fw-sbp2.c 33.4 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/moduleparam.h>
S
Stefan Richter 已提交
34
#include <linux/mod_devicetable.h>
35
#include <linux/device.h>
A
Andrew Morton 已提交
36
#include <linux/scatterlist.h>
37
#include <linux/dma-mapping.h>
38
#include <linux/blkdev.h>
39
#include <linux/string.h>
40
#include <linux/timer.h>
41 42 43 44 45 46 47 48 49 50 51

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

64
/* I don't know why the SCSI stack doesn't define something like this... */
65
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
66 67 68 69

static const char sbp2_driver_name[] = "sbp2";

struct sbp2_device {
70
	struct kref kref;
71 72 73 74 75 76 77 78
	struct fw_unit *unit;
	struct fw_address_handler address_handler;
	struct list_head orb_list;
	u64 management_agent_address;
	u64 command_block_agent_address;
	u32 workarounds;
	int login_id;

79 80
	/*
	 * We cache these addresses and only update them once we've
81 82 83
	 * logged in or reconnected to the sbp2 device.  That way, any
	 * IO to the device will automatically fail and get retried if
	 * it happens in a window where the device is not ready to
84 85
	 * handle it (e.g. after a bus reset but before we reconnect).
	 */
86 87 88 89
	int node_id;
	int address_high;
	int generation;

90 91
	int retries;
	struct delayed_work work;
92 93 94 95
};

#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
#define SBP2_MAX_SECTORS		255	/* Max sectors supported */
96
#define SBP2_ORB_TIMEOUT		2000	/* Timeout in ms */
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

#define SBP2_ORB_NULL			0x80000000

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
#define SBP2_COMMAND_SET_SPECIFIER	0x38
#define SBP2_COMMAND_SET		0x39
#define SBP2_COMMAND_SET_REVISION	0x3b
#define SBP2_FIRMWARE_REVISION		0x3c

/* Flags for detected oddities and brokeness */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
#define SBP2_WORKAROUND_OVERRIDE	0x100

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

140 141 142 143 144 145 146 147
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
165
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
166 167 168
	struct list_head link;
};

169 170 171
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
172
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
173 174
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
175

176 177
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

194 195
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
196 197 198 199 200 201

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
202 203 204 205 206 207 208 209
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
210 211 212 213 214 215 216 217 218 219 220 221 222

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
	struct fw_unit *unit;

223
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
	unsigned workarounds;
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
257 258 259

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
260 261
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
262 263 264
	 * could change due to Apple-supplied firmware updates though.
	 */

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
	struct sbp2_device *sd = callback_data;
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
296
	    length == 0 || length > sizeof(status)) {
297 298 299 300 301 302 303 304
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
305
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
306 307 308 309 310 311 312 313
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
	list_for_each_entry(orb, &sd->orb_list, link) {
314 315
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
		    STATUS_GET_ORB_LOW(status) == orb->request_bus &&
316
		    orb->rcode == RCODE_COMPLETE) {
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (&orb->link != &sd->orb_list)
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

	orb->rcode = rcode;
	if (rcode != RCODE_COMPLETE) {
		spin_lock_irqsave(&card->lock, flags);
		list_del(&orb->link);
		spin_unlock_irqrestore(&card->lock, flags);
		orb->callback(orb, NULL);
	}
}

static void
sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
	      int node_id, int generation, u64 offset)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
357
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
358 359 360 361 362 363

	spin_lock_irqsave(&device->card->lock, flags);
	list_add_tail(&orb->link, &sd->orb_list);
	spin_unlock_irqrestore(&device->card->lock, flags);

	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
364
			node_id, generation, device->max_speed, offset,
365
			&orb->pointer, sizeof(orb->pointer),
366 367 368
			complete_transaction, orb);
}

369
static int sbp2_cancel_orbs(struct fw_unit *unit)
370 371 372 373 374 375
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
376
	int retval = -ENOENT;
377 378 379 380 381 382 383

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
	list_splice_init(&sd->orb_list, &list);
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
384
		retval = 0;
385 386 387
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

388 389 390 391
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

392
	return retval;
393 394
}

395 396 397 398
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
399
		container_of(base_orb, struct sbp2_management_orb, base);
400 401

	if (status)
402
		memcpy(&orb->status, status, sizeof(*status));
403 404 405 406 407 408 409 410 411 412 413 414
	complete(&orb->done);
}

static int
sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
			 int function, int lun, void *response)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct sbp2_management_orb *orb;
	int retval = -ENOMEM;

415
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
416 417 418 419 420
	if (orb == NULL)
		return -ENOMEM;

	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
421
			       sizeof(orb->response), DMA_FROM_DEVICE);
422
	if (dma_mapping_error(orb->response_bus))
423
		goto fail_mapping_response;
424 425 426 427 428

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
429 430 431
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
		MANAGEMENT_ORB_LUN(lun);
432
	orb->request.length =
433
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
434 435 436 437 438 439

	orb->request.status_fifo.high = sd->address_handler.offset >> 32;
	orb->request.status_fifo.low  = sd->address_handler.offset;

	if (function == SBP2_LOGIN_REQUEST) {
		orb->request.misc |=
440
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
441
			MANAGEMENT_ORB_RECONNECT(0);
442 443
	}

444
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
445 446 447

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
448

449 450 451 452 453 454
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

455 456 457
	sbp2_send_orb(&orb->base, unit,
		      node_id, generation, sd->management_agent_address);

458 459
	wait_for_completion_timeout(&orb->done,
				    msecs_to_jiffies(SBP2_ORB_TIMEOUT));
460 461

	retval = -EIO;
462 463
	if (sbp2_cancel_orbs(unit) == 0) {
		fw_error("orb reply timed out, rcode=0x%02x\n",
464 465 466 467
			 orb->base.rcode);
		goto out;
	}

468 469
	if (orb->base.rcode != RCODE_COMPLETE) {
		fw_error("management write failed, rcode 0x%02x\n",
470 471 472 473
			 orb->base.rcode);
		goto out;
	}

474 475
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
476
		fw_error("error status: %d:%d\n",
477 478
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
479 480 481 482 483 484
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
485
			 sizeof(orb->request), DMA_TO_DEVICE);
486
 fail_mapping_request:
487
	dma_unmap_single(device->card->device, orb->response_bus,
488
			 sizeof(orb->response), DMA_FROM_DEVICE);
489
 fail_mapping_response:
490 491
	if (response)
		fw_memcpy_from_be32(response,
492
				    orb->response, sizeof(orb->response));
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	kfree(orb);

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
			   void *payload, size_t length, void *data)
{
	struct fw_transaction *t = data;

	kfree(t);
}

static int sbp2_agent_reset(struct fw_unit *unit)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct fw_transaction *t;
	static u32 zero;

514
	t = kzalloc(sizeof(*t), GFP_ATOMIC);
515 516 517 518
	if (t == NULL)
		return -ENOMEM;

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
519
			sd->node_id, sd->generation, device->max_speed,
520
			sd->command_block_agent_address + SBP2_AGENT_RESET,
521
			&zero, sizeof(zero), complete_agent_reset_write, t);
522 523 524 525

	return 0;
}

526
static void sbp2_reconnect(struct work_struct *work);
527
static struct scsi_host_template scsi_driver_template;
528

529
static void release_sbp2_device(struct kref *kref)
530 531
{
	struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
532 533
	struct Scsi_Host *host =
		container_of((void *)sd, struct Scsi_Host, hostdata[0]);
534

535
	scsi_remove_host(host);
536 537 538 539 540
	sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
				 SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
	fw_core_remove_address_handler(&sd->address_handler);
	fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
	put_device(&sd->unit->device);
541
	scsi_host_put(host);
542 543
}

544 545 546 547
static void sbp2_login(struct work_struct *work)
{
	struct sbp2_device *sd =
		container_of(work, struct sbp2_device, work.work);
548 549
	struct Scsi_Host *host =
		container_of((void *)sd, struct Scsi_Host, hostdata[0]);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	struct fw_unit *unit = sd->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_login_response response;
	int generation, node_id, local_node_id, lun, retval;

	/* FIXME: Make this work for multi-lun devices. */
	lun = 0;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

	if (sbp2_send_management_orb(unit, node_id, generation,
				     SBP2_LOGIN_REQUEST, lun, &response) < 0) {
		if (sd->retries++ < 5) {
			schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
		} else {
			fw_error("failed to login to %s\n",
				 unit->device.bus_id);
569
			kref_put(&sd->kref, release_sbp2_device);
570 571 572 573 574 575 576 577 578 579
		}
		return;
	}

	sd->generation   = generation;
	sd->node_id      = node_id;
	sd->address_high = local_node_id << 16;

	/* Get command block agent offset and login id. */
	sd->command_block_agent_address =
580
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
581
		response.command_block_agent.low;
582
	sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
583

584 585 586
	fw_notify("logged in to sbp2 unit %s (%d retries)\n",
		  unit->device.bus_id, sd->retries);
	fw_notify(" - management_agent_address:    0x%012llx\n",
587 588 589
		  (unsigned long long) sd->management_agent_address);
	fw_notify(" - command_block_agent_address: 0x%012llx\n",
		  (unsigned long long) sd->command_block_agent_address);
590
	fw_notify(" - status write address:        0x%012llx\n",
591 592 593 594 595 596 597
		  (unsigned long long) sd->address_handler.offset);

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

598
	PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
599 600
	sbp2_agent_reset(unit);

601 602 603
	/* FIXME: Loop over luns here. */
	lun = 0;
	retval = scsi_add_device(host, 0, 0, lun);
604 605 606 607
	if (retval < 0) {
		sbp2_send_management_orb(unit, sd->node_id, sd->generation,
					 SBP2_LOGOUT_REQUEST, sd->login_id,
					 NULL);
608 609 610 611
		/*
		 * Set this back to sbp2_login so we fall back and
		 * retry login on bus reset.
		 */
612
		PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
613
	}
614
	kref_put(&sd->kref, release_sbp2_device);
615
}
616 617 618 619 620 621 622

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd;
	struct fw_csr_iterator ci;
623 624
	struct Scsi_Host *host;
	int i, key, value, err;
625 626
	u32 model, firmware_revision;

627 628 629 630
	err = -ENOMEM;
	host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
	if (host == NULL)
		goto fail;
631

632
	sd = (struct sbp2_device *) host->hostdata;
633 634 635
	unit->device.driver_data = sd;
	sd->unit = unit;
	INIT_LIST_HEAD(&sd->orb_list);
636
	kref_init(&sd->kref);
637 638 639 640 641

	sd->address_handler.length = 0x100;
	sd->address_handler.address_callback = sbp2_status_write;
	sd->address_handler.callback_data = sd;

642 643 644 645
	err = fw_core_add_address_handler(&sd->address_handler,
					  &fw_high_memory_region);
	if (err < 0)
		goto fail_host;
646

647 648 649 650 651 652 653
	err = fw_device_enable_phys_dma(device);
	if (err < 0)
		goto fail_address_handler;

	err = scsi_add_host(host, &unit->device);
	if (err < 0)
		goto fail_address_handler;
654

655 656
	/*
	 * Scan unit directory to get management agent address,
657
	 * firmware revison and model.  Initialize firmware_revision
658 659
	 * and model to values that wont match anything in our table.
	 */
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	firmware_revision = 0xff000000;
	model = 0xff000000;
	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
			sd->management_agent_address =
				0xfffff0000000ULL + 4 * value;
			break;
		case SBP2_FIRMWARE_REVISION:
			firmware_revision = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
		sd->workarounds |= sbp2_workarounds_table[i].workarounds;
		break;
	}

	if (sd->workarounds)
		fw_notify("Workarounds for node %s: 0x%x "
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
			  unit->device.bus_id,
			  sd->workarounds, firmware_revision, model);

695 696
	get_device(&unit->device);

697 698
	/*
	 * We schedule work to do the login so we can easily
699
	 * reschedule retries. Always get the ref before scheduling
700 701
	 * work.
	 */
702
	INIT_DELAYED_WORK(&sd->work, sbp2_login);
703 704
	if (schedule_delayed_work(&sd->work, 0))
		kref_get(&sd->kref);
705 706

	return 0;
707 708 709 710 711 712 713

 fail_address_handler:
	fw_core_remove_address_handler(&sd->address_handler);
 fail_host:
	scsi_host_put(host);
 fail:
	return err;
714 715 716 717 718 719 720
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct sbp2_device *sd = unit->device.driver_data;

721
	kref_put(&sd->kref, release_sbp2_device);
722 723 724 725 726 727

	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
728 729
	struct sbp2_device *sd =
		container_of(work, struct sbp2_device, work.work);
730 731 732 733 734 735 736 737
	struct fw_unit *unit = sd->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	int generation, node_id, local_node_id;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

738 739 740
	if (sbp2_send_management_orb(unit, node_id, generation,
				     SBP2_RECONNECT_REQUEST,
				     sd->login_id, NULL) < 0) {
741
		if (sd->retries++ >= 5) {
742 743 744 745
			fw_error("failed to reconnect to %s\n",
				 unit->device.bus_id);
			/* Fall back and try to log in again. */
			sd->retries = 0;
746
			PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
747 748 749 750
		}
		schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
		return;
	}
751 752 753

	sd->generation   = generation;
	sd->node_id      = node_id;
754
	sd->address_high = local_node_id << 16;
755

756 757
	fw_notify("reconnected to unit %s (%d retries)\n",
		  unit->device.bus_id, sd->retries);
758 759
	sbp2_agent_reset(unit);
	sbp2_cancel_orbs(unit);
760
	kref_put(&sd->kref, release_sbp2_device);
761 762 763 764 765 766 767
}

static void sbp2_update(struct fw_unit *unit)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;

768
	sd->retries = 0;
769
	fw_device_enable_phys_dma(device);
770 771
	if (schedule_delayed_work(&sd->work, 0))
		kref_get(&sd->kref);
772 773 774 775 776
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

777
static const struct fw_device_id sbp2_id_table[] = {
778 779 780
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
781
		.version      = SBP2_SW_VERSION_ENTRY,
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

798 799
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
800
{
801 802
	int sam_status;

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

820
	sam_status = sbp2_status[0] & 0x3f;
821

822 823
	switch (sam_status) {
	case SAM_STAT_GOOD:
824 825
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
826
	case SAM_STAT_BUSY:
827 828
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
829 830
		return DID_OK << 16 | sam_status;

831
	default:
832
		return DID_ERROR << 16;
833 834 835 836 837 838
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
839 840
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
841 842 843 844 845 846
	struct fw_unit *unit = orb->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	struct scatterlist *sg;
	int result;

	if (status != NULL) {
847
		if (STATUS_GET_DEAD(*status))
848 849
			sbp2_agent_reset(unit);

850
		switch (STATUS_GET_RESPONSE(*status)) {
851
		case SBP2_STATUS_REQUEST_COMPLETE:
852
			result = DID_OK << 16;
853 854
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
855
			result = DID_BUS_BUSY << 16;
856 857 858 859
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
860
			result = DID_ERROR << 16;
861 862 863
			break;
		}

864 865
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
866 867
							   orb->cmd->sense_buffer);
	} else {
868 869
		/*
		 * If the orb completes with status == NULL, something
870
		 * went wrong, typically a bus reset happened mid-orb
871 872
		 * or when sending the write (less likely).
		 */
873
		result = DID_BUS_BUSY << 16;
874 875 876
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
877
			 sizeof(orb->request), DMA_TO_DEVICE);
878 879 880 881 882 883 884 885 886

	if (orb->cmd->use_sg > 0) {
		sg = (struct scatterlist *)orb->cmd->request_buffer;
		dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
			     orb->cmd->sc_data_direction);
	}

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
887
				 sizeof(orb->page_table), DMA_TO_DEVICE);
888

889
	orb->cmd->result = result;
890 891 892 893
	orb->done(orb->cmd);
	kfree(orb);
}

894
static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
895
{
896 897 898
	struct sbp2_device *sd =
		(struct sbp2_device *)orb->cmd->device->host->hostdata;
	struct fw_unit *unit = sd->unit;
899 900 901 902 903 904 905 906
	struct fw_device *device = fw_device(unit->device.parent);
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

	sg = (struct scatterlist *)orb->cmd->request_buffer;
	count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
			   orb->cmd->sc_data_direction);
907 908
	if (count == 0)
		goto fail;
909

910 911
	/*
	 * Handle the special case where there is only one element in
912 913 914
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
915 916
	 * tables.
	 */
917 918 919 920
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
		orb->request.data_descriptor.high = sd->address_high;
		orb->request.data_descriptor.low  = sg_dma_address(sg);
		orb->request.misc |=
921
			COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
922
		return 0;
923 924
	}

925 926
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
927 928 929 930
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
931
	 */
932 933 934 935
	for (i = 0, j = 0; i < count; i++) {
		sg_len = sg_dma_len(sg + i);
		sg_addr = sg_dma_address(sg + i);
		while (sg_len) {
936 937 938 939 940
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
941 942 943 944 945 946 947 948 949
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

950 951 952 953 954 955 956
	fw_memcpy_to_be32(orb->page_table, orb->page_table,
			  sizeof(orb->page_table[0]) * j);
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
957

958 959
	/*
	 * The data_descriptor pointer is the one case where we need
960 961 962
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
963 964
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
965 966 967
	orb->request.data_descriptor.high = sd->address_high;
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
968 969
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
970

971 972 973 974 975 976 977
	return 0;

 fail_page_table:
	dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
978 979 980 981 982 983
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
984 985 986
	struct sbp2_device *sd =
		(struct sbp2_device *)cmd->device->host->hostdata;
	struct fw_unit *unit = sd->unit;
987 988 989
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_command_orb *orb;

990 991 992 993
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
994
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
995
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
996 997 998
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
999 1000
	}

1001
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1002 1003
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1004
		goto fail_alloc;
1005 1006
	}

1007 1008
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1009 1010 1011 1012 1013 1014 1015

	orb->unit = unit;
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1016 1017
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1018 1019
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1020 1021
	 * if we set this to max_speed + 7, we get the right value.
	 */
1022
	orb->request.misc =
1023 1024
		COMMAND_ORB_MAX_PAYLOAD(device->max_speed + 7) |
		COMMAND_ORB_SPEED(device->max_speed) |
1025
		COMMAND_ORB_NOTIFY;
1026 1027 1028

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1029
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1030 1031
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1032
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1033

1034
	if (cmd->use_sg && sbp2_command_orb_map_scatterlist(orb) < 0)
1035
		goto fail_mapping;
1036

1037
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1038 1039

	memset(orb->request.command_block,
1040
	       0, sizeof(orb->request.command_block));
1041 1042 1043
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1044 1045 1046 1047 1048
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping;
1049 1050 1051 1052 1053

	sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
		      sd->command_block_agent_address + SBP2_ORB_POINTER);

	return 0;
1054 1055 1056 1057

 fail_mapping:
	kfree(orb);
 fail_alloc:
1058
	return SCSI_MLQUEUE_HOST_BUSY;
1059 1060
}

1061 1062
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1063
	struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1064 1065 1066 1067 1068 1069 1070 1071

	sdev->allow_restart = 1;

	if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
		sdev->inquiry_len = 36;
	return 0;
}

1072 1073
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1074 1075
	struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
	struct fw_unit *unit = sd->unit;
1076

1077 1078 1079 1080
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1081 1082 1083 1084 1085 1086 1087
	if (sdev->type == TYPE_DISK &&
	    sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
		sdev->skip_ms_page_8 = 1;
	if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
		fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
		sdev->fix_capacity = 1;
	}
1088 1089
	if (sd->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1090 1091 1092 1093 1094 1095 1096 1097 1098
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1099 1100 1101
	struct sbp2_device *sd =
		(struct sbp2_device *)cmd->device->host->hostdata;
	struct fw_unit *unit = sd->unit;
1102 1103

	fw_notify("sbp2_scsi_abort\n");
1104
	sbp2_agent_reset(unit);
1105 1106 1107 1108 1109
	sbp2_cancel_orbs(unit);

	return SUCCESS;
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
	struct sbp2_device *sd;
	struct fw_unit *unit;
	struct fw_device *device;
	u32 directory_id;
	struct fw_csr_iterator ci;
	int key, value, lun;

	if (!sdev)
		return 0;
	sd = (struct sbp2_device *)sdev->host->hostdata;
	unit = sd->unit;
	device = fw_device(unit->device.parent);

	/* implicit directory ID */
	directory_id = ((unit->directory - device->config_rom) * 4
			+ CSR_CONFIG_ROM) & 0xffffff;

	/* explicit directory ID, overrides implicit ID if present */
	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == CSR_DIRECTORY_ID) {
			directory_id = value;
			break;
		}

	/* FIXME: Make this work for multi-lun devices. */
	lun = 0;

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
			directory_id, lun);
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1162 1163 1164 1165 1166
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
	.proc_name		= (char *)sbp2_driver_name,
	.queuecommand		= sbp2_scsi_queuecommand,
1167
	.slave_alloc		= sbp2_scsi_slave_alloc,
1168 1169 1170 1171 1172
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1173 1174
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1175
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1176 1177 1178 1179 1180 1181 1182
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1183 1184 1185 1186 1187
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static int __init sbp2_init(void)
{
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);