fw-sbp2.c 37.7 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/moduleparam.h>
S
Stefan Richter 已提交
34
#include <linux/mod_devicetable.h>
35
#include <linux/device.h>
A
Andrew Morton 已提交
36
#include <linux/scatterlist.h>
37
#include <linux/dma-mapping.h>
38
#include <linux/blkdev.h>
39
#include <linux/string.h>
40
#include <linux/stringify.h>
41
#include <linux/timer.h>
42
#include <linux/workqueue.h>
43 44 45 46 47 48 49 50 51 52

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

105
/* I don't know why the SCSI stack doesn't define something like this... */
106
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
107 108 109

static const char sbp2_driver_name[] = "sbp2";

110 111 112 113 114 115 116 117
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
	struct scsi_device *sdev;
118 119
	struct fw_address_handler address_handler;
	struct list_head orb_list;
120

121
	u64 command_block_agent_address;
122
	u16 lun;
123 124
	int login_id;

125
	/*
126 127 128 129
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
130
	 */
131
	int generation;
132 133
	int retries;
	struct delayed_work work;
134 135
};

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;

	unsigned workarounds;
	struct list_head lu_list;
};

153
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
154
#define SBP2_ORB_TIMEOUT		2000	/* Timeout in ms */
155 156 157 158 159 160
#define SBP2_ORB_NULL			0x80000000

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
161 162 163
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

189 190 191 192 193 194 195 196
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
197 198 199 200 201 202 203 204 205 206 207 208 209 210

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
211
	struct kref kref;
212 213 214
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
215
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
216 217 218
	struct list_head link;
};

219 220 221
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
222
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
223 224
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
225

226 227
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

244 245
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
246 247 248 249 250 251

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
252 253 254 255 256 257 258 259
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
260 261 262 263 264 265 266 267 268 269 270

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
271
	struct sbp2_logical_unit *lu;
272

273
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
	unsigned workarounds;
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
307 308 309

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
310 311
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
312 313 314
	 * could change due to Apple-supplied firmware updates though.
	 */

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

332 333 334 335 336 337 338 339
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

340 341 342 343 344 345 346
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
347
	struct sbp2_logical_unit *lu = callback_data;
348 349 350 351 352 353
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
354
	    length == 0 || length > sizeof(status)) {
355 356 357 358 359 360 361 362
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
363
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
364 365 366 367 368 369 370
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
371
	list_for_each_entry(orb, &lu->orb_list, link) {
372
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
373 374
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
375 376 377 378 379 380
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

381
	if (&orb->link != &lu->orb_list)
382 383 384 385
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

386 387
	kref_put(&orb->kref, free_orb);

388 389 390 391 392 393 394 395 396 397
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

398 399 400 401 402 403 404 405 406 407 408 409 410 411
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
412
		list_del(&orb->link);
413
		spin_unlock_irqrestore(&card->lock, flags);
414
		orb->callback(orb, NULL);
415 416
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
417
	}
418 419

	kref_put(&orb->kref, free_orb);
420 421 422
}

static void
423
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
424 425
	      int node_id, int generation, u64 offset)
{
426
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
427 428 429 430
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
431
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
432 433

	spin_lock_irqsave(&device->card->lock, flags);
434
	list_add_tail(&orb->link, &lu->orb_list);
435 436
	spin_unlock_irqrestore(&device->card->lock, flags);

437 438 439 440
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

441
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
442
			node_id, generation, device->max_speed, offset,
443
			&orb->pointer, sizeof(orb->pointer),
444 445 446
			complete_transaction, orb);
}

447
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
448
{
449
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
450 451 452
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
453
	int retval = -ENOENT;
454 455 456

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
457
	list_splice_init(&lu->orb_list, &list);
458 459 460
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
461
		retval = 0;
462 463 464
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

465 466 467 468
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

469
	return retval;
470 471
}

472 473 474 475
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
476
		container_of(base_orb, struct sbp2_management_orb, base);
477 478

	if (status)
479
		memcpy(&orb->status, status, sizeof(*status));
480 481 482 483
	complete(&orb->done);
}

static int
484 485 486
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
487
{
488
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
489 490 491
	struct sbp2_management_orb *orb;
	int retval = -ENOMEM;

492
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
493 494 495
	if (orb == NULL)
		return -ENOMEM;

496
	kref_init(&orb->base.kref);
497 498
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
499
			       sizeof(orb->response), DMA_FROM_DEVICE);
500
	if (dma_mapping_error(orb->response_bus))
501
		goto fail_mapping_response;
502 503 504 505 506

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
507 508
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
509
		MANAGEMENT_ORB_LUN(lun_or_login_id);
510
	orb->request.length =
511
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
512

513 514
	orb->request.status_fifo.high = lu->address_handler.offset >> 32;
	orb->request.status_fifo.low  = lu->address_handler.offset;
515 516

	if (function == SBP2_LOGIN_REQUEST) {
517
		/* Ask for 2^2 == 4 seconds reconnect grace period */
518
		orb->request.misc |=
519 520
			MANAGEMENT_ORB_RECONNECT(2) |
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
521 522
	}

523
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
524 525 526

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
527

528 529 530 531 532 533
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

534 535
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
536

537 538
	wait_for_completion_timeout(&orb->done,
				    msecs_to_jiffies(SBP2_ORB_TIMEOUT));
539 540

	retval = -EIO;
541
	if (sbp2_cancel_orbs(lu) == 0) {
542
		fw_error("orb reply timed out, rcode=0x%02x\n",
543 544 545 546
			 orb->base.rcode);
		goto out;
	}

547 548
	if (orb->base.rcode != RCODE_COMPLETE) {
		fw_error("management write failed, rcode 0x%02x\n",
549 550 551 552
			 orb->base.rcode);
		goto out;
	}

553 554
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
555
		fw_error("error status: %d:%d\n",
556 557
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
558 559 560 561 562 563
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
564
			 sizeof(orb->request), DMA_TO_DEVICE);
565
 fail_mapping_request:
566
	dma_unmap_single(device->card->device, orb->response_bus,
567
			 sizeof(orb->response), DMA_FROM_DEVICE);
568
 fail_mapping_response:
569 570
	if (response)
		fw_memcpy_from_be32(response,
571
				    orb->response, sizeof(orb->response));
572
	kref_put(&orb->base.kref, free_orb);
573 574 575 576 577 578 579 580 581 582 583 584 585

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
			   void *payload, size_t length, void *data)
{
	struct fw_transaction *t = data;

	kfree(t);
}

586
static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
587
{
588
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
589 590 591
	struct fw_transaction *t;
	static u32 zero;

592
	t = kzalloc(sizeof(*t), GFP_ATOMIC);
593 594 595 596
	if (t == NULL)
		return -ENOMEM;

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
597 598
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
599
			&zero, sizeof(zero), complete_agent_reset_write, t);
600 601 602 603

	return 0;
}

604
static void sbp2_release_target(struct kref *kref)
605
{
606 607 608 609
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
610
	struct fw_device *device = fw_device(tgt->unit->device.parent);
611 612 613 614 615

	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
		if (lu->sdev)
			scsi_remove_device(lu->sdev);

616 617 618 619 620
		if (!fw_device_is_shutdown(device))
			sbp2_send_management_orb(lu, tgt->node_id,
					lu->generation, SBP2_LOGOUT_REQUEST,
					lu->login_id, NULL);

621 622 623 624 625 626 627 628 629
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
	fw_notify("released %s\n", tgt->unit->device.bus_id);

	put_device(&tgt->unit->device);
	scsi_host_put(shost);
630 631
}

632 633
static struct workqueue_struct *sbp2_wq;

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * Always get the target's kref when scheduling work on one its units.
 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 */
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	if (queue_delayed_work(sbp2_wq, &lu->work, delay))
		kref_get(&lu->tgt->kref);
}

static void sbp2_target_put(struct sbp2_target *tgt)
{
	kref_put(&tgt->kref, sbp2_release_target);
}

649 650
static void sbp2_reconnect(struct work_struct *work);

651 652
static void sbp2_login(struct work_struct *work)
{
653 654 655 656 657 658 659
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct Scsi_Host *shost =
		container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
	struct scsi_device *sdev;
	struct scsi_lun eight_bytes_lun;
	struct fw_unit *unit = lu->tgt->unit;
660 661
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_login_response response;
662
	int generation, node_id, local_node_id;
663 664 665 666 667

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

668 669
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
670 671 672
		if (lu->retries++ < 5)
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		else
673 674
			fw_error("failed to login to %s LUN %04x\n",
				 unit->device.bus_id, lu->lun);
675
		goto out;
676 677
	}

678 679 680
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
681 682

	/* Get command block agent offset and login id. */
683
	lu->command_block_agent_address =
684
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
685
		response.command_block_agent.low;
686
	lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
687

688 689
	fw_notify("logged in to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);
690 691 692 693 694 695

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

696 697 698 699 700 701
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
702

703 704 705 706 707
	sdev = __scsi_add_device(shost, 0, 0,
				 scsilun_to_int(&eight_bytes_lun), lu);
	if (IS_ERR(sdev)) {
		sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
708 709 710 711
		/*
		 * Set this back to sbp2_login so we fall back and
		 * retry login on bus reset.
		 */
712 713 714 715
		PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
	} else {
		lu->sdev = sdev;
		scsi_device_put(sdev);
716
	}
717 718
 out:
	sbp2_target_put(lu->tgt);
719
}
720

721
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
722
{
723
	struct sbp2_logical_unit *lu;
724

725 726 727
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
728

729 730 731
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
732

733 734 735 736 737
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
738

739 740 741 742 743 744
	lu->tgt  = tgt;
	lu->sdev = NULL;
	lu->lun  = lun_entry & 0xffff;
	lu->retries = 0;
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
745

746 747 748
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
749

750 751 752 753
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
754

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;

	fw_csr_iterator_init(&ci, directory);
770 771
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
772

773
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
774 775
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
776
			break;
777 778 779

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
780
			break;
781

782
		case CSR_MODEL:
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
798 799 800
			break;
		}
	}
801 802 803 804 805 806 807
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
808 809 810 811 812 813
	unsigned w = sbp2_param_workarounds;

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
			  tgt->unit->device.bus_id);
814

815 816
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
817 818

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
819

820 821 822
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
823

824 825 826
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
827

828
		w |= sbp2_workarounds_table[i].workarounds;
829 830
		break;
	}
831 832
 out:
	if (w)
833
		fw_notify("Workarounds for %s: 0x%x "
834
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
835
			  tgt->unit->device.bus_id,
836 837
			  w, firmware_revision, model);
	tgt->workarounds = w;
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
880

881 882
	get_device(&unit->device);

883
	/* Do the login in a workqueue so we can easily reschedule retries. */
884
	list_for_each_entry(lu, &tgt->lu_list, link)
885
		sbp2_queue_work(lu, 0);
886
	return 0;
887

888
 fail_tgt_put:
889
	sbp2_target_put(tgt);
890 891 892 893 894
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
895 896 897 898 899
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
900
	struct sbp2_target *tgt = unit->device.driver_data;
901

902
	sbp2_target_put(tgt);
903 904 905 906 907
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
908 909 910
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct fw_unit *unit = lu->tgt->unit;
911 912 913 914 915 916 917
	struct fw_device *device = fw_device(unit->device.parent);
	int generation, node_id, local_node_id;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

918
	if (sbp2_send_management_orb(lu, node_id, generation,
919
				     SBP2_RECONNECT_REQUEST,
920 921
				     lu->login_id, NULL) < 0) {
		if (lu->retries++ >= 5) {
922 923 924
			fw_error("failed to reconnect to %s\n",
				 unit->device.bus_id);
			/* Fall back and try to log in again. */
925 926
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
927
		}
928 929
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		goto out;
930
	}
931

932 933 934
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
935

936 937 938 939 940
	fw_notify("reconnected to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
941 942
 out:
	sbp2_target_put(lu->tgt);
943 944 945 946
}

static void sbp2_update(struct fw_unit *unit)
{
947 948
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
949

950 951 952 953 954 955 956 957
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
		lu->retries = 0;
958
		sbp2_queue_work(lu, 0);
959
	}
960 961 962 963 964
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

965
static const struct fw_device_id sbp2_id_table[] = {
966 967 968
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
969
		.version      = SBP2_SW_VERSION_ENTRY,
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

986 987
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
988
{
989 990
	int sam_status;

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1008
	sam_status = sbp2_status[0] & 0x3f;
1009

1010 1011
	switch (sam_status) {
	case SAM_STAT_GOOD:
1012 1013
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1014
	case SAM_STAT_BUSY:
1015 1016
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1017 1018
		return DID_OK << 16 | sam_status;

1019
	default:
1020
		return DID_ERROR << 16;
1021 1022 1023 1024 1025 1026
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1027 1028
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1029
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1030 1031 1032
	int result;

	if (status != NULL) {
1033
		if (STATUS_GET_DEAD(*status))
1034
			sbp2_agent_reset(orb->lu);
1035

1036
		switch (STATUS_GET_RESPONSE(*status)) {
1037
		case SBP2_STATUS_REQUEST_COMPLETE:
1038
			result = DID_OK << 16;
1039 1040
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1041
			result = DID_BUS_BUSY << 16;
1042 1043 1044 1045
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1046
			result = DID_ERROR << 16;
1047 1048 1049
			break;
		}

1050 1051
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1052 1053
							   orb->cmd->sense_buffer);
	} else {
1054 1055
		/*
		 * If the orb completes with status == NULL, something
1056
		 * went wrong, typically a bus reset happened mid-orb
1057 1058
		 * or when sending the write (less likely).
		 */
1059
		result = DID_BUS_BUSY << 16;
1060 1061 1062
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1063
			 sizeof(orb->request), DMA_TO_DEVICE);
1064

1065 1066 1067
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1068 1069 1070 1071
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1072
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1073

1074
	orb->cmd->result = result;
1075 1076 1077
	orb->done(orb->cmd);
}

1078 1079 1080
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1081 1082 1083 1084 1085
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1086 1087
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1088
			   orb->cmd->sc_data_direction);
1089 1090
	if (count == 0)
		goto fail;
1091

1092 1093
	/*
	 * Handle the special case where there is only one element in
1094 1095 1096
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1097 1098
	 * tables.
	 */
1099
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1100
		orb->request.data_descriptor.high = lu->tgt->address_high;
1101
		orb->request.data_descriptor.low  = sg_dma_address(sg);
1102
		orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1103
		return 0;
1104 1105
	}

1106 1107
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1108 1109 1110 1111
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1112
	 */
1113 1114 1115
	for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
		sg_len = sg_dma_len(sg);
		sg_addr = sg_dma_address(sg);
1116
		while (sg_len) {
1117 1118 1119 1120 1121
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1122 1123 1124 1125 1126 1127 1128 1129 1130
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1131 1132 1133 1134 1135 1136 1137
	fw_memcpy_to_be32(orb->page_table, orb->page_table,
			  sizeof(orb->page_table[0]) * j);
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1138

1139 1140
	/*
	 * The data_descriptor pointer is the one case where we need
1141 1142 1143
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1144 1145
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1146
	orb->request.data_descriptor.high = lu->tgt->address_high;
1147 1148
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
1149 1150
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
1151

1152 1153 1154
	return 0;

 fail_page_table:
1155
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1156 1157 1158
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1159 1160 1161 1162 1163 1164
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1165 1166
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1167
	struct sbp2_command_orb *orb;
1168
	unsigned max_payload;
1169
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1170

1171 1172 1173 1174
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1175
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1176
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1177 1178 1179
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1180 1181
	}

1182
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1183 1184
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1185
		return SCSI_MLQUEUE_HOST_BUSY;
1186 1187
	}

1188 1189
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1190
	kref_init(&orb->base.kref);
1191

1192
	orb->lu   = lu;
1193 1194 1195 1196 1197
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1198 1199
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1200 1201
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1202 1203
	 * if we set this to max_speed + 7, we get the right value.
	 */
1204 1205
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1206
	orb->request.misc =
1207
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1208
		COMMAND_ORB_SPEED(device->max_speed) |
1209
		COMMAND_ORB_NOTIFY;
1210 1211 1212

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1213
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1214 1215
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1216
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1217

1218 1219
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1220

1221
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1222 1223

	memset(orb->request.command_block,
1224
	       0, sizeof(orb->request.command_block));
1225 1226 1227
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1228 1229 1230 1231
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1232
		goto out;
1233

1234 1235 1236 1237
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1238
	kref_put(&orb->base.kref, free_orb);
1239
	return retval;
1240 1241
}

1242 1243
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1244
	struct sbp2_logical_unit *lu = sdev->hostdata;
1245 1246 1247

	sdev->allow_restart = 1;

1248 1249 1250 1251 1252 1253
	/*
	 * Update the dma alignment (minimum alignment requirements for
	 * start and end of DMA transfers) to be a sector
	 */
	blk_queue_update_dma_alignment(sdev->request_queue, 511);

1254
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1255
		sdev->inquiry_len = 36;
1256

1257 1258 1259
	return 0;
}

1260 1261
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1262
	struct sbp2_logical_unit *lu = sdev->hostdata;
1263

1264 1265 1266 1267
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1268

1269
	if (sdev->type == TYPE_DISK &&
1270
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1271
		sdev->skip_ms_page_8 = 1;
1272 1273

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1274
		sdev->fix_capacity = 1;
1275 1276

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1277
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1278

1279 1280 1281 1282 1283 1284 1285 1286 1287
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1288
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1289 1290

	fw_notify("sbp2_scsi_abort\n");
1291 1292
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1293 1294 1295 1296

	return SUCCESS;
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1309
	struct sbp2_logical_unit *lu;
1310 1311 1312 1313 1314
	struct fw_device *device;

	if (!sdev)
		return 0;

1315 1316
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1317 1318 1319

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1320
			lu->tgt->directory_id, lu->lun);
1321 1322 1323 1324 1325 1326 1327 1328 1329
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1330 1331 1332
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1333
	.proc_name		= sbp2_driver_name,
1334
	.queuecommand		= sbp2_scsi_queuecommand,
1335
	.slave_alloc		= sbp2_scsi_slave_alloc,
1336 1337 1338 1339 1340
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1341 1342
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1343
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1344 1345 1346 1347 1348 1349 1350
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1351 1352 1353 1354 1355
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1356 1357
static int __init sbp2_init(void)
{
1358 1359 1360 1361
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1362 1363 1364 1365 1366 1367
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1368
	destroy_workqueue(sbp2_wq);
1369 1370 1371 1372
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);