fw-sbp2.c 45.7 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32 33 34
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
35
#include <linux/kernel.h>
36
#include <linux/mod_devicetable.h>
37
#include <linux/module.h>
38
#include <linux/moduleparam.h>
A
Andrew Morton 已提交
39
#include <linux/scatterlist.h>
40
#include <linux/string.h>
41
#include <linux/stringify.h>
42
#include <linux/timer.h>
43
#include <linux/workqueue.h>
44
#include <asm/system.h>
45 46 47 48 49 50 51

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-device.h"
52 53
#include "fw-topology.h"
#include "fw-transaction.h"
54

55 56 57 58 59 60 61 62 63 64 65 66
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
86 87 88
 * - delay inquiry
 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
 *
89 90 91 92 93 94 95 96 97
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
98 99
#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
#define SBP2_INQUIRY_DELAY		12
100 101 102 103 104 105 106 107 108
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109
	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 111 112
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

113
/* I don't know why the SCSI stack doesn't define something like this... */
114
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115 116 117

static const char sbp2_driver_name[] = "sbp2";

118 119 120 121 122 123 124
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
125 126
	struct fw_address_handler address_handler;
	struct list_head orb_list;
127

128
	u64 command_block_agent_address;
129
	u16 lun;
130 131
	int login_id;

132
	/*
133 134 135 136
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
137
	 */
138
	int generation;
139 140
	int retries;
	struct delayed_work work;
141
	bool has_sdev;
142
	bool blocked;
143 144
};

145 146 147 148 149 150 151
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;
152
	const char *bus_id;
153
	struct list_head lu_list;
154 155 156 157 158

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;
159
	unsigned int workarounds;
160
	unsigned int mgt_orb_timeout;
161 162 163

	int dont_block;	/* counter for each logical unit */
	int blocked;	/* ditto */
164 165
};

166 167
/*
 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168 169
 * provided in the config rom. Most devices do provide a value, which
 * we'll use for login management orbs, but with some sane limits.
170
 */
171 172
#define SBP2_MIN_LOGIN_ORB_TIMEOUT	5000U	/* Timeout in ms */
#define SBP2_MAX_LOGIN_ORB_TIMEOUT	40000U	/* Timeout in ms */
173
#define SBP2_ORB_TIMEOUT		2000U	/* Timeout in ms */
174
#define SBP2_ORB_NULL			0x80000000
175
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
176
#define SBP2_RETRY_LIMIT		0xf	/* 15 retries */
177 178

/* Unit directory keys */
179
#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
180 181 182
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

208 209 210 211 212 213 214 215
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
216 217 218 219 220 221 222 223

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
224 225
	__be32 high;
	__be32 low;
226 227 228 229
};

struct sbp2_orb {
	struct fw_transaction t;
230
	struct kref kref;
231 232 233
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
234
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
235 236 237
	struct list_head link;
};

238 239 240
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
241
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
242 243
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
244

245 246
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
247 248 249 250 251 252

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
253 254
		__be32 misc;
		__be32 length;
255 256 257 258 259 260 261 262 263
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

struct sbp2_login_response {
264
	__be32 misc;
265
	struct sbp2_pointer command_block_agent;
266
	__be32 reconnect_hold;
267
};
268 269 270 271 272
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
273
#define COMMAND_ORB_DIRECTION		((1) << 27)
274 275
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
276 277 278 279 280 281

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
282
		__be32 misc;
283 284 285 286
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
287
	struct sbp2_logical_unit *lu;
288

289
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
305
	unsigned int workarounds;
306 307 308 309 310 311 312
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
313 314 315 316 317
	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x000000,
		.workarounds		= SBP2_WORKAROUND_DELAY_INQUIRY,
	},
318 319 320 321 322 323 324 325 326 327
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
328 329 330 331 332
	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
		.firmware_revision	= 0x002600,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
333 334 335

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
336 337
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
338 339 340
	 * could change due to Apple-supplied firmware updates though.
	 */

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

358 359 360 361 362 363 364 365
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

366 367 368 369 370 371 372
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
373
	struct sbp2_logical_unit *lu = callback_data;
374 375 376 377 378 379
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
380
	    length == 0 || length > sizeof(status)) {
381 382 383 384 385 386 387 388
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
389
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
390 391 392 393 394 395 396
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
397
	list_for_each_entry(orb, &lu->orb_list, link) {
398
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
399 400
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
401 402 403 404 405 406
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

407
	if (&orb->link != &lu->orb_list)
408 409 410 411
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

412 413
	kref_put(&orb->kref, free_orb);

414 415 416 417 418 419 420 421 422 423
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

424 425 426 427 428 429 430 431 432 433 434 435 436 437
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
438
		list_del(&orb->link);
439
		spin_unlock_irqrestore(&card->lock, flags);
440
		orb->callback(orb, NULL);
441 442
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
443
	}
444 445

	kref_put(&orb->kref, free_orb);
446 447 448
}

static void
449
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
450 451
	      int node_id, int generation, u64 offset)
{
452
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
453 454 455
	unsigned long flags;

	orb->pointer.high = 0;
456
	orb->pointer.low = cpu_to_be32(orb->request_bus);
457 458

	spin_lock_irqsave(&device->card->lock, flags);
459
	list_add_tail(&orb->link, &lu->orb_list);
460 461
	spin_unlock_irqrestore(&device->card->lock, flags);

462 463 464 465
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

466
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
467
			node_id, generation, device->max_speed, offset,
468
			&orb->pointer, sizeof(orb->pointer),
469 470 471
			complete_transaction, orb);
}

472
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
473
{
474
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
475 476 477
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
478
	int retval = -ENOENT;
479 480 481

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
482
	list_splice_init(&lu->orb_list, &list);
483 484 485
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
486
		retval = 0;
487 488 489
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

490 491 492 493
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

494
	return retval;
495 496
}

497 498 499 500
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
501
		container_of(base_orb, struct sbp2_management_orb, base);
502 503

	if (status)
504
		memcpy(&orb->status, status, sizeof(*status));
505 506 507 508
	complete(&orb->done);
}

static int
509 510 511
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
512
{
513
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
514
	struct sbp2_management_orb *orb;
515
	unsigned int timeout;
516 517
	int retval = -ENOMEM;

518 519 520
	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
		return 0;

521
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
522 523 524
	if (orb == NULL)
		return -ENOMEM;

525
	kref_init(&orb->base.kref);
526 527
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
528
			       sizeof(orb->response), DMA_FROM_DEVICE);
529
	if (dma_mapping_error(orb->response_bus))
530
		goto fail_mapping_response;
531

532 533
	orb->request.response.high = 0;
	orb->request.response.low  = cpu_to_be32(orb->response_bus);
534

535
	orb->request.misc = cpu_to_be32(
536 537
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
538 539 540
		MANAGEMENT_ORB_LUN(lun_or_login_id));
	orb->request.length = cpu_to_be32(
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
541

542 543 544 545
	orb->request.status_fifo.high =
		cpu_to_be32(lu->address_handler.offset >> 32);
	orb->request.status_fifo.low  =
		cpu_to_be32(lu->address_handler.offset);
546 547

	if (function == SBP2_LOGIN_REQUEST) {
548
		/* Ask for 2^2 == 4 seconds reconnect grace period */
549
		orb->request.misc |= cpu_to_be32(
550
			MANAGEMENT_ORB_RECONNECT(2) |
551
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
552
		timeout = lu->tgt->mgt_orb_timeout;
553 554
	} else {
		timeout = SBP2_ORB_TIMEOUT;
555 556 557 558
	}

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
559

560 561 562 563 564 565
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

566 567
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
568

569
	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
570 571

	retval = -EIO;
572
	if (sbp2_cancel_orbs(lu) == 0) {
573 574
		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
575 576 577
		goto out;
	}

578
	if (orb->base.rcode != RCODE_COMPLETE) {
579 580
		fw_error("%s: management write failed, rcode 0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
581 582 583
		goto out;
	}

584 585
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
586
		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
587 588
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
589 590 591 592 593 594
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
595
			 sizeof(orb->request), DMA_TO_DEVICE);
596
 fail_mapping_request:
597
	dma_unmap_single(device->card->device, orb->response_bus,
598
			 sizeof(orb->response), DMA_FROM_DEVICE);
599
 fail_mapping_response:
600
	if (response)
601
		memcpy(response, orb->response, sizeof(orb->response));
602
	kref_put(&orb->base.kref, free_orb);
603 604 605 606 607 608

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
609
			   void *payload, size_t length, void *done)
610
{
611 612 613 614 615 616 617 618 619
	complete(done);
}

static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
{
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
	DECLARE_COMPLETION_ONSTACK(done);
	struct fw_transaction t;
	static u32 z;
620

621 622 623 624 625
	fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
			&z, sizeof(z), complete_agent_reset_write, &done);
	wait_for_completion(&done);
626 627
}

628 629 630 631 632 633 634 635
static void
complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
				   void *payload, size_t length, void *data)
{
	kfree(data);
}

static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
636
{
637
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
638
	struct fw_transaction *t;
639
	static u32 z;
640

641
	t = kmalloc(sizeof(*t), GFP_ATOMIC);
642
	if (t == NULL)
643
		return;
644 645

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
646 647
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
648
			&z, sizeof(z), complete_agent_reset_write_no_wait, t);
649 650
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
{
	struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
	unsigned long flags;

	/* serialize with comparisons of lu->generation and card->generation */
	spin_lock_irqsave(&card->lock, flags);
	lu->generation = generation;
	spin_unlock_irqrestore(&card->lock, flags);
}

static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
{
	/*
	 * We may access dont_block without taking card->lock here:
	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
	 * are currently serialized against each other.
	 * And a wrong result in sbp2_conditionally_block()'s access of
	 * dont_block is rather harmless, it simply misses its first chance.
	 */
	--lu->tgt->dont_block;
}

/*
 * Blocks lu->tgt if all of the following conditions are met:
 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 *     logical units have been finished (indicated by dont_block == 0).
 *   - lu->generation is stale.
 *
 * Note, scsi_block_requests() must be called while holding card->lock,
 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 * unblock the target.
 */
static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (!tgt->dont_block && !lu->blocked &&
	    lu->generation != card->generation) {
		lu->blocked = true;
		if (++tgt->blocked == 1) {
			scsi_block_requests(shost);
			fw_notify("blocked %s\n", lu->tgt->bus_id);
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);
}

/*
 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;
	bool unblock = false;

	spin_lock_irqsave(&card->lock, flags);
	if (lu->blocked && lu->generation == card->generation) {
		lu->blocked = false;
		unblock = --tgt->blocked == 0;
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (unblock) {
		scsi_unblock_requests(shost);
		fw_notify("unblocked %s\n", lu->tgt->bus_id);
	}
}

/*
 * Prevents future blocking of tgt and unblocks it.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_unblock(struct sbp2_target *tgt)
{
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	++tgt->dont_block;
	spin_unlock_irqrestore(&card->lock, flags);

	scsi_unblock_requests(shost);
}

752 753 754 755 756 757 758 759 760 761 762
static int sbp2_lun2int(u16 lun)
{
	struct scsi_lun eight_bytes_lun;

	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lun & 0xff;

	return scsilun_to_int(&eight_bytes_lun);
}

763
static void sbp2_release_target(struct kref *kref)
764
{
765 766 767 768
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
769
	struct scsi_device *sdev;
770
	struct fw_device *device = fw_device(tgt->unit->device.parent);
771

772 773 774
	/* prevent deadlocks */
	sbp2_unblock(tgt);

775
	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
776 777 778 779
		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
		if (sdev) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
780
		}
781 782
		sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
783

784 785 786 787 788
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
789
	fw_notify("released %s\n", tgt->bus_id);
790

791
	fw_unit_put(tgt->unit);
792
	scsi_host_put(shost);
793
	fw_device_put(device);
794 795
}

796 797
static struct workqueue_struct *sbp2_wq;

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 * Always get the target's kref when scheduling work on one its units.
 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 */
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	if (queue_delayed_work(sbp2_wq, &lu->work, delay))
		kref_get(&lu->tgt->kref);
}

static void sbp2_target_put(struct sbp2_target *tgt)
{
	kref_put(&tgt->kref, sbp2_release_target);
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
static void
complete_set_busy_timeout(struct fw_card *card, int rcode,
			  void *payload, size_t length, void *done)
{
	complete(done);
}

static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
{
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
	DECLARE_COMPLETION_ONSTACK(done);
	struct fw_transaction t;
	static __be32 busy_timeout;

	/* FIXME: we should try to set dual-phase cycle_limit too */
	busy_timeout = cpu_to_be32(SBP2_RETRY_LIMIT);

	fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
			lu->tgt->node_id, lu->generation, device->max_speed,
			CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &busy_timeout,
			sizeof(busy_timeout), complete_set_busy_timeout, &done);
	wait_for_completion(&done);
}

837 838
static void sbp2_reconnect(struct work_struct *work);

839 840
static void sbp2_login(struct work_struct *work)
{
841 842
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
843 844 845
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
	struct Scsi_Host *shost;
846
	struct scsi_device *sdev;
847
	struct sbp2_login_response response;
848
	int generation, node_id, local_node_id;
849

850 851 852
	if (fw_device_is_shutdown(device))
		goto out;

853
	generation    = device->generation;
854
	smp_rmb();    /* node_id must not be older than generation */
855 856
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
857

858
	/* If this is a re-login attempt, log out, or we might be rejected. */
859
	if (lu->has_sdev)
860 861 862
		sbp2_send_management_orb(lu, device->node_id, generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);

863 864
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
865
		if (lu->retries++ < 5) {
866
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
867
		} else {
868 869
			fw_error("%s: failed to login to LUN %04x\n",
				 tgt->bus_id, lu->lun);
870 871 872
			/* Let any waiting I/O fail from now on. */
			sbp2_unblock(lu->tgt);
		}
873
		goto out;
874 875
	}

876 877
	tgt->node_id	  = node_id;
	tgt->address_high = local_node_id << 16;
878
	sbp2_set_generation(lu, generation);
879

880
	lu->command_block_agent_address =
881 882 883
		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
		      << 32) | be32_to_cpu(response.command_block_agent.low);
	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
884

885 886
	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
887

888 889
	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
	sbp2_set_busy_timeout(lu);
890

891 892 893
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

894
	/* This was a re-login. */
895
	if (lu->has_sdev) {
896
		sbp2_cancel_orbs(lu);
897
		sbp2_conditionally_unblock(lu);
898 899 900
		goto out;
	}

901 902 903
	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
		ssleep(SBP2_INQUIRY_DELAY);

904
	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
905
	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
906 907 908 909 910 911 912
	/*
	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
	 * Therefore __scsi_add_device() will get into trouble if a bus reset
	 * happens in parallel.  It will either fail or leave us with an
	 * unusable sdev.  As a workaround we check for this and retry the
	 * whole login and SCSI probing.
	 */
913

914 915 916 917 918 919 920 921
	/* Reported error during __scsi_add_device() */
	if (IS_ERR(sdev))
		goto out_logout_login;

	/* Unreported error during __scsi_add_device() */
	smp_rmb(); /* get current card generation */
	if (generation != device->card->generation) {
		scsi_remove_device(sdev);
922
		scsi_device_put(sdev);
923
		goto out_logout_login;
924
	}
925 926

	/* No error during __scsi_add_device() */
927 928
	lu->has_sdev = true;
	scsi_device_put(sdev);
929
	sbp2_allow_block(lu);
930 931 932 933 934 935 936 937 938 939 940 941 942 943
	goto out;

 out_logout_login:
	smp_rmb(); /* generation may have changed */
	generation = device->generation;
	smp_rmb(); /* node_id must not be older than generation */

	sbp2_send_management_orb(lu, device->node_id, generation,
				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
	/*
	 * If a bus reset happened, sbp2_update will have requeued
	 * lu->work already.  Reset the work from reconnect to login.
	 */
	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
944
 out:
945
	sbp2_target_put(tgt);
946
}
947

948
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
949
{
950
	struct sbp2_logical_unit *lu;
951

952 953 954
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
955

956 957 958
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
959

960 961 962 963 964
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
965

966 967 968 969 970
	lu->tgt      = tgt;
	lu->lun      = lun_entry & 0xffff;
	lu->retries  = 0;
	lu->has_sdev = false;
	lu->blocked  = false;
971
	++tgt->dont_block;
972 973
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
974

975 976 977
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
978

979 980 981 982
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
983

984 985 986 987 988 989 990 991 992 993 994 995 996
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;
997
	unsigned int timeout;
998 999

	fw_csr_iterator_init(&ci, directory);
1000 1001
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
1002

1003
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1004 1005
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
1006
			break;
1007 1008 1009

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
1010
			break;
1011

1012
		case CSR_MODEL:
1013 1014 1015 1016 1017 1018 1019
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		case SBP2_CSR_UNIT_CHARACTERISTICS:
			/* the timeout value is stored in 500ms units */
			timeout = ((unsigned int) value >> 8 & 0xff) * 500;
			timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
			tgt->mgt_orb_timeout =
				  min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);

			if (timeout > tgt->mgt_orb_timeout)
				fw_notify("%s: config rom contains %ds "
					  "management ORB timeout, limiting "
1030
					  "to %ds\n", tgt->bus_id,
1031 1032 1033 1034
					  timeout / 1000,
					  tgt->mgt_orb_timeout / 1000);
			break;

1035 1036 1037 1038 1039 1040 1041 1042
		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
1043 1044 1045
			break;
		}
	}
1046 1047 1048 1049 1050 1051 1052
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
1053
	unsigned int w = sbp2_param_workarounds;
1054 1055 1056 1057

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
1058
			  tgt->bus_id);
1059

1060 1061
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
1062 1063

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1064

1065 1066 1067
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
1068

1069 1070 1071
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
1072

1073
		w |= sbp2_workarounds_table[i].workarounds;
1074 1075
		break;
	}
1076 1077
 out:
	if (w)
1078
		fw_notify("Workarounds for %s: 0x%x "
1079
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1080
			  tgt->bus_id, w, firmware_revision, model);
1081
	tgt->workarounds = w;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);
1104
	tgt->bus_id = unit->device.bus_id;
1105 1106 1107 1108 1109 1110 1111

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

1112
	fw_device_get(device);
1113
	fw_unit_get(unit);
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
1128

1129
	/* Do the login in a workqueue so we can easily reschedule retries. */
1130
	list_for_each_entry(lu, &tgt->lu_list, link)
1131
		sbp2_queue_work(lu, 0);
1132
	return 0;
1133

1134
 fail_tgt_put:
1135
	sbp2_target_put(tgt);
1136 1137 1138 1139 1140
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
1141 1142 1143 1144 1145
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
1146
	struct sbp2_target *tgt = unit->device.driver_data;
1147

1148
	sbp2_target_put(tgt);
1149 1150 1151 1152 1153
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
1154 1155
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
1156 1157
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
1158 1159
	int generation, node_id, local_node_id;

1160 1161 1162
	if (fw_device_is_shutdown(device))
		goto out;

1163
	generation    = device->generation;
1164
	smp_rmb();    /* node_id must not be older than generation */
1165 1166
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
1167

1168
	if (sbp2_send_management_orb(lu, node_id, generation,
1169
				     SBP2_RECONNECT_REQUEST,
1170
				     lu->login_id, NULL) < 0) {
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		/*
		 * If reconnect was impossible even though we are in the
		 * current generation, fall back and try to log in again.
		 *
		 * We could check for "Function rejected" status, but
		 * looking at the bus generation as simpler and more general.
		 */
		smp_rmb(); /* get current card generation */
		if (generation == device->card->generation ||
		    lu->retries++ >= 5) {
1181
			fw_error("%s: failed to reconnect\n", tgt->bus_id);
1182 1183
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1184
		}
1185 1186
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		goto out;
1187
	}
1188

1189 1190
	tgt->node_id      = node_id;
	tgt->address_high = local_node_id << 16;
1191
	sbp2_set_generation(lu, generation);
1192

1193 1194
	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
1195 1196 1197

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1198
	sbp2_conditionally_unblock(lu);
1199
 out:
1200
	sbp2_target_put(tgt);
1201 1202 1203 1204
}

static void sbp2_update(struct fw_unit *unit)
{
1205 1206
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
1207

1208 1209 1210 1211 1212 1213 1214
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
1215
		sbp2_conditionally_block(lu);
1216
		lu->retries = 0;
1217
		sbp2_queue_work(lu, 0);
1218
	}
1219 1220 1221 1222 1223
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

1224
static const struct fw_device_id sbp2_id_table[] = {
1225 1226 1227
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1228
		.version      = SBP2_SW_VERSION_ENTRY,
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

1245 1246
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1247
{
1248 1249
	int sam_status;

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1267
	sam_status = sbp2_status[0] & 0x3f;
1268

1269 1270
	switch (sam_status) {
	case SAM_STAT_GOOD:
1271 1272
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1273
	case SAM_STAT_BUSY:
1274 1275
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1276 1277
		return DID_OK << 16 | sam_status;

1278
	default:
1279
		return DID_ERROR << 16;
1280 1281 1282 1283 1284 1285
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1286 1287
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1288
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1289 1290 1291
	int result;

	if (status != NULL) {
1292
		if (STATUS_GET_DEAD(*status))
1293
			sbp2_agent_reset_no_wait(orb->lu);
1294

1295
		switch (STATUS_GET_RESPONSE(*status)) {
1296
		case SBP2_STATUS_REQUEST_COMPLETE:
1297
			result = DID_OK << 16;
1298 1299
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1300
			result = DID_BUS_BUSY << 16;
1301 1302 1303 1304
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1305
			result = DID_ERROR << 16;
1306 1307 1308
			break;
		}

1309 1310
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1311 1312
							   orb->cmd->sense_buffer);
	} else {
1313 1314
		/*
		 * If the orb completes with status == NULL, something
1315
		 * went wrong, typically a bus reset happened mid-orb
1316 1317
		 * or when sending the write (less likely).
		 */
1318
		result = DID_BUS_BUSY << 16;
1319
		sbp2_conditionally_block(orb->lu);
1320 1321 1322
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1323
			 sizeof(orb->request), DMA_TO_DEVICE);
1324

1325 1326 1327
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1328 1329 1330 1331
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1332
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1333

1334
	orb->cmd->result = result;
1335 1336 1337
	orb->done(orb->cmd);
}

1338 1339 1340
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1341 1342 1343 1344 1345
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1346 1347
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1348
			   orb->cmd->sc_data_direction);
1349 1350
	if (count == 0)
		goto fail;
1351

1352 1353
	/*
	 * Handle the special case where there is only one element in
1354 1355 1356
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1357 1358
	 * tables.
	 */
1359
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1360 1361 1362 1363 1364 1365
		orb->request.data_descriptor.high =
			cpu_to_be32(lu->tgt->address_high);
		orb->request.data_descriptor.low  =
			cpu_to_be32(sg_dma_address(sg));
		orb->request.misc |=
			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1366
		return 0;
1367 1368
	}

1369 1370
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1371 1372 1373 1374
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1375
	 */
1376 1377 1378
	for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
		sg_len = sg_dma_len(sg);
		sg_addr = sg_dma_address(sg);
1379
		while (sg_len) {
1380 1381 1382 1383 1384
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1385
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1386 1387
			orb->page_table[j].low = cpu_to_be32(sg_addr);
			orb->page_table[j].high = cpu_to_be32(l << 16);
1388 1389 1390 1391 1392 1393
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1394 1395 1396 1397 1398
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1399

1400 1401
	/*
	 * The data_descriptor pointer is the one case where we need
1402 1403 1404
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1405 1406
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1407 1408 1409 1410
	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
					 COMMAND_ORB_DATA_SIZE(j));
1411

1412 1413 1414
	return 0;

 fail_page_table:
1415
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1416 1417 1418
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1419 1420 1421 1422 1423 1424
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1425 1426
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1427
	struct sbp2_command_orb *orb;
1428
	unsigned int max_payload;
1429
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1430

1431 1432 1433 1434
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1435
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1436
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1437 1438 1439
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1440 1441
	}

1442
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1443 1444
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1445
		return SCSI_MLQUEUE_HOST_BUSY;
1446 1447
	}

1448 1449
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1450
	kref_init(&orb->base.kref);
1451

1452
	orb->lu   = lu;
1453 1454 1455
	orb->done = done;
	orb->cmd  = cmd;

1456
	orb->request.next.high   = cpu_to_be32(SBP2_ORB_NULL);
1457 1458
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1459 1460
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1461 1462
	 * if we set this to max_speed + 7, we get the right value.
	 */
1463 1464
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1465
	orb->request.misc = cpu_to_be32(
1466
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1467
		COMMAND_ORB_SPEED(device->max_speed) |
1468
		COMMAND_ORB_NOTIFY);
1469 1470

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1471
		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1472

1473 1474
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1475 1476 1477 1478

	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1479 1480 1481 1482
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1483
		goto out;
1484

1485 1486 1487 1488
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1489
	kref_put(&orb->base.kref, free_orb);
1490
	return retval;
1491 1492
}

1493 1494
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1495
	struct sbp2_logical_unit *lu = sdev->hostdata;
1496

1497 1498 1499 1500
	/* (Re-)Adding logical units via the SCSI stack is not supported. */
	if (!lu)
		return -ENOSYS;

1501 1502
	sdev->allow_restart = 1;

1503 1504
	/* SBP-2 requires quadlet alignment of the data buffers. */
	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1505

1506
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1507
		sdev->inquiry_len = 36;
1508

1509 1510 1511
	return 0;
}

1512 1513
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1514
	struct sbp2_logical_unit *lu = sdev->hostdata;
1515

1516 1517 1518 1519
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1520

1521
	if (sdev->type == TYPE_DISK &&
1522
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1523
		sdev->skip_ms_page_8 = 1;
1524 1525

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1526
		sdev->fix_capacity = 1;
1527 1528

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1529
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1530

1531 1532 1533 1534 1535 1536 1537 1538 1539
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1540
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1541

1542
	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1543 1544
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1545 1546 1547 1548

	return SUCCESS;
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1561
	struct sbp2_logical_unit *lu;
1562 1563 1564 1565 1566
	struct fw_device *device;

	if (!sdev)
		return 0;

1567 1568
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1569 1570 1571

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1572
			lu->tgt->directory_id, lu->lun);
1573 1574 1575 1576 1577 1578 1579 1580 1581
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1582 1583 1584
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1585
	.proc_name		= sbp2_driver_name,
1586
	.queuecommand		= sbp2_scsi_queuecommand,
1587
	.slave_alloc		= sbp2_scsi_slave_alloc,
1588 1589 1590 1591 1592
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1593 1594
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1595
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1596 1597 1598 1599 1600 1601 1602
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1603 1604 1605 1606 1607
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1608 1609
static int __init sbp2_init(void)
{
1610 1611 1612 1613
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1614 1615 1616 1617 1618 1619
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1620
	destroy_workqueue(sbp2_wq);
1621 1622 1623 1624
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);