipe(dev_priv, pipe) {
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2781 2782
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2783
{
2784
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2785
	bool changed = false;
2786

2787 2788 2789
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2790
		changed = true;
2791 2792 2793 2794
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2795
		changed = true;
2796 2797 2798 2799
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2800
		changed = true;
2801
	}
2802

2803 2804 2805 2806
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2807

2808 2809 2810 2811 2812 2813 2814
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2815 2816
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2817 2818
{
	struct drm_device *dev = dev_priv->dev;
2819
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2820 2821 2822
	unsigned int dirty;
	uint32_t val;

2823
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2824 2825 2826 2827 2828
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2829
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2830
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2831
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2832
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2833
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2834 2835
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2836
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2837
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2838
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2839
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2840
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2841 2842
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2843
	if (dirty & WM_DIRTY_DDB) {
2844
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2859 2860
	}

2861
	if (dirty & WM_DIRTY_FBC) {
2862 2863 2864 2865 2866 2867 2868 2869
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2870 2871 2872 2873 2874
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2875 2876 2877 2878 2879
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2880

2881
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2882
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2883
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2884
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2885
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2886
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2887 2888

	dev_priv->wm.hw = *results;
2889 2890
}

2891 2892 2893 2894 2895 2896 2897
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2898
static void ilk_update_wm(struct drm_crtc *crtc)
2899
{
2900
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2901
	struct drm_device *dev = crtc->dev;
2902
	struct drm_i915_private *dev_priv = dev->dev_private;
2903 2904 2905
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
2906
	enum intel_ddb_partitioning partitioning;
2907
	struct intel_pipe_wm pipe_wm = {};
2908
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2909
	struct intel_wm_config config = {};
2910

2911
	ilk_compute_wm_parameters(crtc, &params);
2912 2913 2914 2915 2916

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
2917

2918
	intel_crtc->wm.active = pipe_wm;
2919

2920 2921
	ilk_compute_wm_config(dev, &config);

2922
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2923
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2924 2925

	/* 5/6 split only in single pipe config on IVB+ */
2926 2927
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2928
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2929
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2930

2931
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2932
	} else {
2933
		best_lp_wm = &lp_wm_1_2;
2934 2935
	}

2936
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2937
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2938

2939
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2940

2941
	ilk_write_wm_values(dev_priv, &results);
2942 2943
}

2944 2945 2946 2947 2948
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
2949
{
2950
	struct drm_device *dev = plane->dev;
2951
	struct intel_plane *intel_plane = to_intel_plane(plane);
2952

2953 2954 2955
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
2956
	intel_plane->wm.vert_pixels = sprite_width;
2957
	intel_plane->wm.bytes_per_pixel = pixel_size;
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

2969
	ilk_update_wm(crtc);
2970 2971
}

2972 2973 2974 2975
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2976
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2987
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2988
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2989

2990 2991 2992
	active->pipe_enabled = intel_crtc_active(crtc);

	if (active->pipe_enabled) {
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3022
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3023 3024
	struct drm_crtc *crtc;

3025
	for_each_crtc(dev, crtc)
3026 3027 3028 3029 3030 3031 3032
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3033 3034 3035 3036
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3037

3038
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3039 3040 3041 3042 3043
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3044 3045 3046 3047 3048

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3081
void intel_update_watermarks(struct drm_crtc *crtc)
3082
{
3083
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3084 3085

	if (dev_priv->display.update_wm)
3086
		dev_priv->display.update_wm(crtc);
3087 3088
}

3089 3090
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3091 3092 3093
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3094
				    bool enabled, bool scaled)
3095
{
3096
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3097 3098

	if (dev_priv->display.update_sprite_wm)
3099 3100
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3101
						   pixel_size, enabled, scaled);
3102 3103
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

3118
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
B
Ben Widawsky 已提交
3133
	i915_gem_object_ggtt_unpin(ctx);
3134 3135 3136 3137 3138
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3139 3140 3141 3142 3143 3144 3145 3146 3147
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3148 3149 3150 3151 3152
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3153 3154
	assert_spin_locked(&mchdev_lock);

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3172
static void ironlake_enable_drps(struct drm_device *dev)
3173 3174 3175 3176 3177
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3178 3179
	spin_lock_irq(&mchdev_lock);

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3203 3204
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3205

3206 3207 3208
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3225
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3226
		DRM_ERROR("stuck trying to change perf mode\n");
3227
	mdelay(1);
3228 3229 3230

	ironlake_set_drps(dev, fstart);

3231
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3232
		I915_READ(0x112e0);
3233 3234
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3235
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3236 3237

	spin_unlock_irq(&mchdev_lock);
3238 3239
}

3240
static void ironlake_disable_drps(struct drm_device *dev)
3241 3242
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 3244 3245 3246 3247
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3248 3249 3250 3251 3252 3253 3254 3255 3256

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3257
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3258
	mdelay(1);
3259 3260
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3261
	mdelay(1);
3262

3263
	spin_unlock_irq(&mchdev_lock);
3264 3265
}

3266 3267 3268 3269 3270
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3271
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3272
{
3273
	u32 limits;
3274

3275 3276 3277 3278 3279 3280
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3281 3282 3283
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3284 3285 3286 3287

	return limits;
}

3288 3289 3290 3291 3292 3293 3294
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3295
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3296 3297 3298 3299
			new_power = BETWEEN;
		break;

	case BETWEEN:
3300
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3301
			new_power = LOW_POWER;
3302
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3303 3304 3305 3306
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3307
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3308 3309 3310 3311
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3312
	if (val == dev_priv->rps.min_freq_softlimit)
3313
		new_power = LOW_POWER;
3314
	if (val == dev_priv->rps.max_freq_softlimit)
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3380 3381 3382 3383 3384 3385 3386 3387 3388
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3389 3390 3391
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3392 3393 3394 3395 3396 3397
	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
		mask |= GEN6_PM_RP_UP_EI_EXPIRED;

3398 3399 3400
	if (IS_GEN8(dev_priv->dev))
		mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;

3401 3402 3403
	return ~mask;
}

3404 3405 3406
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3407 3408 3409
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3410

3411
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3412 3413
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3414

C
Chris Wilson 已提交
3415 3416 3417 3418 3419
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3420

3421
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3422 3423 3424 3425 3426 3427 3428
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3429
	}
3430 3431 3432 3433

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3434
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3435
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3436

3437 3438
	POSTING_READ(GEN6_RPNSWREQ);

3439
	dev_priv->rps.cur_freq = val;
3440
	trace_intel_gpu_freq_change(val * 50);
3441 3442
}

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3454 3455 3456 3457 3458 3459 3460 3461
	struct drm_device *dev = dev_priv->dev;

	/* Latest VLV doesn't need to force the gfx clock */
	if (dev->pdev->revision >= 0xd) {
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3462 3463 3464 3465
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3466
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3467 3468 3469 3470 3471
		return;

	/* Mask turbo interrupt so that they will not come in between */
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);

3472
	vlv_force_gfx_clock(dev_priv, true);
3473

3474
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3475 3476

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3477
					dev_priv->rps.min_freq_softlimit);
3478 3479 3480 3481 3482

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
				& GENFREQSTATUS) == 0, 5))
		DRM_ERROR("timed out waiting for Punit\n");

3483
	vlv_force_gfx_clock(dev_priv, false);
3484

3485 3486
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3487 3488
}

3489 3490
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3491 3492
	struct drm_device *dev = dev_priv->dev;

3493
	mutex_lock(&dev_priv->rps.hw_lock);
3494
	if (dev_priv->rps.enabled) {
3495 3496 3497
		if (IS_CHERRYVIEW(dev))
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		else if (IS_VALLEYVIEW(dev))
3498
			vlv_set_rps_idle(dev_priv);
3499
		else
3500
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3501 3502
		dev_priv->rps.last_adj = 0;
	}
3503 3504 3505 3506 3507
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
3508 3509
	struct drm_device *dev = dev_priv->dev;

3510
	mutex_lock(&dev_priv->rps.hw_lock);
3511
	if (dev_priv->rps.enabled) {
3512
		if (IS_VALLEYVIEW(dev))
3513
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3514
		else
3515
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3516 3517
		dev_priv->rps.last_adj = 0;
	}
3518 3519 3520
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3521 3522 3523
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3524

3525
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3526 3527
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3528

3529 3530 3531 3532
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

3533 3534 3535 3536 3537 3538
	if (val != dev_priv->rps.cur_freq) {
		DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
				 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
				 dev_priv->rps.cur_freq,
				 vlv_gpu_freq(dev_priv, val), val);

3539
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3540
	}
3541

3542
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3543

3544
	dev_priv->rps.cur_freq = val;
3545
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3546 3547
}

3548 3549 3550
static void gen8_disable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565

	I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
	I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
				   ~dev_priv->pm_rps_events);
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
	 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
	 * gen8_enable_rps will clean up. */

	spin_lock_irq(&dev_priv->irq_lock);
	dev_priv->rps.pm_iir = 0;
	spin_unlock_irq(&dev_priv->irq_lock);

	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3566 3567
}

3568
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3569 3570 3571 3572
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3573 3574
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
				~dev_priv->pm_rps_events);
3575 3576 3577 3578 3579
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3580
	spin_lock_irq(&dev_priv->irq_lock);
3581
	dev_priv->rps.pm_iir = 0;
3582
	spin_unlock_irq(&dev_priv->irq_lock);
3583

3584
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3585 3586
}

3587
static void gen6_disable_rps(struct drm_device *dev)
3588 3589 3590 3591
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3592
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3593

3594 3595 3596 3597
	if (IS_BROADWELL(dev))
		gen8_disable_rps_interrupts(dev);
	else
		gen6_disable_rps_interrupts(dev);
3598 3599
}

3600 3601 3602 3603 3604
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3605 3606

	gen8_disable_rps_interrupts(dev);
3607 3608
}

3609 3610 3611 3612
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3613 3614 3615 3616
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

3617
	I915_WRITE(GEN6_RC_CONTROL, 0);
3618

3619 3620
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);

3621
	gen6_disable_rps_interrupts(dev);
3622 3623
}

B
Ben Widawsky 已提交
3624 3625
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
3626 3627 3628 3629 3630 3631
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
3632 3633 3634 3635 3636 3637 3638 3639 3640
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
3641 3642
}

I
Imre Deak 已提交
3643
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3644
{
3645 3646 3647 3648
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
3649 3650 3651 3652
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

3653
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
3654 3655 3656
	if (enable_rc6 >= 0) {
		int mask;

3657
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
3658 3659 3660 3661 3662 3663
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
3664 3665
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
3666 3667 3668

		return enable_rc6 & mask;
	}
3669

3670 3671 3672
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3673

3674
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
3675
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3676 3677

	return INTEL_RC6_ENABLE;
3678 3679
}

I
Imre Deak 已提交
3680 3681 3682 3683 3684
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

3685 3686 3687 3688 3689 3690
static void gen8_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
	WARN_ON(dev_priv->rps.pm_iir);
3691
	gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3692 3693 3694 3695
	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	spin_unlock_irq(&dev_priv->irq_lock);
}

3696 3697 3698 3699 3700
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
3701
	WARN_ON(dev_priv->rps.pm_iir);
3702
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3703
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3704 3705 3706
	spin_unlock_irq(&dev_priv->irq_lock);
}

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
{
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* XXX: only BYT has a special efficient freq */
	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
}

3728 3729 3730
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3731
	struct intel_engine_cs *ring;
3732 3733 3734 3735 3736 3737 3738 3739
	uint32_t rc6_mask = 0, rp_state_cap;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3740
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3741 3742 3743 3744 3745

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3746
	parse_rp_state_cap(dev_priv, rp_state_cap);
3747 3748 3749 3750 3751 3752 3753 3754

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
3755 3756 3757 3758
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3759 3760 3761 3762

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3763
	intel_print_rc6_info(dev, rc6_mask);
3764 3765 3766 3767 3768 3769 3770 3771
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
3772 3773

	/* 4 Program defaults and thresholds for RPS*/
3774 3775 3776 3777
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3792 3793

	/* 5: Enable RPS */
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

3804
	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3805 3806

	gen8_enable_rps_interrupts(dev);
3807

3808
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3809 3810
}

3811
static void gen6_enable_rps(struct drm_device *dev)
3812
{
3813
	struct drm_i915_private *dev_priv = dev->dev_private;
3814
	struct intel_engine_cs *ring;
3815
	u32 rp_state_cap;
3816
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3817 3818
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3819
	int i, ret;
3820

3821
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3822

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3837
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3838

3839 3840
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

3841
	parse_rp_state_cap(dev_priv, rp_state_cap);
J
Jeff McGee 已提交
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3852 3853
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3854 3855 3856

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3857
	if (IS_IVYBRIDGE(dev))
3858 3859 3860
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3861
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3862 3863
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3864
	/* Check if we are enabling RC6 */
3865 3866 3867 3868
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3869 3870 3871 3872
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3873

3874 3875 3876
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3877

B
Ben Widawsky 已提交
3878
	intel_print_rc6_info(dev, rc6_mask);
3879 3880 3881 3882 3883 3884

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3885 3886
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3887 3888
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
3889
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3890
	if (ret)
B
Ben Widawsky 已提交
3891
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3892 3893 3894 3895

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3896
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3897
				 (pcu_mbox & 0xff) * 50);
3898
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3899 3900
	}

3901
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
3902
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3903

3904
	gen6_enable_rps_interrupts(dev);
3905

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3920
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3921 3922
}

3923
static void __gen6_update_ring_freq(struct drm_device *dev)
3924
{
3925
	struct drm_i915_private *dev_priv = dev->dev_private;
3926
	int min_freq = 15;
3927 3928
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3929
	int scaling_factor = 180;
3930
	struct cpufreq_policy *policy;
3931

3932
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3933

3934 3935 3936 3937 3938 3939 3940 3941 3942
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
3943
		max_ia_freq = tsc_khz;
3944
	}
3945 3946 3947 3948

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3949
	min_ring_freq = I915_READ(DCLK) & 0xf;
3950 3951
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3952

3953 3954 3955 3956 3957
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3958
	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3959
	     gpu_freq--) {
3960
		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3961 3962
		unsigned int ia_freq = 0, ring_freq = 0;

3963 3964 3965 3966
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
3967
			ring_freq = mult_frac(gpu_freq, 5, 4);
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3984

B
Ben Widawsky 已提交
3985 3986
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3987 3988 3989
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
3990 3991 3992
	}
}

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4005
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
{
	u32 val, rp0;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp1;
}

4035
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4036 4037 4038 4039 4040 4041 4042 4043
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
	return rpn;
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4055
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4056 4057 4058
{
	u32 val, rp0;

4059
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4072
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4073
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4074
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4075 4076 4077 4078 4079
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4080
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4081
{
4082
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4083 4084
}

4085 4086 4087 4088 4089 4090 4091 4092 4093
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
}

4123 4124 4125 4126 4127 4128 4129 4130
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4131 4132
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4133 4134 4135 4136 4137 4138 4139 4140
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4141
								      I915_GTT_OFFSET_NONE,
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4178 4179 4180
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4181
	u32 val;
4182 4183 4184 4185 4186

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4213 4214 4215 4216 4217
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4233 4234
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4235
	struct drm_i915_private *dev_priv = dev->dev_private;
4236
	u32 val;
4237

4238
	cherryview_setup_pctx(dev);
4239 4240 4241

	mutex_lock(&dev_priv->rps.hw_lock);

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
	val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

4279 4280 4281 4282 4283
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

4284 4285 4286 4287 4288
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

4289 4290 4291 4292 4293 4294
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4295 4296 4297 4298 4299 4300 4301 4302
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4303 4304
}

4305 4306 4307 4308 4309
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4310 4311 4312 4313
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4314
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4361 4362 4363 4364 4365 4366 4367 4368
	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

4369 4370 4371 4372
	/* WaDisablePwrmtrEvent:chv (pre-production hw) */
	I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
	I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);

4373 4374 4375
	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4376
		   GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4397 4398
	gen8_enable_rps_interrupts(dev);

4399 4400 4401
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}

4402 4403 4404
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4405
	struct intel_engine_cs *ring;
4406
	u32 gtfifodbg, val, rc6_mode = 0;
4407 4408 4409 4410
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4411 4412
	valleyview_check_pctx(dev_priv);

4413
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4414 4415
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4416 4417 4418
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4419 4420
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4421 4422 4423 4424 4425 4426 4427

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4428
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4445
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4446 4447

	/* allows RC6 residency counter to work */
4448
	I915_WRITE(VLV_COUNTER_CONTROL,
4449 4450
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4451 4452
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4453

4454
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4455
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4456 4457 4458

	intel_print_rc6_info(dev, rc6_mode);

4459
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4460

4461
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4462 4463 4464 4465

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

4466
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4467
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4468 4469
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);
4470

4471
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4472 4473
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);
4474

4475
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4476

4477
	gen6_enable_rps_interrupts(dev);
4478

4479
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4480 4481
}

4482
void ironlake_teardown_rc6(struct drm_device *dev)
4483 4484 4485
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4486
	if (dev_priv->ips.renderctx) {
B
Ben Widawsky 已提交
4487
		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4488 4489
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4490 4491
	}

4492
	if (dev_priv->ips.pwrctx) {
B
Ben Widawsky 已提交
4493
		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4494 4495
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4496 4497 4498
	}
}

4499
static void ironlake_disable_rc6(struct drm_device *dev)
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4521 4522 4523
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4524 4525
		return -ENOMEM;

4526 4527 4528
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4529 4530 4531 4532 4533 4534 4535
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4536
static void ironlake_enable_rc6(struct drm_device *dev)
4537 4538
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4539
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4540
	bool was_interruptible;
4541 4542 4543 4544 4545 4546 4547 4548
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4549 4550
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4551
	ret = ironlake_setup_rc6(dev);
4552
	if (ret)
4553 4554
		return;

4555 4556 4557
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4558 4559 4560 4561
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4562
	ret = intel_ring_begin(ring, 6);
4563 4564
	if (ret) {
		ironlake_teardown_rc6(dev);
4565
		dev_priv->mm.interruptible = was_interruptible;
4566 4567 4568
		return;
	}

4569 4570
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4571
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4572 4573 4574 4575 4576 4577 4578 4579
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4580 4581 4582 4583 4584 4585

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4586 4587
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4588
	if (ret) {
4589
		DRM_ERROR("failed to enable ironlake power savings\n");
4590 4591 4592 4593
		ironlake_teardown_rc6(dev);
		return;
	}

4594
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4595
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
4596

4597
	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4598 4599
}

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4629
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4630 4631 4632 4633 4634 4635
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4636 4637
	assert_spin_locked(&mchdev_lock);

4638
	diff1 = now - dev_priv->ips.last_time1;
4639 4640 4641 4642 4643 4644 4645

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4646
		return dev_priv->ips.chipset_power;
4647 4648 4649 4650 4651 4652 4653 4654

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4655 4656
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4657 4658
		diff += total_count;
	} else {
4659
		diff = total_count - dev_priv->ips.last_count1;
4660 4661 4662
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4663 4664
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4675 4676
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4677

4678
	dev_priv->ips.chipset_power = ret;
4679 4680 4681 4682

	return ret;
}

4683 4684
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
4685
	struct drm_device *dev = dev_priv->dev;
4686 4687
	unsigned long val;

4688
	if (INTEL_INFO(dev)->gen != 5)
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
4717
	struct drm_device *dev = dev_priv->dev;
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
4851
	if (INTEL_INFO(dev)->is_mobile)
4852 4853 4854 4855 4856
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4857
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4858
{
4859
	u64 now, diff, diffms;
4860 4861
	u32 count;

4862
	assert_spin_locked(&mchdev_lock);
4863

4864 4865 4866
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
4867 4868 4869 4870 4871 4872 4873

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4874 4875
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4876 4877
		diff += count;
	} else {
4878
		diff = count - dev_priv->ips.last_count2;
4879 4880
	}

4881 4882
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4883 4884 4885 4886

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4887
	dev_priv->ips.gfx_power = diff;
4888 4889
}

4890 4891
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
4892 4893 4894
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
4895 4896
		return;

4897
	spin_lock_irq(&mchdev_lock);
4898 4899 4900

	__i915_update_gfx_val(dev_priv);

4901
	spin_unlock_irq(&mchdev_lock);
4902 4903
}

4904
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4905 4906 4907 4908
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4909 4910
	assert_spin_locked(&mchdev_lock);

4911
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4931
	corr2 = (corr * dev_priv->ips.corr);
4932 4933 4934 4935

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4936
	__i915_update_gfx_val(dev_priv);
4937

4938
	return dev_priv->ips.gfx_power + state2;
4939 4940
}

4941 4942
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
4943
	struct drm_device *dev = dev_priv->dev;
4944 4945
	unsigned long val;

4946
	if (INTEL_INFO(dev)->gen != 5)
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4969
	spin_lock_irq(&mchdev_lock);
4970 4971 4972 4973
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4974 4975
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4976 4977 4978 4979

	ret = chipset_val + graphics_val;

out_unlock:
4980
	spin_unlock_irq(&mchdev_lock);
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4996
	spin_lock_irq(&mchdev_lock);
4997 4998 4999 5000 5001 5002
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5003 5004
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5005 5006

out_unlock:
5007
	spin_unlock_irq(&mchdev_lock);
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5024
	spin_lock_irq(&mchdev_lock);
5025 5026 5027 5028 5029 5030
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5031 5032
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5033 5034

out_unlock:
5035
	spin_unlock_irq(&mchdev_lock);
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5049
	struct intel_engine_cs *ring;
5050
	bool ret = false;
5051
	int i;
5052

5053
	spin_lock_irq(&mchdev_lock);
5054 5055 5056 5057
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5058 5059
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5060 5061

out_unlock:
5062
	spin_unlock_irq(&mchdev_lock);
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5079
	spin_lock_irq(&mchdev_lock);
5080 5081 5082 5083 5084 5085
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5086
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5087

5088
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5089 5090 5091
		ret = false;

out_unlock:
5092
	spin_unlock_irq(&mchdev_lock);
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5120 5121
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5122
	spin_lock_irq(&mchdev_lock);
5123
	i915_mch_dev = dev_priv;
5124
	spin_unlock_irq(&mchdev_lock);
5125 5126 5127 5128 5129 5130

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5131
	spin_lock_irq(&mchdev_lock);
5132
	i915_mch_dev = NULL;
5133
	spin_unlock_irq(&mchdev_lock);
5134
}
5135

5136
static void intel_init_emon(struct drm_device *dev)
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5204
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5205 5206
}

5207 5208
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5209 5210
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5211 5212 5213
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5214
		valleyview_init_gt_powersave(dev);
5215 5216 5217 5218
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5219 5220 5221
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5222
		valleyview_cleanup_gt_powersave(dev);
5223 5224
}

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Interrupts should be disabled already to avoid re-arming. */
5238
	WARN_ON(intel_irqs_enabled(dev_priv));
5239 5240 5241 5242

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	cancel_work_sync(&dev_priv->rps.work);
5243 5244 5245

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5246 5247
}

5248 5249
void intel_disable_gt_powersave(struct drm_device *dev)
{
5250 5251
	struct drm_i915_private *dev_priv = dev->dev_private;

5252
	/* Interrupts should be disabled already to avoid re-arming. */
5253
	WARN_ON(intel_irqs_enabled(dev_priv));
5254

5255
	if (IS_IRONLAKE_M(dev)) {
5256
		ironlake_disable_drps(dev);
5257
		ironlake_disable_rc6(dev);
5258
	} else if (INTEL_INFO(dev)->gen >= 6) {
5259
		intel_suspend_gt_powersave(dev);
5260

5261
		mutex_lock(&dev_priv->rps.hw_lock);
5262 5263 5264
		if (IS_CHERRYVIEW(dev))
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5265 5266 5267
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5268
		dev_priv->rps.enabled = false;
5269
		mutex_unlock(&dev_priv->rps.hw_lock);
5270
	}
5271 5272
}

5273 5274 5275 5276 5277 5278 5279
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5280
	mutex_lock(&dev_priv->rps.hw_lock);
5281

5282 5283 5284
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5285
		valleyview_enable_rps(dev);
5286 5287
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5288
		__gen6_update_ring_freq(dev);
5289 5290
	} else {
		gen6_enable_rps(dev);
5291
		__gen6_update_ring_freq(dev);
5292
	}
5293
	dev_priv->rps.enabled = true;
5294
	mutex_unlock(&dev_priv->rps.hw_lock);
5295 5296

	intel_runtime_pm_put(dev_priv);
5297 5298
}

5299 5300
void intel_enable_gt_powersave(struct drm_device *dev)
{
5301 5302
	struct drm_i915_private *dev_priv = dev->dev_private;

5303
	if (IS_IRONLAKE_M(dev)) {
5304
		mutex_lock(&dev->struct_mutex);
5305 5306 5307
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
5308
		mutex_unlock(&dev->struct_mutex);
5309
	} else if (INTEL_INFO(dev)->gen >= 6) {
5310 5311 5312 5313
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5314 5315 5316 5317 5318 5319 5320
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5321
		 */
5322 5323 5324
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5325 5326 5327
	}
}

5328 5329 5330 5331 5332 5333 5334 5335
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->rps.enabled = false;
	intel_enable_gt_powersave(dev);
}

5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5348 5349 5350 5351 5352
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5353
	for_each_pipe(dev_priv, pipe) {
5354 5355 5356
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5357
		intel_flush_primary_plane(dev_priv, pipe);
5358 5359 5360
	}
}

5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5375
static void ironlake_init_clock_gating(struct drm_device *dev)
5376 5377
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5378
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5379

5380 5381 5382 5383
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5384 5385 5386
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5404
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5405 5406 5407
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5408 5409

	ilk_init_lp_watermarks(dev);
5410 5411 5412 5413 5414 5415 5416 5417 5418

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5419
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5420 5421 5422 5423 5424 5425 5426 5427
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5428 5429
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5430 5431 5432 5433 5434 5435
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5436

5437
	/* WaDisableRenderCachePipelinedFlush:ilk */
5438 5439
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5440

5441 5442 5443
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5444
	g4x_disable_trickle_feed(dev);
5445

5446 5447 5448 5449 5450 5451 5452
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5453
	uint32_t val;
5454 5455 5456 5457 5458 5459

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5460 5461 5462
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5463 5464
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5465 5466 5467
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5468
	for_each_pipe(dev_priv, pipe) {
5469 5470 5471
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5472
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5473
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5474 5475 5476
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5477 5478
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5479
	/* WADP0ClockGatingDisable */
5480
	for_each_pipe(dev_priv, pipe) {
5481 5482 5483
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5484 5485
}

5486 5487 5488 5489 5490 5491
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5492 5493 5494
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5495 5496
}

5497
static void gen6_init_clock_gating(struct drm_device *dev)
5498 5499
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5500
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5501

5502
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5503 5504 5505 5506 5507

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5508
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5509 5510 5511
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5512
	/* WaSetupGtModeTdRowDispatch:snb */
5513 5514 5515 5516
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

5517 5518 5519
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5520 5521 5522
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5523 5524 5525 5526
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5527 5528 5529 5530
	 */
	I915_WRITE(GEN6_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5531
	ilk_init_lp_watermarks(dev);
5532 5533

	I915_WRITE(CACHE_MODE_0,
5534
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5550
	 *
5551 5552
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5553 5554 5555 5556 5557
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5558
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5559 5560
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5561

5562 5563 5564 5565 5566 5567 5568 5569
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5570 5571 5572 5573 5574 5575 5576 5577
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5578 5579
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5580 5581 5582 5583 5584 5585 5586
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5587 5588 5589 5590
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5591

5592
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5593

5594
	cpt_init_clock_gating(dev);
5595 5596

	gen6_check_mch_setup(dev);
5597 5598 5599 5600 5601 5602
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5603
	/*
5604
	 * WaVSThreadDispatchOverride:ivb,vlv
5605 5606 5607 5608
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5609 5610 5611 5612 5613 5614 5615 5616
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5629 5630 5631 5632 5633

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5634 5635
}

5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5648
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
5649 5650
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5651
	enum pipe pipe;
B
Ben Widawsky 已提交
5652 5653 5654 5655

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5656

5657
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5658
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5659

5660
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5661 5662 5663
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5664
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5665
	for_each_pipe(dev_priv, pipe) {
5666
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5667
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5668
			   BDW_DPRS_MASK_VBLANK_SRD);
5669
	}
5670

5671 5672 5673 5674 5675
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5676

5677 5678
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5679 5680 5681 5682

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5683

5684
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
5685 5686
}

5687 5688 5689 5690
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5691
	ilk_init_lp_watermarks(dev);
5692

5693 5694 5695 5696 5697
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

5698
	/* This is required by WaCatErrorRejectionIssue:hsw */
5699 5700 5701 5702
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5703 5704 5705
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5706

5707 5708 5709
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5710 5711 5712 5713
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

5714
	/* WaDisable4x2SubspanOptimization:hsw */
5715 5716
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5717

5718 5719 5720
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5721 5722 5723 5724
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5725 5726 5727 5728
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5729
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5730 5731
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5732 5733 5734
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5735

5736
	lpt_init_clock_gating(dev);
5737 5738
}

5739
static void ivybridge_init_clock_gating(struct drm_device *dev)
5740 5741
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5742
	uint32_t snpcr;
5743

5744
	ilk_init_lp_watermarks(dev);
5745

5746
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5747

5748
	/* WaDisableEarlyCull:ivb */
5749 5750 5751
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5752
	/* WaDisableBackToBackFlipFix:ivb */
5753 5754 5755 5756
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5757
	/* WaDisablePSDDualDispatchEnable:ivb */
5758 5759 5760 5761
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5762 5763 5764
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5765
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5766 5767 5768
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5769
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5770 5771 5772
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5773 5774 5775 5776
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5777 5778 5779 5780
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5781 5782
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5783
	}
5784

5785
	/* WaForceL3Serialization:ivb */
5786 5787 5788
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5789
	/*
5790
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5791
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5792 5793
	 */
	I915_WRITE(GEN6_UCGCTL2,
5794
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5795

5796
	/* This is required by WaCatErrorRejectionIssue:ivb */
5797 5798 5799 5800
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5801
	g4x_disable_trickle_feed(dev);
5802 5803

	gen7_setup_fixed_func_scheduler(dev_priv);
5804

5805 5806 5807 5808 5809
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
5810

5811
	/* WaDisable4x2SubspanOptimization:ivb */
5812 5813
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5814

5815 5816 5817
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5818 5819 5820 5821
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5822 5823 5824 5825
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

5826 5827 5828 5829
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5830

5831 5832
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5833 5834

	gen6_check_mch_setup(dev);
5835 5836
}

5837
static void valleyview_init_clock_gating(struct drm_device *dev)
5838 5839 5840
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5841
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5842

5843
	/* WaDisableEarlyCull:vlv */
5844 5845 5846
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5847
	/* WaDisableBackToBackFlipFix:vlv */
5848 5849 5850 5851
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5852
	/* WaPsdDispatchEnable:vlv */
5853
	/* WaDisablePSDDualDispatchEnable:vlv */
5854
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5855 5856
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5857

5858 5859 5860
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5861
	/* WaForceL3Serialization:vlv */
5862 5863 5864
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5865
	/* WaDisableDopClockGating:vlv */
5866 5867 5868
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5869
	/* This is required by WaCatErrorRejectionIssue:vlv */
5870 5871 5872 5873
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5874 5875
	gen7_setup_fixed_func_scheduler(dev_priv);

5876
	/*
5877
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5878
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5879 5880
	 */
	I915_WRITE(GEN6_UCGCTL2,
5881
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5882

5883 5884 5885 5886 5887
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5888

5889
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5890

5891 5892 5893 5894
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
5895 5896
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5897

5898 5899 5900 5901 5902 5903
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

5904
	/*
5905
	 * WaDisableVLVClockGating_VBIIssue:vlv
5906 5907 5908
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
5909
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5910 5911
}

5912 5913 5914 5915 5916 5917 5918
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5919

5920 5921 5922 5923 5924
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5925 5926 5927 5928

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5929 5930 5931 5932

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5933 5934 5935 5936

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5937

5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	/* WaDisableGunitClockGating:chv (pre-production hw) */
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
		   GINT_DIS);

	/* WaDisableFfDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));

	/* WaDisableDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5949 5950
}

5951
static void g4x_init_clock_gating(struct drm_device *dev)
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5967 5968 5969 5970

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5971

5972 5973 5974
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5975
	g4x_disable_trickle_feed(dev);
5976 5977
}

5978
static void crestline_init_clock_gating(struct drm_device *dev)
5979 5980 5981 5982 5983 5984 5985 5986
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
5987 5988
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5989 5990 5991

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5992 5993
}

5994
static void broadwater_init_clock_gating(struct drm_device *dev)
5995 5996 5997 5998 5999 6000 6001 6002 6003
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6004 6005
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6006 6007 6008

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6009 6010
}

6011
static void gen3_init_clock_gating(struct drm_device *dev)
6012 6013 6014 6015 6016 6017 6018
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6019 6020 6021

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6022 6023 6024

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6025 6026

	/* interrupts should cause a wake up from C3 */
6027
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6028 6029 6030

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6031 6032 6033

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6034 6035
}

6036
static void i85x_init_clock_gating(struct drm_device *dev)
6037 6038 6039 6040
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6041 6042 6043 6044

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6045 6046 6047

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6048 6049
}

6050
static void i830_init_clock_gating(struct drm_device *dev)
6051 6052 6053 6054
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6055 6056 6057 6058

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6059 6060 6061 6062 6063 6064 6065 6066 6067
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

6068 6069 6070 6071 6072 6073
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6074 6075
static void intel_init_fbc(struct drm_i915_private *dev_priv)
{
6076 6077
	if (!HAS_FBC(dev_priv)) {
		dev_priv->fbc.enabled = false;
6078
		return;
6079
	}
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100

	if (INTEL_INFO(dev_priv)->gen >= 7) {
		dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
		dev_priv->display.enable_fbc = gen7_enable_fbc;
		dev_priv->display.disable_fbc = ironlake_disable_fbc;
	} else if (INTEL_INFO(dev_priv)->gen >= 5) {
		dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
		dev_priv->display.enable_fbc = ironlake_enable_fbc;
		dev_priv->display.disable_fbc = ironlake_disable_fbc;
	} else if (IS_GM45(dev_priv)) {
		dev_priv->display.fbc_enabled = g4x_fbc_enabled;
		dev_priv->display.enable_fbc = g4x_enable_fbc;
		dev_priv->display.disable_fbc = g4x_disable_fbc;
	} else {
		dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
		dev_priv->display.enable_fbc = i8xx_enable_fbc;
		dev_priv->display.disable_fbc = i8xx_disable_fbc;

		/* This value was pulled out of someone's hat */
		I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
	}
6101 6102

	dev_priv->fbc.enabled = dev_priv->display.fbc_enabled(dev_priv->dev);
6103 6104
}

6105 6106 6107 6108 6109
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6110
	intel_init_fbc(dev_priv);
6111

6112 6113 6114 6115 6116 6117
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6118
	/* For FIFO watermark updates */
6119 6120 6121
	if (IS_GEN9(dev)) {
		dev_priv->display.init_clock_gating = gen9_init_clock_gating;
	} else if (HAS_PCH_SPLIT(dev)) {
6122
		ilk_setup_wm_latency(dev);
6123

6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6136
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6137
		else if (IS_GEN6(dev))
6138
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6139
		else if (IS_IVYBRIDGE(dev))
6140
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6141
		else if (IS_HASWELL(dev))
6142
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6143
		else if (INTEL_INFO(dev)->gen == 8)
6144
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6145
	} else if (IS_CHERRYVIEW(dev)) {
6146
		dev_priv->display.update_wm = cherryview_update_wm;
6147
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6148 6149
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6150 6151
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6152
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6166
			intel_set_memory_cxsr(dev_priv, false);
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6184 6185 6186
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
6187
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6188 6189
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
6190
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6191 6192 6193 6194 6195 6196 6197 6198
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6199 6200 6201
	}
}

B
Ben Widawsky 已提交
6202 6203
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
6204
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
6228
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6248

6249
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6250
{
6251
	int div;
6252

6253
	/* 4 x czclk */
6254
	switch (dev_priv->mem_freq) {
6255
	case 800:
6256
		div = 10;
6257 6258
		break;
	case 1066:
6259
		div = 12;
6260 6261
		break;
	case 1333:
6262
		div = 16;
6263 6264 6265 6266 6267
		break;
	default:
		return -1;
	}

6268
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6269 6270
}

6271
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6272
{
6273
	int mul;
6274

6275
	/* 4 x czclk */
6276
	switch (dev_priv->mem_freq) {
6277
	case 800:
6278
		mul = 10;
6279 6280
		break;
	case 1066:
6281
		mul = 12;
6282 6283
		break;
	case 1333:
6284
		mul = 16;
6285 6286 6287 6288 6289
		break;
	default:
		return -1;
	}

6290
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6291 6292
}

6293
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
{
	int div, freq;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		div = 5;
		break;
	case 267:
		div = 6;
		break;
	case 320:
	case 333:
	case 400:
		div = 8;
		break;
	default:
		return -1;
	}

	freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);

	return freq;
}

6318
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
{
	int mul, opcode;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		mul = 5;
		break;
	case 267:
		mul = 6;
		break;
	case 320:
	case 333:
	case 400:
		mul = 8;
		break;
	default:
		return -1;
	}

6338
	/* CHV needs even values */
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
	opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);

	return opcode;
}

int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_gpu_freq(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_gpu_freq(dev_priv, val);

	return ret;
}

int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_freq_opcode(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_freq_opcode(dev_priv, val);

	return ret;
}

D
Daniel Vetter 已提交
6368
void intel_pm_setup(struct drm_device *dev)
6369 6370 6371
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
6372 6373
	mutex_init(&dev_priv->rps.hw_lock);

6374 6375
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
6376

6377
	dev_priv->pm.suspended = false;
6378
}