intel_pm.c 163.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <drm/i915_powerwell.h>
34

35 36 37
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
38
 *
39 40
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
41
 *
42 43
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
44 45
 */

46
static void i8xx_disable_fbc(struct drm_device *dev)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

68
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
69 70 71 72 73 74 75 76 77 78 79
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
	int plane, i;
	u32 fbc_ctl, fbc_ctl2;

80
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

	/* FBC_CTL wants 64B units */
	cfb_pitch = (cfb_pitch / 64) - 1;
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

	/* Set it up... */
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
	fbc_ctl2 |= plane;
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
	I915_WRITE(FBC_FENCE_OFF, crtc->y);

	/* enable it... */
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

107 108
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
109 110
}

111
static bool i8xx_fbc_enabled(struct drm_device *dev)
112 113 114 115 116 117
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

118
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);

142
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
143 144
}

145
static void g4x_disable_fbc(struct drm_device *dev)
146 147 148 149 150 151 152 153 154 155 156 157 158 159
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

160
static bool g4x_fbc_enabled(struct drm_device *dev)
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
	gen6_gt_force_wake_get(dev_priv);
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
	gen6_gt_force_wake_put(dev_priv);
}

187
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	dpfc_ctl &= DPFC_RESERVED;
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
	/* Set persistent mode for front-buffer rendering, ala X. */
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
211
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
212 213 214 215 216 217 218 219 220 221
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

222
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
223 224
}

225
static void ironlake_disable_fbc(struct drm_device *dev)
226 227 228 229 230 231 232 233 234 235
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

236
		if (IS_IVYBRIDGE(dev))
237
			/* WaFbcDisableDpfcClockGating:ivb */
238 239 240 241
			I915_WRITE(ILK_DSPCLK_GATE_D,
				   I915_READ(ILK_DSPCLK_GATE_D) &
				   ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);

242
		if (IS_HASWELL(dev))
243
			/* WaFbcDisableDpfcClockGating:hsw */
244 245 246 247
			I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
				   I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
				   ~HSW_DPFC_GATING_DISABLE);

248 249 250 251
		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

252
static bool ironlake_fbc_enabled(struct drm_device *dev)
253 254 255 256 257 258
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

259 260 261 262 263 264 265 266 267
static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

268
	I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
269 270 271 272 273

	I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
		   IVB_DPFC_CTL_FENCE_EN |
		   intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);

R
Rodrigo Vivi 已提交
274
	if (IS_IVYBRIDGE(dev)) {
275
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
R
Rodrigo Vivi 已提交
276
		I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
277
		/* WaFbcDisableDpfcClockGating:ivb */
R
Rodrigo Vivi 已提交
278 279 280
		I915_WRITE(ILK_DSPCLK_GATE_D,
			   I915_READ(ILK_DSPCLK_GATE_D) |
			   ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
281
	} else {
282
		/* WaFbcAsynchFlipDisableFbcQueue:hsw */
283 284
		I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
			   HSW_BYPASS_FBC_QUEUE);
285
		/* WaFbcDisableDpfcClockGating:hsw */
286 287 288
		I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
			   I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
			   HSW_DPFC_GATING_DISABLE);
R
Rodrigo Vivi 已提交
289
	}
290

291 292 293 294 295 296 297 298 299
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
319
	if (work == dev_priv->fbc.fbc_work) {
320 321 322 323 324 325 326
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
		if (work->crtc->fb == work->fb) {
			dev_priv->display.enable_fbc(work->crtc,
						     work->interval);

327 328 329
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
			dev_priv->fbc.fb_id = work->crtc->fb->base.id;
			dev_priv->fbc.y = work->crtc->y;
330 331
		}

332
		dev_priv->fbc.fbc_work = NULL;
333 334 335 336 337 338 339 340
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
341
	if (dev_priv->fbc.fbc_work == NULL)
342 343 344 345 346
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
347
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
348 349
	 * entirely asynchronously.
	 */
350
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
351
		/* tasklet was killed before being run, clean up */
352
		kfree(dev_priv->fbc.fbc_work);
353 354 355 356 357 358

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
359
	dev_priv->fbc.fbc_work = NULL;
360 361
}

362
static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
363 364 365 366 367 368 369 370 371 372
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

373
	work = kzalloc(sizeof(*work), GFP_KERNEL);
374
	if (work == NULL) {
375
		DRM_ERROR("Failed to allocate FBC work structure\n");
376 377 378 379 380 381 382 383 384
		dev_priv->display.enable_fbc(crtc, interval);
		return;
	}

	work->crtc = crtc;
	work->fb = crtc->fb;
	work->interval = interval;
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

385
	dev_priv->fbc.fbc_work = work;
386 387 388 389 390 391 392 393 394 395 396

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
397 398
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
399 400 401 402 403 404 405 406 407 408 409 410 411 412
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
413
	dev_priv->fbc.plane = -1;
414 415
}

416 417 418 419 420 421 422 423 424 425
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

426 427 428 429 430 431 432 433 434 435
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
436
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;
453
	const struct drm_display_mode *adjusted_mode;
454
	unsigned int max_width, max_height;
455

456 457
	if (!I915_HAS_FBC(dev)) {
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
458
		return;
459
	}
460

461 462 463
	if (!i915_powersave) {
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
464
		return;
465
	}
466 467 468 469 470 471 472 473 474 475 476

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
477
		if (intel_crtc_active(tmp_crtc) &&
478
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
479
			if (crtc) {
480 481
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
482 483 484 485 486 487 488
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

	if (!crtc || crtc->fb == NULL) {
489 490
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
491 492 493 494 495 496 497
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
	fb = crtc->fb;
	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;
498
	adjusted_mode = &intel_crtc->config.adjusted_mode;
499

500 501
	if (i915_enable_fbc < 0 &&
	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
502 503
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
504
		goto out_disable;
505
	}
506
	if (!i915_enable_fbc) {
507 508
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
509 510
		goto out_disable;
	}
511 512
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
513 514 515
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
516 517
		goto out_disable;
	}
518 519

	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
520 521
		max_width = 4096;
		max_height = 2048;
522
	} else {
523 524
		max_width = 2048;
		max_height = 1536;
525
	}
526 527
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
528 529
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
530 531
		goto out_disable;
	}
R
Rodrigo Vivi 已提交
532 533
	if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
	    intel_crtc->plane != 0) {
534 535
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
			DRM_DEBUG_KMS("plane not 0, disabling compression\n");
536 537 538 539 540 541 542 543
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
544 545
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
546 547 548 549 550 551 552
		goto out_disable;
	}

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

553
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
554 555
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
556 557 558
		goto out_disable;
	}

559 560 561 562 563
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
564 565 566
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

	intel_enable_fbc(crtc, 500);
598
	dev_priv->fbc.no_fbc_reason = FBC_OK;
599 600 601 602 603 604 605 606
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
607
	i915_gem_stolen_cleanup_compression(dev);
608 609
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

677
	dev_priv->ips.r_t = dev_priv->mem_freq;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
709
		dev_priv->ips.c_m = 0;
710
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
711
		dev_priv->ips.c_m = 1;
712
	} else {
713
		dev_priv->ips.c_m = 2;
714 715 716
	}
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

755
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

779
static void pineview_disable_cxsr(struct drm_device *dev)
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* deactivate cxsr */
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

803
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

819
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

836
static int i845_get_fifo_size(struct drm_device *dev, int plane)
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

852
static int i830_get_fifo_size(struct drm_device *dev, int plane)
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_HPLLOFF_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
	G4X_FIFO_SIZE,
	G4X_MAX_WM,
	G4X_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
	VALLEYVIEW_FIFO_SIZE,
	VALLEYVIEW_MAX_WM,
	VALLEYVIEW_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
	I965_CURSOR_FIFO,
	VALLEYVIEW_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
	I945_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
	I915_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
	I855GM_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
	I830_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};

static const struct intel_watermark_params ironlake_display_wm_info = {
	ILK_DISPLAY_FIFO,
	ILK_DISPLAY_MAXWM,
	ILK_DISPLAY_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
	ILK_CURSOR_FIFO,
	ILK_CURSOR_MAXWM,
	ILK_CURSOR_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
	ILK_DISPLAY_SR_FIFO,
	ILK_DISPLAY_MAX_SRWM,
	ILK_DISPLAY_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
	ILK_CURSOR_SR_FIFO,
	ILK_CURSOR_MAX_SRWM,
	ILK_CURSOR_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static const struct intel_watermark_params sandybridge_display_wm_info = {
	SNB_DISPLAY_FIFO,
	SNB_DISPLAY_MAXWM,
	SNB_DISPLAY_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
	SNB_CURSOR_FIFO,
	SNB_CURSOR_MAXWM,
	SNB_CURSOR_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
	SNB_DISPLAY_SR_FIFO,
	SNB_DISPLAY_MAX_SRWM,
	SNB_DISPLAY_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
	SNB_CURSOR_SR_FIFO,
	SNB_CURSOR_MAX_SRWM,
	SNB_CURSOR_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};


/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1074
		if (intel_crtc_active(crtc)) {
1075 1076 1077 1078 1079 1080 1081 1082 1083
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1084
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1085
{
1086
	struct drm_device *dev = unused_crtc->dev;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
		pineview_disable_cxsr(dev);
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1103
		const struct drm_display_mode *adjusted_mode;
1104
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1105 1106 1107 1108
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

		/* activate cxsr */
		I915_WRITE(DSPFW3,
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
	} else {
		pineview_disable_cxsr(dev);
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1168
	const struct drm_display_mode *adjusted_mode;
1169 1170 1171 1172 1173
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1174
	if (!intel_crtc_active(crtc)) {
1175 1176 1177 1178 1179
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1180
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1181
	clock = adjusted_mode->crtc_clock;
1182
	htotal = adjusted_mode->htotal;
1183
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	pixel_size = crtc->fb->bits_per_pixel / 8;

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
	line_time_us = ((htotal * 1000) / clock);
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
	entries = line_count * 64 * pixel_size;
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1254
	const struct drm_display_mode *adjusted_mode;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1267
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1268
	clock = adjusted_mode->crtc_clock;
1269
	htotal = adjusted_mode->htotal;
1270
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

static bool vlv_compute_drain_latency(struct drm_device *dev,
				     int plane,
				     int *plane_prec_mult,
				     int *plane_dl,
				     int *cursor_prec_mult,
				     int *cursor_dl)
{
	struct drm_crtc *crtc;
	int clock, pixel_size;
	int entries;

	crtc = intel_get_crtc_for_plane(dev, plane);
1306
	if (!intel_crtc_active(crtc))
1307 1308
		return false;

1309
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */

	entries = (clock / 1000) * pixel_size;
	*plane_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
						     pixel_size);

	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
	*cursor_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

static void vlv_update_drain_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
							either 16 or 32 */

	/* For plane A, Cursor A */
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
				      &cursor_prec_mult, &cursora_dl)) {
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;

		I915_WRITE(VLV_DDL1, cursora_prec |
				(cursora_dl << DDL_CURSORA_SHIFT) |
				planea_prec | planea_dl);
	}

	/* For plane B, Cursor B */
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
				      &cursor_prec_mult, &cursorb_dl)) {
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;

		I915_WRITE(VLV_DDL2, cursorb_prec |
				(cursorb_dl << DDL_CURSORB_SHIFT) |
				planeb_prec | planeb_dl);
	}
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1371
static void valleyview_update_wm(struct drm_crtc *crtc)
1372
{
1373
	struct drm_device *dev = crtc->dev;
1374 1375 1376 1377
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1378
	int ignore_plane_sr, ignore_cursor_sr;
1379 1380 1381 1382
	unsigned int enabled = 0;

	vlv_update_drain_latency(dev);

1383
	if (g4x_compute_wm0(dev, PIPE_A,
1384 1385 1386
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1387
		enabled |= 1 << PIPE_A;
1388

1389
	if (g4x_compute_wm0(dev, PIPE_B,
1390 1391 1392
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1393
		enabled |= 1 << PIPE_B;
1394 1395 1396 1397 1398 1399

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1400 1401 1402 1403 1404
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1405
			     &ignore_plane_sr, &cursor_sr)) {
1406
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1407
	} else {
1408 1409
		I915_WRITE(FW_BLC_SELF_VLV,
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1410 1411
		plane_sr = cursor_sr = 0;
	}
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1424
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1425 1426
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1427 1428
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1429 1430
}

1431
static void g4x_update_wm(struct drm_crtc *crtc)
1432
{
1433
	struct drm_device *dev = crtc->dev;
1434 1435 1436 1437 1438 1439
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;

1440
	if (g4x_compute_wm0(dev, PIPE_A,
1441 1442 1443
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1444
		enabled |= 1 << PIPE_A;
1445

1446
	if (g4x_compute_wm0(dev, PIPE_B,
1447 1448 1449
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1450
		enabled |= 1 << PIPE_B;
1451 1452 1453 1454 1455 1456

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1457
			     &plane_sr, &cursor_sr)) {
1458
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1459
	} else {
1460 1461
		I915_WRITE(FW_BLC_SELF,
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1462 1463
		plane_sr = cursor_sr = 0;
	}
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1476
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1477 1478 1479
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1480
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1481 1482 1483
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1484
static void i965_update_wm(struct drm_crtc *unused_crtc)
1485
{
1486
	struct drm_device *dev = unused_crtc->dev;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1497 1498
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1499
		int clock = adjusted_mode->crtc_clock;
1500
		int htotal = adjusted_mode->htotal;
1501
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		int pixel_size = crtc->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = ((htotal * 1000) / clock);

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * 64;
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
	} else {
		/* Turn off self refresh if both pipes are enabled */
		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
				   & ~FW_BLC_SELF_EN);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
		   (8 << 16) | (8 << 8) | (8 << 0));
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1552
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1553
{
1554
	struct drm_device *dev = unused_crtc->dev;
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
		wm_info = &i855_wm_info;

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1573
	if (intel_crtc_active(crtc)) {
1574
		const struct drm_display_mode *adjusted_mode;
1575 1576 1577 1578
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1579 1580
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1581
					       wm_info, fifo_size, cpp,
1582 1583 1584 1585 1586 1587 1588
					       latency_ns);
		enabled = crtc;
	} else
		planea_wm = fifo_size - wm_info->guard_size;

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1589
	if (intel_crtc_active(crtc)) {
1590
		const struct drm_display_mode *adjusted_mode;
1591 1592 1593 1594
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1595 1596
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1597
					       wm_info, fifo_size, cpp,
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
					       latency_ns);
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
	} else
		planeb_wm = fifo_size - wm_info->guard_size;

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
	if (IS_I945G(dev) || IS_I945GM(dev))
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
	else if (IS_I915GM(dev))
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1623 1624
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1625
		int clock = adjusted_mode->crtc_clock;
1626
		int htotal = adjusted_mode->htotal;
1627
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		int pixel_size = enabled->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = (htotal * 1000) / clock;

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

	if (HAS_FW_BLC(dev)) {
		if (enabled) {
			if (IS_I945G(dev) || IS_I945GM(dev))
				I915_WRITE(FW_BLC_SELF,
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
			else if (IS_I915GM(dev))
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
			DRM_DEBUG_KMS("memory self refresh enabled\n");
		} else
			DRM_DEBUG_KMS("memory self refresh disabled\n");
	}
}

1676
static void i830_update_wm(struct drm_crtc *unused_crtc)
1677
{
1678
	struct drm_device *dev = unused_crtc->dev;
1679 1680
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1681
	const struct drm_display_mode *adjusted_mode;
1682 1683 1684 1685 1686 1687 1688
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1689 1690
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1691
				       &i830_wm_info,
1692
				       dev_priv->display.get_fifo_size(dev, 0),
1693
				       4, latency_ns);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool ironlake_check_srwm(struct drm_device *dev, int level,
				int fbc_wm, int display_wm, int cursor_wm,
				const struct intel_watermark_params *display,
				const struct intel_watermark_params *cursor)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);

	if (fbc_wm > SNB_FBC_MAX_SRWM) {
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
			      fbc_wm, SNB_FBC_MAX_SRWM, level);

		/* fbc has it's own way to disable FBC WM */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
		return false;
1727 1728 1729 1730
	} else if (INTEL_INFO(dev)->gen >= 6) {
		/* enable FBC WM (except on ILK, where it must remain off) */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	}

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
		return false;
	}

	if (!(fbc_wm || display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
		return false;
	}

	return true;
}

/*
 * Compute watermark values of WM[1-3],
 */
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
				  int latency_ns,
				  const struct intel_watermark_params *display,
				  const struct intel_watermark_params *cursor,
				  int *fbc_wm, int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1763
	const struct drm_display_mode *adjusted_mode;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	unsigned long line_time_us;
	int hdisplay, htotal, pixel_size, clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*fbc_wm = *display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1776
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1777
	clock = adjusted_mode->crtc_clock;
1778
	htotal = adjusted_mode->htotal;
1779
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/*
	 * Spec says:
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
	 */
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return ironlake_check_srwm(dev, level,
				   *fbc_wm, *display_wm, *cursor_wm,
				   display, cursor);
}

1809
static void ironlake_update_wm(struct drm_crtc *crtc)
1810
{
1811
	struct drm_device *dev = crtc->dev;
1812 1813 1814 1815 1816
	struct drm_i915_private *dev_priv = dev->dev_private;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1817
	if (g4x_compute_wm0(dev, PIPE_A,
1818
			    &ironlake_display_wm_info,
1819
			    dev_priv->wm.pri_latency[0] * 100,
1820
			    &ironlake_cursor_wm_info,
1821
			    dev_priv->wm.cur_latency[0] * 100,
1822 1823 1824 1825 1826 1827
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEA_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1828
		enabled |= 1 << PIPE_A;
1829 1830
	}

1831
	if (g4x_compute_wm0(dev, PIPE_B,
1832
			    &ironlake_display_wm_info,
1833
			    dev_priv->wm.pri_latency[0] * 100,
1834
			    &ironlake_cursor_wm_info,
1835
			    dev_priv->wm.cur_latency[0] * 100,
1836 1837 1838 1839 1840 1841
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEB_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1842
		enabled |= 1 << PIPE_B;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled))
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1859
				   dev_priv->wm.pri_latency[1] * 500,
1860 1861 1862 1863 1864 1865 1866
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1867
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1868 1869 1870 1871 1872 1873
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1874
				   dev_priv->wm.pri_latency[2] * 500,
1875 1876 1877 1878 1879 1880 1881
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1882
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/*
	 * WM3 is unsupported on ILK, probably because we don't have latency
	 * data for that power state
	 */
}

1893
static void sandybridge_update_wm(struct drm_crtc *crtc)
1894
{
1895
	struct drm_device *dev = crtc->dev;
1896
	struct drm_i915_private *dev_priv = dev->dev_private;
1897
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
1898 1899 1900 1901 1902
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1903
	if (g4x_compute_wm0(dev, PIPE_A,
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1914
		enabled |= 1 << PIPE_A;
1915 1916
	}

1917
	if (g4x_compute_wm0(dev, PIPE_B,
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1928
		enabled |= 1 << PIPE_B;
1929 1930
	}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1952
				   dev_priv->wm.pri_latency[1] * 500,
1953 1954 1955 1956 1957 1958 1959
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1960
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1961 1962 1963 1964 1965 1966
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1967
				   dev_priv->wm.pri_latency[2] * 500,
1968 1969 1970 1971 1972 1973 1974
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1975
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1976 1977 1978 1979 1980 1981
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM3 */
	if (!ironlake_compute_srwm(dev, 3, enabled,
1982
				   dev_priv->wm.pri_latency[3] * 500,
1983 1984 1985 1986 1987 1988 1989
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
1990
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1991 1992 1993 1994 1995
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

1996
static void ivybridge_update_wm(struct drm_crtc *crtc)
1997
{
1998
	struct drm_device *dev = crtc->dev;
1999
	struct drm_i915_private *dev_priv = dev->dev_private;
2000
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
2001 2002 2003 2004 2005 2006
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
	unsigned int enabled;

	enabled = 0;
2007
	if (g4x_compute_wm0(dev, PIPE_A,
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
2018
		enabled |= 1 << PIPE_A;
2019 2020
	}

2021
	if (g4x_compute_wm0(dev, PIPE_B,
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2032
		enabled |= 1 << PIPE_B;
2033 2034
	}

2035
	if (g4x_compute_wm0(dev, PIPE_C,
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEC_IVB);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEC_IVB, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2046
		enabled |= 1 << PIPE_C;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
2070
				   dev_priv->wm.pri_latency[1] * 500,
2071 2072 2073 2074 2075 2076 2077
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
2078
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2079 2080 2081 2082 2083 2084
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
2085
				   dev_priv->wm.pri_latency[2] * 500,
2086 2087 2088 2089 2090 2091 2092
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
2093
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2094 2095 2096 2097
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

2098
	/* WM3, note we have to correct the cursor latency */
2099
	if (!ironlake_compute_srwm(dev, 3, enabled,
2100
				   dev_priv->wm.pri_latency[3] * 500,
2101 2102
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
2103 2104
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
	    !ironlake_compute_srwm(dev, 3, enabled,
2105
				   dev_priv->wm.cur_latency[3] * 500,
2106 2107 2108
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2109 2110 2111 2112
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
2113
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2114 2115 2116 2117 2118
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2119 2120
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
2121 2122
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2123
	uint32_t pixel_rate;
2124

2125
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2126 2127 2128 2129

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

2130
	if (intel_crtc->config.pch_pfit.enabled) {
2131
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2132
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2133

2134 2135
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

2150
/* latency must be in 0.1us units. */
2151
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2152 2153 2154 2155
			       uint32_t latency)
{
	uint64_t ret;

2156 2157 2158
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2159 2160 2161 2162 2163 2164
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

2165
/* latency must be in 0.1us units. */
2166
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2167 2168 2169 2170 2171
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

2172 2173 2174
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2175 2176 2177 2178 2179 2180
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

2181
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2182 2183 2184 2185 2186
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

2187 2188 2189 2190
struct hsw_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
2191 2192 2193
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
2194 2195
};

2196 2197 2198 2199 2200 2201 2202
struct hsw_wm_maximums {
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2203 2204 2205 2206 2207
struct hsw_wm_values {
	uint32_t wm_pipe[3];
	uint32_t wm_lp[3];
	uint32_t wm_lp_spr[3];
	uint32_t wm_linetime[3];
2208
	bool enable_fbc_wm;
2209 2210
};

2211 2212 2213 2214 2215 2216 2217 2218
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
	bool fbc_wm_enabled;
};

2219 2220 2221 2222
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2223
static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2224 2225
				   uint32_t mem_value,
				   bool is_lp)
2226
{
2227 2228
	uint32_t method1, method2;

2229
	if (!params->active || !params->pri.enabled)
2230 2231
		return 0;

2232
	method1 = ilk_wm_method1(params->pixel_rate,
2233
				 params->pri.bytes_per_pixel,
2234 2235 2236 2237 2238
				 mem_value);

	if (!is_lp)
		return method1;

2239
	method2 = ilk_wm_method2(params->pixel_rate,
2240
				 params->pipe_htotal,
2241 2242
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
2243 2244 2245
				 mem_value);

	return min(method1, method2);
2246 2247
}

2248 2249 2250 2251
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2252
static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2253 2254 2255 2256
				   uint32_t mem_value)
{
	uint32_t method1, method2;

2257
	if (!params->active || !params->spr.enabled)
2258 2259
		return 0;

2260
	method1 = ilk_wm_method1(params->pixel_rate,
2261
				 params->spr.bytes_per_pixel,
2262
				 mem_value);
2263
	method2 = ilk_wm_method2(params->pixel_rate,
2264
				 params->pipe_htotal,
2265 2266
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
2267 2268 2269 2270
				 mem_value);
	return min(method1, method2);
}

2271 2272 2273 2274
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2275
static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2276 2277
				   uint32_t mem_value)
{
2278
	if (!params->active || !params->cur.enabled)
2279 2280
		return 0;

2281
	return ilk_wm_method2(params->pixel_rate,
2282
			      params->pipe_htotal,
2283 2284
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
2285 2286 2287
			      mem_value);
}

2288
/* Only for WM_LP. */
2289
static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2290
				   uint32_t pri_val)
2291
{
2292
	if (!params->active || !params->pri.enabled)
2293 2294
		return 0;

2295
	return ilk_wm_fbc(pri_val,
2296 2297
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
2298 2299
}

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return 768;
	else
		return 512;
}

/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2311
				     const struct intel_wm_config *config,
2312 2313 2314 2315 2316 2317 2318
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);
	unsigned int max;

	/* if sprites aren't enabled, sprites get nothing */
2319
	if (is_sprite && !config->sprites_enabled)
2320 2321 2322
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2323
	if (level == 0 || config->num_pipes_active > 1) {
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2335
	if (config->sprites_enabled) {
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
	if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		max = level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		max = level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		max = level == 0 ? 63 : 255;

	return min(fifo_size, max);
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2362 2363
				      int level,
				      const struct intel_wm_config *config)
2364 2365
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2366
	if (level > 0 && config->num_pipes_active > 1)
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		return 64;

	/* otherwise just report max that registers can hold */
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

/* Calculate the maximum FBC watermark */
static unsigned int ilk_fbc_wm_max(void)
{
	/* max that registers can hold */
	return 15;
}

static void ilk_wm_max(struct drm_device *dev,
		       int level,
2385
		       const struct intel_wm_config *config,
2386 2387 2388
		       enum intel_ddb_partitioning ddb_partitioning,
		       struct hsw_wm_maximums *max)
{
2389 2390 2391
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2392 2393 2394
	max->fbc = ilk_fbc_wm_max();
}

2395 2396
static bool ilk_check_wm(int level,
			 const struct hsw_wm_maximums *max,
2397
			 struct intel_wm_level *result)
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");

	return ret;
}

2438 2439
static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
				 int level,
2440
				 const struct hsw_pipe_wm_parameters *p,
2441
				 struct intel_wm_level *result)
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2461 2462
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2463 2464
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2465 2466
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2467
	u32 linetime, ips_linetime;
2468

2469 2470
	if (!intel_crtc_active(crtc))
		return 0;
2471

2472 2473 2474
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2475 2476 2477
	linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
					 intel_ddi_get_cdclk_freq(dev_priv));
2478

2479 2480
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2481 2482
}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (IS_HASWELL(dev)) {
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2493 2494 2495 2496
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2497 2498 2499 2500 2501 2502 2503
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2504 2505 2506 2507 2508 2509 2510
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2511 2512 2513
	}
}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2532
static int ilk_wm_max_level(const struct drm_device *dev)
2533 2534 2535
{
	/* how many WM levels are we expecting */
	if (IS_HASWELL(dev))
2536
		return 4;
2537
	else if (INTEL_INFO(dev)->gen >= 6)
2538
		return 3;
2539
	else
2540 2541 2542 2543 2544 2545 2546 2547
		return 2;
}

static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
static void intel_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2581 2582 2583 2584

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2585 2586
}

2587 2588
static void hsw_compute_wm_parameters(struct drm_device *dev,
				      struct hsw_pipe_wm_parameters *params,
2589 2590
				      struct hsw_wm_maximums *lp_max_1_2,
				      struct hsw_wm_maximums *lp_max_5_6)
2591 2592
{
	struct drm_crtc *crtc;
2593
	struct drm_plane *plane;
2594
	enum pipe pipe;
2595
	struct intel_wm_config config = {};
2596

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct hsw_pipe_wm_parameters *p;

		pipe = intel_crtc->pipe;
		p = &params[pipe];

		p->active = intel_crtc_active(crtc);
		if (!p->active)
			continue;

2608
		config.num_pipes_active++;
2609

2610
		p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2611
		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2612 2613
		p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
		p->cur.bytes_per_pixel = 4;
2614
		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2615 2616 2617 2618
		p->cur.horiz_pixels = 64;
		/* TODO: for now, assume primary and cursor planes are always enabled. */
		p->pri.enabled = true;
		p->cur.enabled = true;
2619 2620 2621 2622 2623 2624 2625 2626 2627
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		struct hsw_pipe_wm_parameters *p;

		pipe = intel_plane->pipe;
		p = &params[pipe];

2628
		p->spr = intel_plane->wm;
2629

2630 2631
		config.sprites_enabled |= p->spr.enabled;
		config.sprites_scaled |= p->spr.scaled;
2632 2633
	}

2634
	ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
2635 2636

	/* 5/6 split only in single pipe config on IVB+ */
2637 2638
	if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
		ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
2639 2640
	else
		*lp_max_5_6 = *lp_max_1_2;
2641 2642
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
				  const struct hsw_pipe_wm_parameters *params,
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
	struct hsw_wm_maximums max;

	memset(pipe_wm, 0, sizeof(*pipe_wm));

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_wm_max(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	for (level = 0; level <= max_level; level++)
		ilk_compute_wm_level(dev_priv, level, params,
				     &pipe_wm->wm[level]);

	pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);

	/* At least LP0 must be valid */
	return ilk_check_wm(0, &max, &pipe_wm->wm[0]);
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
		const struct intel_wm_level *wm =
			&intel_crtc->wm.active.wm[level];

		if (!wm->enable)
			return;

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}

	ret_wm->enable = true;
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
			 const struct hsw_wm_maximums *max,
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);

	merged->fbc_wm_enabled = true;

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

		if (!ilk_check_wm(level, max, wm))
			break;

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
			merged->fbc_wm_enabled = false;
			wm->fbc_val = 0;
		}
	}
}

2730
static void hsw_compute_wm_results(struct drm_device *dev,
2731 2732
				   const struct hsw_pipe_wm_parameters *params,
				   const struct hsw_wm_maximums *lp_maximums,
2733 2734
				   struct hsw_wm_values *results)
{
2735 2736 2737
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
	struct intel_pipe_wm merged = {};
2738

2739 2740 2741 2742 2743 2744
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
		intel_compute_pipe_wm(&intel_crtc->base,
				      &params[intel_crtc->pipe],
				      &intel_crtc->wm.active);

	ilk_wm_merge(dev, lp_maximums, &merged);
2745

V
Ville Syrjälä 已提交
2746 2747
	memset(results, 0, sizeof(*results));

2748
	results->enable_fbc_wm = merged.fbc_wm_enabled;
2749

2750
	/* LP1+ register values */
2751
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2752
		const struct intel_wm_level *r;
2753

2754 2755 2756 2757
		level = wm_lp + (wm_lp >= 2 && merged.wm[4].enable);

		r = &merged.wm[level];
		if (!r->enable)
2758 2759 2760 2761 2762 2763 2764 2765
			break;

		results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
							  r->fbc_val,
							  r->pri_val,
							  r->cur_val);
		results->wm_lp_spr[wm_lp - 1] = r->spr_val;
	}
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	/* LP0 register values */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2777

2778 2779 2780 2781
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2782 2783 2784
	}
}

2785 2786
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2787 2788
static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
						  struct hsw_wm_values *r2)
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
{
	int i, val_r1 = 0, val_r2 = 0;

	for (i = 0; i < 3; i++) {
		if (r1->wm_lp[i] & WM3_LP_EN)
			val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
		if (r2->wm_lp[i] & WM3_LP_EN)
			val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
	}

	if (val_r1 == val_r2) {
		if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
			return r2;
		else
			return r1;
	} else if (val_r1 > val_r2) {
		return r1;
	} else {
		return r2;
	}
}

2811 2812 2813 2814 2815 2816
/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
				struct hsw_wm_values *results,
2817
				enum intel_ddb_partitioning partitioning)
2818 2819 2820
{
	struct hsw_wm_values previous;
	uint32_t val;
2821
	enum intel_ddb_partitioning prev_partitioning;
2822
	bool prev_enable_fbc_wm;
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

	previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
	previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
	previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
	previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
	previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
	previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
	previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
	previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
	previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
	previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
	previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));

	prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2838
				INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2839

2840 2841
	prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);

2842 2843 2844 2845 2846 2847 2848 2849
	if (memcmp(results->wm_pipe, previous.wm_pipe,
		   sizeof(results->wm_pipe)) == 0 &&
	    memcmp(results->wm_lp, previous.wm_lp,
		   sizeof(results->wm_lp)) == 0 &&
	    memcmp(results->wm_lp_spr, previous.wm_lp_spr,
		   sizeof(results->wm_lp_spr)) == 0 &&
	    memcmp(results->wm_linetime, previous.wm_linetime,
		   sizeof(results->wm_linetime)) == 0 &&
2850 2851
	    partitioning == prev_partitioning &&
	    results->enable_fbc_wm == prev_enable_fbc_wm)
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		return;

	if (previous.wm_lp[2] != 0)
		I915_WRITE(WM3_LP_ILK, 0);
	if (previous.wm_lp[1] != 0)
		I915_WRITE(WM2_LP_ILK, 0);
	if (previous.wm_lp[0] != 0)
		I915_WRITE(WM1_LP_ILK, 0);

	if (previous.wm_pipe[0] != results->wm_pipe[0])
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
	if (previous.wm_pipe[1] != results->wm_pipe[1])
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
	if (previous.wm_pipe[2] != results->wm_pipe[2])
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

	if (previous.wm_linetime[0] != results->wm_linetime[0])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
	if (previous.wm_linetime[1] != results->wm_linetime[1])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
	if (previous.wm_linetime[2] != results->wm_linetime[2])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

	if (prev_partitioning != partitioning) {
		val = I915_READ(WM_MISC);
2877
		if (partitioning == INTEL_DDB_PART_1_2)
2878 2879 2880 2881
			val &= ~WM_MISC_DATA_PARTITION_5_6;
		else
			val |= WM_MISC_DATA_PARTITION_5_6;
		I915_WRITE(WM_MISC, val);
2882 2883
	}

2884 2885 2886 2887 2888 2889 2890 2891 2892
	if (prev_enable_fbc_wm != results->enable_fbc_wm) {
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
	if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
		I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
	if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
		I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);

	if (results->wm_lp[0] != 0)
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
	if (results->wm_lp[1] != 0)
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
	if (results->wm_lp[2] != 0)
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
}

2908
static void haswell_update_wm(struct drm_crtc *crtc)
2909
{
2910
	struct drm_device *dev = crtc->dev;
2911
	struct drm_i915_private *dev_priv = dev->dev_private;
2912
	struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2913
	struct hsw_pipe_wm_parameters params[3];
2914
	struct hsw_wm_values results_1_2, results_5_6, *best_results;
2915
	enum intel_ddb_partitioning partitioning;
2916

2917
	hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
2918

2919 2920
	hsw_compute_wm_results(dev, params,
			       &lp_max_1_2, &results_1_2);
2921
	if (lp_max_1_2.pri != lp_max_5_6.pri) {
2922 2923
		hsw_compute_wm_results(dev, params,
				       &lp_max_5_6, &results_5_6);
2924 2925 2926 2927 2928 2929
		best_results = hsw_find_best_result(&results_1_2, &results_5_6);
	} else {
		best_results = &results_1_2;
	}

	partitioning = (best_results == &results_1_2) ?
2930
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2931

2932
	hsw_write_wm_values(dev_priv, best_results, partitioning);
2933 2934
}

2935 2936
static void haswell_update_sprite_wm(struct drm_plane *plane,
				     struct drm_crtc *crtc,
2937
				     uint32_t sprite_width, int pixel_size,
2938
				     bool enabled, bool scaled)
2939
{
2940
	struct intel_plane *intel_plane = to_intel_plane(plane);
2941

2942 2943 2944 2945
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.bytes_per_pixel = pixel_size;
2946

2947
	haswell_update_wm(crtc);
2948 2949
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
			      uint32_t sprite_width, int pixel_size,
			      const struct intel_watermark_params *display,
			      int display_latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	int clock;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
2961
	if (!intel_crtc_active(crtc)) {
2962 2963 2964 2965
		*sprite_wm = display->guard_size;
		return false;
	}

2966
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000

	/* Use the small buffer method to calculate the sprite watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size -
		sprite_width * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*sprite_wm = entries + display->guard_size;
	if (*sprite_wm > (int)display->max_wm)
		*sprite_wm = display->max_wm;

	return true;
}

static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
				uint32_t sprite_width, int pixel_size,
				const struct intel_watermark_params *display,
				int latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*sprite_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
3001
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	if (!clock) {
		*sprite_wm = 0;
		return false;
	}

	line_time_us = (sprite_width * 1000) / clock;
	if (!line_time_us) {
		*sprite_wm = 0;
		return false;
	}

	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = sprite_width * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*sprite_wm = entries + display->guard_size;

	return *sprite_wm > 0x3ff ? false : true;
}

3026 3027
static void sandybridge_update_sprite_wm(struct drm_plane *plane,
					 struct drm_crtc *crtc,
3028
					 uint32_t sprite_width, int pixel_size,
3029
					 bool enabled, bool scaled)
3030
{
3031
	struct drm_device *dev = plane->dev;
3032
	struct drm_i915_private *dev_priv = dev->dev_private;
3033
	int pipe = to_intel_plane(plane)->pipe;
3034
	int latency = dev_priv->wm.spr_latency[0] * 100;	/* In unit 0.1us */
3035 3036 3037 3038
	u32 val;
	int sprite_wm, reg;
	int ret;

3039
	if (!enabled)
3040 3041
		return;

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	switch (pipe) {
	case 0:
		reg = WM0_PIPEA_ILK;
		break;
	case 1:
		reg = WM0_PIPEB_ILK;
		break;
	case 2:
		reg = WM0_PIPEC_IVB;
		break;
	default:
		return; /* bad pipe */
	}

	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
					    &sandybridge_display_wm_info,
					    latency, &sprite_wm);
	if (!ret) {
3060 3061
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
			      pipe_name(pipe));
3062 3063 3064 3065 3066 3067
		return;
	}

	val = I915_READ(reg);
	val &= ~WM0_PIPE_SPRITE_MASK;
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3068
	DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3069 3070 3071 3072 3073


	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3074
					      dev_priv->wm.spr_latency[1] * 500,
3075 3076
					      &sprite_wm);
	if (!ret) {
3077 3078
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
			      pipe_name(pipe));
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		return;
	}
	I915_WRITE(WM1S_LP_ILK, sprite_wm);

	/* Only IVB has two more LP watermarks for sprite */
	if (!IS_IVYBRIDGE(dev))
		return;

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3090
					      dev_priv->wm.spr_latency[2] * 500,
3091 3092
					      &sprite_wm);
	if (!ret) {
3093 3094
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
			      pipe_name(pipe));
3095 3096 3097 3098 3099 3100 3101
		return;
	}
	I915_WRITE(WM2S_LP_IVB, sprite_wm);

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3102
					      dev_priv->wm.spr_latency[3] * 500,
3103 3104
					      &sprite_wm);
	if (!ret) {
3105 3106
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
			      pipe_name(pipe));
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
		return;
	}
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
}

/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3144
void intel_update_watermarks(struct drm_crtc *crtc)
3145
{
3146
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3147 3148

	if (dev_priv->display.update_wm)
3149
		dev_priv->display.update_wm(crtc);
3150 3151
}

3152 3153
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3154
				    uint32_t sprite_width, int pixel_size,
3155
				    bool enabled, bool scaled)
3156
{
3157
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3158 3159

	if (dev_priv->display.update_sprite_wm)
3160
		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3161
						   pixel_size, enabled, scaled);
3162 3163
}

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

B
Ben Widawsky 已提交
3178
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
	i915_gem_object_unpin(ctx);
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3199 3200 3201 3202 3203 3204 3205 3206 3207
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3208 3209 3210 3211 3212
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3213 3214
	assert_spin_locked(&mchdev_lock);

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3232
static void ironlake_enable_drps(struct drm_device *dev)
3233 3234 3235 3236 3237
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3238 3239
	spin_lock_irq(&mchdev_lock);

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3263 3264
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3265

3266 3267 3268
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3285
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3286
		DRM_ERROR("stuck trying to change perf mode\n");
3287
	mdelay(1);
3288 3289 3290

	ironlake_set_drps(dev, fstart);

3291
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3292
		I915_READ(0x112e0);
3293 3294 3295
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
	getrawmonotonic(&dev_priv->ips.last_time2);
3296 3297

	spin_unlock_irq(&mchdev_lock);
3298 3299
}

3300
static void ironlake_disable_drps(struct drm_device *dev)
3301 3302
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3303 3304 3305 3306 3307
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3308 3309 3310 3311 3312 3313 3314 3315 3316

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3317
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3318
	mdelay(1);
3319 3320
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3321
	mdelay(1);
3322

3323
	spin_unlock_irq(&mchdev_lock);
3324 3325
}

3326 3327 3328 3329 3330
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3331
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3332
{
3333
	u32 limits;
3334

3335
	limits = 0;
3336 3337 3338 3339

	if (*val >= dev_priv->rps.max_delay)
		*val = dev_priv->rps.max_delay;
	limits |= dev_priv->rps.max_delay << 24;
3340 3341 3342 3343 3344 3345 3346

	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3347 3348 3349
	if (*val <= dev_priv->rps.min_delay) {
		*val = dev_priv->rps.min_delay;
		limits |= dev_priv->rps.min_delay << 16;
3350 3351 3352 3353 3354
	}

	return limits;
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
		if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
			new_power = LOW_POWER;
		else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val == dev_priv->rps.min_delay)
		new_power = LOW_POWER;
	if (val == dev_priv->rps.max_delay)
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3447 3448 3449
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3450
	u32 limits = gen6_rps_limits(dev_priv, &val);
3451

3452
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3453 3454
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);
3455

3456
	if (val == dev_priv->rps.cur_delay)
3457 3458
		return;

3459 3460
	gen6_set_rps_thresholds(dev_priv, val);

3461 3462 3463 3464 3465 3466 3467 3468
	if (IS_HASWELL(dev))
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(val));
	else
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(val) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
3469 3470 3471 3472 3473 3474

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);

3475 3476
	POSTING_READ(GEN6_RPNSWREQ);

3477
	dev_priv->rps.cur_delay = val;
3478 3479

	trace_intel_gpu_freq_change(val * 50);
3480 3481
}

3482 3483 3484
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3485 3486 3487 3488 3489 3490 3491
	if (dev_priv->rps.enabled) {
		if (dev_priv->info->is_valleyview)
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
		else
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
		dev_priv->rps.last_adj = 0;
	}
3492 3493 3494 3495 3496 3497
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3498 3499 3500 3501 3502 3503 3504
	if (dev_priv->rps.enabled) {
		if (dev_priv->info->is_valleyview)
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
		else
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
		dev_priv->rps.last_adj = 0;
	}
3505 3506 3507
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
/*
 * Wait until the previous freq change has completed,
 * or the timeout elapsed, and then update our notion
 * of the current GPU frequency.
 */
static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
{
	u32 pval;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

3519 3520
	if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
		DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532

	pval >>= 8;

	if (pval != dev_priv->rps.cur_delay)
		DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
				 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
				 dev_priv->rps.cur_delay,
				 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);

	dev_priv->rps.cur_delay = pval;
}

3533 3534 3535
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3536 3537

	gen6_rps_limits(dev_priv, &val);
3538 3539 3540 3541 3542

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);

3543 3544
	vlv_update_rps_cur_delay(dev_priv);

3545
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3546 3547
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.cur_delay),
3548 3549
			 dev_priv->rps.cur_delay,
			 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3550 3551 3552 3553

	if (val == dev_priv->rps.cur_delay)
		return;

3554
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3555

3556
	dev_priv->rps.cur_delay = val;
3557 3558 3559 3560

	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
}

3561
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3562 3563 3564 3565
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3566
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3567 3568 3569 3570 3571
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3572
	spin_lock_irq(&dev_priv->irq_lock);
3573
	dev_priv->rps.pm_iir = 0;
3574
	spin_unlock_irq(&dev_priv->irq_lock);
3575

3576
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3577 3578
}

3579
static void gen6_disable_rps(struct drm_device *dev)
3580 3581 3582 3583
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3584
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3585

3586 3587 3588 3589 3590 3591 3592 3593
	gen6_disable_rps_interrupts(dev);
}

static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3594

3595
	gen6_disable_rps_interrupts(dev);
3596 3597 3598 3599 3600

	if (dev_priv->vlv_pctx) {
		drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
		dev_priv->vlv_pctx = NULL;
	}
3601 3602
}

3603 3604
int intel_enable_rc6(const struct drm_device *dev)
{
3605 3606 3607 3608
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

3609
	/* Respect the kernel parameter if it is set */
3610 3611 3612
	if (i915_enable_rc6 >= 0)
		return i915_enable_rc6;

3613 3614 3615
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3616

3617 3618
	if (IS_HASWELL(dev)) {
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3619
		return INTEL_RC6_ENABLE;
3620
	}
3621

3622
	/* snb/ivb have more than one rc6 state. */
3623 3624 3625 3626
	if (INTEL_INFO(dev)->gen == 6) {
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
		return INTEL_RC6_ENABLE;
	}
3627

3628 3629 3630 3631
	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
}

3632 3633 3634
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3635
	u32 enabled_intrs;
3636 3637

	spin_lock_irq(&dev_priv->irq_lock);
3638
	WARN_ON(dev_priv->rps.pm_iir);
P
Paulo Zanoni 已提交
3639
	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3640 3641
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
	spin_unlock_irq(&dev_priv->irq_lock);
3642

3643
	/* only unmask PM interrupts we need. Mask all others. */
3644 3645 3646 3647 3648 3649 3650 3651 3652
	enabled_intrs = GEN6_PM_RPS_EVENTS;

	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
		enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;

	I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3653 3654
}

3655
static void gen6_enable_rps(struct drm_device *dev)
3656
{
3657
	struct drm_i915_private *dev_priv = dev->dev_private;
3658
	struct intel_ring_buffer *ring;
3659 3660
	u32 rp_state_cap;
	u32 gt_perf_status;
3661
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3662 3663
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3664
	int i, ret;
3665

3666
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3667

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	gen6_gt_force_wake_get(dev_priv);

3684 3685 3686
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);

3687 3688
	/* In units of 50MHz */
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3689 3690 3691 3692
	dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
	dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3693
	dev_priv->rps.cur_delay = 0;
3694

3695 3696 3697 3698 3699 3700 3701 3702 3703
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3704 3705
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3706 3707 3708

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3709 3710 3711 3712
	if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3713
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3714 3715
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3716
	/* Check if we are enabling RC6 */
3717 3718 3719 3720
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3721 3722 3723 3724
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3725

3726 3727 3728
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3729 3730

	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3731 3732 3733
			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3734 3735 3736 3737 3738 3739

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3740 3741
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3742 3743
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
3744
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3745
	if (!ret) {
B
Ben Widawsky 已提交
3746 3747
		pcu_mbox = 0;
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3748
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3749
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3750 3751
					 (dev_priv->rps.max_delay & 0xff) * 50,
					 (pcu_mbox & 0xff) * 50);
3752
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
B
Ben Widawsky 已提交
3753 3754 3755
		}
	} else {
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3756 3757
	}

3758 3759
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3760

3761
	gen6_enable_rps_interrupts(dev);
3762

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3777 3778 3779
	gen6_gt_force_wake_put(dev_priv);
}

3780
void gen6_update_ring_freq(struct drm_device *dev)
3781
{
3782
	struct drm_i915_private *dev_priv = dev->dev_private;
3783
	int min_freq = 15;
3784 3785
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3786
	int scaling_factor = 180;
3787
	struct cpufreq_policy *policy;
3788

3789
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3790

3791 3792 3793 3794 3795 3796 3797 3798 3799
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
3800
		max_ia_freq = tsc_khz;
3801
	}
3802 3803 3804 3805

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3806 3807 3808
	min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK) & 0xf;
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3809

3810 3811 3812 3813 3814
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3815
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3816
	     gpu_freq--) {
3817
		int diff = dev_priv->rps.max_delay - gpu_freq;
3818 3819 3820
		unsigned int ia_freq = 0, ring_freq = 0;

		if (IS_HASWELL(dev)) {
3821
			ring_freq = mult_frac(gpu_freq, 5, 4);
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3838

B
Ben Widawsky 已提交
3839 3840
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3841 3842 3843
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
3844 3845 3846
	}
}

3847 3848 3849 3850
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp0;

3851
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

3864
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3865
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3866
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3867 3868 3869 3870 3871 3872 3873
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
3874
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3875 3876
}

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
3893
								      I915_GTT_OFFSET_NONE,
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

3919 3920 3921 3922
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
3923
	u32 gtfifodbg, val, rc6_mode = 0;
3924 3925 3926 3927 3928
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3929 3930
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
3931 3932 3933
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3934 3935
	valleyview_setup_pctx(dev);

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
	gen6_gt_force_wake_get(dev_priv);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

	I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);

	/* allows RC6 residency counter to work */
3963 3964 3965 3966
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
3967 3968 3969
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3970

3971
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
3984 3985 3986 3987 3988 3989
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3990 3991 3992 3993
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.cur_delay),
			 dev_priv->rps.cur_delay);
3994 3995 3996

	dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3997 3998 3999 4000
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.max_delay),
			 dev_priv->rps.max_delay);
4001

4002 4003 4004 4005 4006
	dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.rpe_delay),
			 dev_priv->rps.rpe_delay);
4007

4008 4009 4010 4011 4012
	dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.min_delay),
			 dev_priv->rps.min_delay);
4013

4014 4015 4016 4017
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.rpe_delay),
			 dev_priv->rps.rpe_delay);
4018

4019
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
4020

4021
	gen6_enable_rps_interrupts(dev);
4022 4023 4024 4025

	gen6_gt_force_wake_put(dev_priv);
}

4026
void ironlake_teardown_rc6(struct drm_device *dev)
4027 4028 4029
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4030 4031 4032 4033
	if (dev_priv->ips.renderctx) {
		i915_gem_object_unpin(dev_priv->ips.renderctx);
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4034 4035
	}

4036 4037 4038 4039
	if (dev_priv->ips.pwrctx) {
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4040 4041 4042
	}
}

4043
static void ironlake_disable_rc6(struct drm_device *dev)
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4065 4066 4067
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4068 4069
		return -ENOMEM;

4070 4071 4072
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4073 4074 4075 4076 4077 4078 4079
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4080
static void ironlake_enable_rc6(struct drm_device *dev)
4081 4082
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4083
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4084
	bool was_interruptible;
4085 4086 4087 4088 4089 4090 4091 4092
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4093 4094
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4095
	ret = ironlake_setup_rc6(dev);
4096
	if (ret)
4097 4098
		return;

4099 4100 4101
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4102 4103 4104 4105
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4106
	ret = intel_ring_begin(ring, 6);
4107 4108
	if (ret) {
		ironlake_teardown_rc6(dev);
4109
		dev_priv->mm.interruptible = was_interruptible;
4110 4111 4112
		return;
	}

4113 4114
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4115
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4116 4117 4118 4119 4120 4121 4122 4123
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4124 4125 4126 4127 4128 4129

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4130 4131
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4132
	if (ret) {
4133
		DRM_ERROR("failed to enable ironlake power savings\n");
4134 4135 4136 4137
		ironlake_teardown_rc6(dev);
		return;
	}

4138
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4139 4140 4141
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
}

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4171
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4172 4173 4174 4175 4176 4177
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4178 4179
	assert_spin_locked(&mchdev_lock);

4180
	diff1 = now - dev_priv->ips.last_time1;
4181 4182 4183 4184 4185 4186 4187

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4188
		return dev_priv->ips.chipset_power;
4189 4190 4191 4192 4193 4194 4195 4196

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4197 4198
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4199 4200
		diff += total_count;
	} else {
4201
		diff = total_count - dev_priv->ips.last_count1;
4202 4203 4204
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4205 4206
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4217 4218
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4219

4220
	dev_priv->ips.chipset_power = ret;
4221 4222 4223 4224

	return ret;
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
	if (dev_priv->info->is_mobile)
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4397
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4398 4399 4400 4401 4402 4403
{
	struct timespec now, diff1;
	u64 diff;
	unsigned long diffms;
	u32 count;

4404
	assert_spin_locked(&mchdev_lock);
4405 4406

	getrawmonotonic(&now);
4407
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4408 4409 4410 4411 4412 4413 4414 4415

	/* Don't divide by 0 */
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4416 4417
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4418 4419
		diff += count;
	} else {
4420
		diff = count - dev_priv->ips.last_count2;
4421 4422
	}

4423 4424
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4425 4426 4427 4428

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4429
	dev_priv->ips.gfx_power = diff;
4430 4431
}

4432 4433 4434 4435 4436
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
	if (dev_priv->info->gen != 5)
		return;

4437
	spin_lock_irq(&mchdev_lock);
4438 4439 4440

	__i915_update_gfx_val(dev_priv);

4441
	spin_unlock_irq(&mchdev_lock);
4442 4443
}

4444
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4445 4446 4447 4448
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4449 4450
	assert_spin_locked(&mchdev_lock);

4451
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4471
	corr2 = (corr * dev_priv->ips.corr);
4472 4473 4474 4475

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4476
	__i915_update_gfx_val(dev_priv);
4477

4478
	return dev_priv->ips.gfx_power + state2;
4479 4480
}

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4508
	spin_lock_irq(&mchdev_lock);
4509 4510 4511 4512
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4513 4514
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4515 4516 4517 4518

	ret = chipset_val + graphics_val;

out_unlock:
4519
	spin_unlock_irq(&mchdev_lock);
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4535
	spin_lock_irq(&mchdev_lock);
4536 4537 4538 4539 4540 4541
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4542 4543
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
4544 4545

out_unlock:
4546
	spin_unlock_irq(&mchdev_lock);
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4563
	spin_lock_irq(&mchdev_lock);
4564 4565 4566 4567 4568 4569
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4570 4571
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
4572 4573

out_unlock:
4574
	spin_unlock_irq(&mchdev_lock);
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
4588
	struct intel_ring_buffer *ring;
4589
	bool ret = false;
4590
	int i;
4591

4592
	spin_lock_irq(&mchdev_lock);
4593 4594 4595 4596
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4597 4598
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
4599 4600

out_unlock:
4601
	spin_unlock_irq(&mchdev_lock);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4618
	spin_lock_irq(&mchdev_lock);
4619 4620 4621 4622 4623 4624
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4625
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4626

4627
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4628 4629 4630
		ret = false;

out_unlock:
4631
	spin_unlock_irq(&mchdev_lock);
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
4659 4660
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4661
	spin_lock_irq(&mchdev_lock);
4662
	i915_mch_dev = dev_priv;
4663
	spin_unlock_irq(&mchdev_lock);
4664 4665 4666 4667 4668 4669

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
4670
	spin_lock_irq(&mchdev_lock);
4671
	i915_mch_dev = NULL;
4672
	spin_unlock_irq(&mchdev_lock);
4673
}
4674
static void intel_init_emon(struct drm_device *dev)
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

4742
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4743 4744
}

4745 4746
void intel_disable_gt_powersave(struct drm_device *dev)
{
4747 4748
	struct drm_i915_private *dev_priv = dev->dev_private;

4749 4750 4751
	/* Interrupts should be disabled already to avoid re-arming. */
	WARN_ON(dev->irq_enabled);

4752
	if (IS_IRONLAKE_M(dev)) {
4753
		ironlake_disable_drps(dev);
4754
		ironlake_disable_rc6(dev);
4755
	} else if (INTEL_INFO(dev)->gen >= 6) {
4756
		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4757
		cancel_work_sync(&dev_priv->rps.work);
4758
		mutex_lock(&dev_priv->rps.hw_lock);
4759 4760 4761 4762
		if (IS_VALLEYVIEW(dev))
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
4763
		dev_priv->rps.enabled = false;
4764
		mutex_unlock(&dev_priv->rps.hw_lock);
4765
	}
4766 4767
}

4768 4769 4770 4771 4772 4773 4774
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

4775
	mutex_lock(&dev_priv->rps.hw_lock);
4776 4777 4778 4779 4780 4781 4782

	if (IS_VALLEYVIEW(dev)) {
		valleyview_enable_rps(dev);
	} else {
		gen6_enable_rps(dev);
		gen6_update_ring_freq(dev);
	}
4783
	dev_priv->rps.enabled = true;
4784
	mutex_unlock(&dev_priv->rps.hw_lock);
4785 4786
}

4787 4788
void intel_enable_gt_powersave(struct drm_device *dev)
{
4789 4790
	struct drm_i915_private *dev_priv = dev->dev_private;

4791 4792 4793 4794
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
4795
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4796 4797 4798 4799 4800 4801 4802
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 */
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
				      round_jiffies_up_relative(HZ));
4803 4804 4805
	}
}

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

4818 4819 4820 4821 4822 4823 4824 4825 4826
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
4827
		intel_flush_primary_plane(dev_priv, pipe);
4828 4829 4830
	}
}

4831
static void ironlake_init_clock_gating(struct drm_device *dev)
4832 4833
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4834
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4835

4836 4837 4838 4839
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
4840 4841 4842
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4860
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
4876
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
4877 4878 4879 4880 4881 4882 4883 4884
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

4885 4886
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

4887 4888 4889 4890 4891 4892
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
4893

4894
	/* WaDisableRenderCachePipelinedFlush:ilk */
4895 4896
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4897

4898
	g4x_disable_trickle_feed(dev);
4899

4900 4901 4902 4903 4904 4905 4906
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
4907
	uint32_t val;
4908 4909 4910 4911 4912 4913 4914 4915 4916

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
4917 4918 4919
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
4920
	for_each_pipe(pipe) {
4921 4922 4923
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4924
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
4925
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4926 4927 4928
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4929 4930
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
4931 4932 4933 4934 4935
	/* WADP0ClockGatingDisable */
	for_each_pipe(pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
4936 4937
}

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
		DRM_INFO("This can cause pipe underruns and display issues.\n");
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
	}
}

4951
static void gen6_init_clock_gating(struct drm_device *dev)
4952 4953
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4954
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4955

4956
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4957 4958 4959 4960 4961

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

4962
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4963 4964 4965
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

4966
	/* WaSetupGtModeTdRowDispatch:snb */
4967 4968 4969 4970
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

4971 4972 4973 4974 4975
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	I915_WRITE(CACHE_MODE_0,
4976
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
4992
	 *
4993 4994
	 * Also apply WaDisableVDSUnitClockGating:snb and
	 * WaDisableRCPBUnitClockGating:snb.
4995 4996
	 */
	I915_WRITE(GEN6_UCGCTL2,
4997
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4998 4999 5000 5001
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

	/* Bspec says we need to always set all mask bits. */
5002 5003
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
5004 5005 5006 5007 5008 5009 5010 5011 5012

	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5013 5014
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5015 5016 5017 5018 5019 5020 5021
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5022 5023 5024 5025
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5026

5027
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5028 5029 5030 5031 5032

	/* The default value should be 0x200 according to docs, but the two
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5033 5034

	cpt_init_clock_gating(dev);
5035 5036

	gen6_check_mch_setup(dev);
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

5048 5049 5050
	if (IS_HASWELL(dev_priv->dev))
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;

5051 5052 5053
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5066 5067 5068 5069 5070

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5071 5072
}

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5085 5086 5087 5088 5089 5090 5091 5092 5093
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5094
	 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5095 5096 5097
	 */
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);

5098
	/* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5099 5100 5101
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5102
	/* WaApplyL3ControlAndL3ChickenMode:hsw */
5103 5104 5105 5106 5107
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
			GEN7_WA_L3_CHICKEN_MODE);

5108
	/* This is required by WaCatErrorRejectionIssue:hsw */
5109 5110 5111 5112
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5113
	/* WaVSRefCountFullforceMissDisable:hsw */
5114 5115
	gen7_setup_fixed_func_scheduler(dev_priv);

5116
	/* WaDisable4x2SubspanOptimization:hsw */
5117 5118
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5119

5120
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5121 5122
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5123 5124 5125
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5126

5127
	lpt_init_clock_gating(dev);
5128 5129
}

5130
static void ivybridge_init_clock_gating(struct drm_device *dev)
5131 5132
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5133
	uint32_t snpcr;
5134 5135 5136 5137 5138

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

5139
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5140

5141
	/* WaDisableEarlyCull:ivb */
5142 5143 5144
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5145
	/* WaDisableBackToBackFlipFix:ivb */
5146 5147 5148 5149
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5150
	/* WaDisablePSDDualDispatchEnable:ivb */
5151 5152 5153 5154 5155 5156 5157
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
	else
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5158
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5159 5160 5161
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5162
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5163 5164 5165
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5166 5167 5168 5169 5170 5171 5172 5173
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
	else
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5174

5175
	/* WaForceL3Serialization:ivb */
5176 5177 5178
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5190
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5191 5192 5193 5194 5195
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5196
	/* This is required by WaCatErrorRejectionIssue:ivb */
5197 5198 5199 5200
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5201
	g4x_disable_trickle_feed(dev);
5202

5203
	/* WaVSRefCountFullforceMissDisable:ivb */
5204
	gen7_setup_fixed_func_scheduler(dev_priv);
5205

5206
	/* WaDisable4x2SubspanOptimization:ivb */
5207 5208
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5209 5210 5211 5212 5213

	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5214

5215 5216
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5217 5218

	gen6_check_mch_setup(dev);
5219 5220
}

5221
static void valleyview_init_clock_gating(struct drm_device *dev)
5222 5223 5224
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5225
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5226

5227
	/* WaDisableEarlyCull:vlv */
5228 5229 5230
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5231
	/* WaDisableBackToBackFlipFix:vlv */
5232 5233 5234 5235
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5236
	/* WaDisablePSDDualDispatchEnable:vlv */
5237
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5238 5239
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5240

5241
	/* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5242 5243 5244
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5245
	/* WaApplyL3ControlAndL3ChickenMode:vlv */
5246
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5247 5248
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);

5249
	/* WaForceL3Serialization:vlv */
5250 5251 5252
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5253
	/* WaDisableDopClockGating:vlv */
5254 5255 5256
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5257
	/* This is required by WaCatErrorRejectionIssue:vlv */
5258 5259 5260 5261
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5273
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5274
	 *
5275 5276
	 * Also apply WaDisableVDSUnitClockGating:vlv and
	 * WaDisableRCPBUnitClockGating:vlv.
5277 5278 5279
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5280
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5281 5282 5283 5284
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5285 5286
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);

5287
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5288

5289 5290
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5291

5292
	/*
5293
	 * WaDisableVLVClockGating_VBIIssue:vlv
5294 5295 5296
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);

	/* Conservative clock gating settings for now */
	I915_WRITE(0x9400, 0xffffffff);
	I915_WRITE(0x9404, 0xffffffff);
	I915_WRITE(0x9408, 0xffffffff);
	I915_WRITE(0x940c, 0xffffffff);
	I915_WRITE(0x9410, 0xffffffff);
	I915_WRITE(0x9414, 0xffffffff);
	I915_WRITE(0x9418, 0xffffffff);
5307 5308
}

5309
static void g4x_init_clock_gating(struct drm_device *dev)
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5325 5326 5327 5328

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5329

5330
	g4x_disable_trickle_feed(dev);
5331 5332
}

5333
static void crestline_init_clock_gating(struct drm_device *dev)
5334 5335 5336 5337 5338 5339 5340 5341
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
5342 5343
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5344 5345
}

5346
static void broadwater_init_clock_gating(struct drm_device *dev)
5347 5348 5349 5350 5351 5352 5353 5354 5355
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
5356 5357
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5358 5359
}

5360
static void gen3_init_clock_gating(struct drm_device *dev)
5361 5362 5363 5364 5365 5366 5367
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
5368 5369 5370

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5371 5372 5373

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5374 5375
}

5376
static void i85x_init_clock_gating(struct drm_device *dev)
5377 5378 5379 5380 5381 5382
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
}

5383
static void i830_init_clock_gating(struct drm_device *dev)
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

5397 5398 5399 5400 5401 5402
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

5403 5404 5405 5406 5407
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
5408 5409
bool intel_display_power_enabled(struct drm_device *dev,
				 enum intel_display_power_domain domain)
5410 5411 5412
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5413 5414 5415 5416 5417 5418 5419
	if (!HAS_POWER_WELL(dev))
		return true;

	switch (domain) {
	case POWER_DOMAIN_PIPE_A:
	case POWER_DOMAIN_TRANSCODER_EDP:
		return true;
V
Ville Syrjälä 已提交
5420
	case POWER_DOMAIN_VGA:
5421 5422 5423 5424 5425 5426 5427 5428
	case POWER_DOMAIN_PIPE_B:
	case POWER_DOMAIN_PIPE_C:
	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
	case POWER_DOMAIN_TRANSCODER_A:
	case POWER_DOMAIN_TRANSCODER_B:
	case POWER_DOMAIN_TRANSCODER_C:
5429
		return I915_READ(HSW_PWR_WELL_DRIVER) ==
5430
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5431 5432 5433
	default:
		BUG();
	}
5434 5435
}

5436
static void __intel_set_power_well(struct drm_device *dev, bool enable)
5437 5438
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5439 5440
	bool is_enabled, enable_requested;
	uint32_t tmp;
5441

5442
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5443 5444
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5445

5446 5447
	if (enable) {
		if (!enable_requested)
5448 5449
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);
5450

5451 5452 5453
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5454
				      HSW_PWR_WELL_STATE_ENABLED), 20))
5455 5456 5457 5458
				DRM_ERROR("Timeout enabling power well\n");
		}
	} else {
		if (enable_requested) {
5459 5460 5461
			unsigned long irqflags;
			enum pipe p;

5462
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5463
			POSTING_READ(HSW_PWR_WELL_DRIVER);
5464
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476

			/*
			 * After this, the registers on the pipes that are part
			 * of the power well will become zero, so we have to
			 * adjust our counters according to that.
			 *
			 * FIXME: Should we do this in general in
			 * drm_vblank_post_modeset?
			 */
			spin_lock_irqsave(&dev->vbl_lock, irqflags);
			for_each_pipe(p)
				if (p != PIPE_A)
5477
					dev->vblank[p].last = 0;
5478
			spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5479 5480
		}
	}
5481
}
5482

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
static void __intel_power_well_get(struct i915_power_well *power_well)
{
	if (!power_well->count++)
		__intel_set_power_well(power_well->device, true);
}

static void __intel_power_well_put(struct i915_power_well *power_well)
{
	WARN_ON(!power_well->count);
	if (!--power_well->count)
		__intel_set_power_well(power_well->device, false);
}

5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
void intel_display_power_get(struct drm_device *dev,
			     enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_power_well *power_well = &dev_priv->power_well;

	if (!HAS_POWER_WELL(dev))
		return;

	switch (domain) {
	case POWER_DOMAIN_PIPE_A:
	case POWER_DOMAIN_TRANSCODER_EDP:
		return;
V
Ville Syrjälä 已提交
5509
	case POWER_DOMAIN_VGA:
5510 5511 5512 5513 5514 5515 5516 5517 5518
	case POWER_DOMAIN_PIPE_B:
	case POWER_DOMAIN_PIPE_C:
	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
	case POWER_DOMAIN_TRANSCODER_A:
	case POWER_DOMAIN_TRANSCODER_B:
	case POWER_DOMAIN_TRANSCODER_C:
		spin_lock_irq(&power_well->lock);
5519
		__intel_power_well_get(power_well);
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
		spin_unlock_irq(&power_well->lock);
		return;
	default:
		BUG();
	}
}

void intel_display_power_put(struct drm_device *dev,
			     enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_power_well *power_well = &dev_priv->power_well;

	if (!HAS_POWER_WELL(dev))
		return;

	switch (domain) {
	case POWER_DOMAIN_PIPE_A:
	case POWER_DOMAIN_TRANSCODER_EDP:
		return;
V
Ville Syrjälä 已提交
5540
	case POWER_DOMAIN_VGA:
5541 5542 5543 5544 5545 5546 5547 5548 5549
	case POWER_DOMAIN_PIPE_B:
	case POWER_DOMAIN_PIPE_C:
	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
	case POWER_DOMAIN_TRANSCODER_A:
	case POWER_DOMAIN_TRANSCODER_B:
	case POWER_DOMAIN_TRANSCODER_C:
		spin_lock_irq(&power_well->lock);
5550
		__intel_power_well_put(power_well);
5551 5552 5553 5554 5555 5556 5557
		spin_unlock_irq(&power_well->lock);
		return;
	default:
		BUG();
	}
}

5558 5559 5560 5561 5562 5563 5564 5565 5566
static struct i915_power_well *hsw_pwr;

/* Display audio driver power well request */
void i915_request_power_well(void)
{
	if (WARN_ON(!hsw_pwr))
		return;

	spin_lock_irq(&hsw_pwr->lock);
5567
	__intel_power_well_get(hsw_pwr);
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
	spin_unlock_irq(&hsw_pwr->lock);
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
void i915_release_power_well(void)
{
	if (WARN_ON(!hsw_pwr))
		return;

	spin_lock_irq(&hsw_pwr->lock);
5579
	__intel_power_well_put(hsw_pwr);
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
	spin_unlock_irq(&hsw_pwr->lock);
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

int i915_init_power_well(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	hsw_pwr = &dev_priv->power_well;

	hsw_pwr->device = dev;
	spin_lock_init(&hsw_pwr->lock);
	hsw_pwr->count = 0;

	return 0;
}

void i915_remove_power_well(struct drm_device *dev)
{
	hsw_pwr = NULL;
}

void intel_set_power_well(struct drm_device *dev, bool enable)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_power_well *power_well = &dev_priv->power_well;

	if (!HAS_POWER_WELL(dev))
		return;

	if (!i915_disable_power_well && !enable)
		return;

	spin_lock_irq(&power_well->lock);
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623

	/*
	 * This function will only ever contribute one
	 * to the power well reference count. i915_request
	 * is what tracks whether we have or have not
	 * added the one to the reference count.
	 */
	if (power_well->i915_request == enable)
		goto out;

5624 5625
	power_well->i915_request = enable;

5626 5627 5628 5629
	if (enable)
		__intel_power_well_get(power_well);
	else
		__intel_power_well_put(power_well);
5630

5631 5632 5633 5634
 out:
	spin_unlock_irq(&power_well->lock);
}

5635
static void intel_resume_power_well(struct drm_device *dev)
5636 5637 5638 5639 5640 5641 5642 5643 5644
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_power_well *power_well = &dev_priv->power_well;

	if (!HAS_POWER_WELL(dev))
		return;

	spin_lock_irq(&power_well->lock);
	__intel_set_power_well(dev, power_well->count > 0);
5645 5646 5647
	spin_unlock_irq(&power_well->lock);
}

5648 5649 5650 5651 5652
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
5653
 */
5654
void intel_init_power_well(struct drm_device *dev)
5655 5656 5657
{
	struct drm_i915_private *dev_priv = dev->dev_private;

P
Paulo Zanoni 已提交
5658
	if (!HAS_POWER_WELL(dev))
5659 5660
		return;

5661 5662
	/* For now, we need the power well to be always enabled. */
	intel_set_power_well(dev, true);
5663
	intel_resume_power_well(dev);
5664

5665 5666
	/* We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now. */
5667
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5668
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5669 5670
}

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
	hsw_disable_package_c8(dev_priv);
}

void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
	hsw_enable_package_c8(dev_priv);
}

5682 5683 5684 5685 5686 5687 5688 5689
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_HAS_FBC(dev)) {
		if (HAS_PCH_SPLIT(dev)) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
R
Rodrigo Vivi 已提交
5690
			if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5691 5692 5693 5694 5695
				dev_priv->display.enable_fbc =
					gen7_enable_fbc;
			else
				dev_priv->display.enable_fbc =
					ironlake_enable_fbc;
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
		} else if (IS_CRESTLINE(dev)) {
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
		}
		/* 855GM needs testing */
	}

5709 5710 5711 5712 5713 5714
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

5715 5716
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
5717 5718
		intel_setup_wm_latency(dev);

5719
		if (IS_GEN5(dev)) {
5720 5721 5722
			if (dev_priv->wm.pri_latency[1] &&
			    dev_priv->wm.spr_latency[1] &&
			    dev_priv->wm.cur_latency[1])
5723 5724 5725 5726 5727 5728 5729 5730
				dev_priv->display.update_wm = ironlake_update_wm;
			else {
				DRM_DEBUG_KMS("Failed to get proper latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
		} else if (IS_GEN6(dev)) {
5731 5732 5733
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
5734 5735 5736 5737 5738 5739 5740 5741 5742
				dev_priv->display.update_wm = sandybridge_update_wm;
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
		} else if (IS_IVYBRIDGE(dev)) {
5743 5744 5745
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
5746
				dev_priv->display.update_wm = ivybridge_update_wm;
5747 5748 5749 5750 5751 5752 5753
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5754
		} else if (IS_HASWELL(dev)) {
5755 5756 5757
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
5758
				dev_priv->display.update_wm = haswell_update_wm;
5759 5760
				dev_priv->display.update_sprite_wm =
					haswell_update_sprite_wm;
5761 5762 5763 5764 5765
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
5766
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
		} else
			dev_priv->display.update_wm = NULL;
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
			pineview_disable_cxsr(dev);
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_I865G(dev)) {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
	} else if (IS_I85X(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	} else {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
		if (IS_845G(dev))
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
		else
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
	}
}

B
Ben Widawsky 已提交
5820 5821
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
5822
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
5846
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
5866

5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
int vlv_gpu_freq(int ddr_freq, int val)
{
	int mult, base;

	switch (ddr_freq) {
	case 800:
		mult = 20;
		base = 120;
		break;
	case 1066:
		mult = 22;
		base = 133;
		break;
	case 1333:
		mult = 21;
		base = 125;
		break;
	default:
		return -1;
	}

	return ((val - 0xbd) * mult) + base;
}

int vlv_freq_opcode(int ddr_freq, int val)
{
	int mult, base;

	switch (ddr_freq) {
	case 800:
		mult = 20;
		base = 120;
		break;
	case 1066:
		mult = 22;
		base = 133;
		break;
	case 1333:
		mult = 21;
		base = 125;
		break;
	default:
		return -1;
	}

	val /= mult;
	val -= base / mult;
	val += 0xbd;

	if (val > 0xea)
		val = 0xea;

	return val;
}

5922 5923 5924 5925 5926 5927 5928 5929
void intel_pm_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
}