fw-sbp2.c 39.0 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/moduleparam.h>
S
Stefan Richter 已提交
34
#include <linux/mod_devicetable.h>
35
#include <linux/device.h>
A
Andrew Morton 已提交
36
#include <linux/scatterlist.h>
37
#include <linux/dma-mapping.h>
38
#include <linux/blkdev.h>
39
#include <linux/string.h>
40
#include <linux/stringify.h>
41
#include <linux/timer.h>
42
#include <linux/workqueue.h>
43
#include <asm/system.h>
44 45 46 47 48 49 50 51 52 53

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

54 55 56 57 58 59 60 61 62 63 64 65
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

106
/* I don't know why the SCSI stack doesn't define something like this... */
107
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
108 109 110

static const char sbp2_driver_name[] = "sbp2";

111 112 113 114 115 116 117 118
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
	struct scsi_device *sdev;
119 120
	struct fw_address_handler address_handler;
	struct list_head orb_list;
121

122
	u64 command_block_agent_address;
123
	u16 lun;
124 125
	int login_id;

126
	/*
127 128 129 130
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
131
	 */
132
	int generation;
133 134
	int retries;
	struct delayed_work work;
135 136
};

137 138 139 140 141 142 143
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;
144
	struct list_head lu_list;
145 146 147 148 149

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;
150
	unsigned int workarounds;
151
	unsigned int mgt_orb_timeout;
152 153
};

154 155
/*
 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
156 157
 * provided in the config rom. Most devices do provide a value, which
 * we'll use for login management orbs, but with some sane limits.
158
 */
159 160
#define SBP2_MIN_LOGIN_ORB_TIMEOUT	5000U	/* Timeout in ms */
#define SBP2_MAX_LOGIN_ORB_TIMEOUT	40000U	/* Timeout in ms */
161
#define SBP2_ORB_TIMEOUT		2000U	/* Timeout in ms */
162
#define SBP2_ORB_NULL			0x80000000
163
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
164 165 166 167 168

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
169
#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
170 171 172
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

198 199 200 201 202 203 204 205
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
206 207 208 209 210 211 212 213 214 215 216 217 218 219

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
220
	struct kref kref;
221 222 223
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
224
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
225 226 227
	struct list_head link;
};

228 229 230
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
231
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
232 233
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
234

235 236
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

253 254
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
255 256 257 258 259 260

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
261 262 263 264 265 266 267 268
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
269 270 271 272 273 274 275 276 277 278 279

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
280
	struct sbp2_logical_unit *lu;
281

282
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
298
	unsigned int workarounds;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
316 317 318

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
319 320
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
321 322 323
	 * could change due to Apple-supplied firmware updates though.
	 */

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

341 342 343 344 345 346 347 348
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

349 350 351 352 353 354 355
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
356
	struct sbp2_logical_unit *lu = callback_data;
357 358 359 360 361 362
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
363
	    length == 0 || length > sizeof(status)) {
364 365 366 367 368 369 370 371
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
372
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
373 374 375 376 377 378 379
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
380
	list_for_each_entry(orb, &lu->orb_list, link) {
381
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
382 383
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
384 385 386 387 388 389
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

390
	if (&orb->link != &lu->orb_list)
391 392 393 394
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

395 396
	kref_put(&orb->kref, free_orb);

397 398 399 400 401 402 403 404 405 406
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

407 408 409 410 411 412 413 414 415 416 417 418 419 420
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
421
		list_del(&orb->link);
422
		spin_unlock_irqrestore(&card->lock, flags);
423
		orb->callback(orb, NULL);
424 425
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
426
	}
427 428

	kref_put(&orb->kref, free_orb);
429 430 431
}

static void
432
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
433 434
	      int node_id, int generation, u64 offset)
{
435
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
436 437 438 439
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
440
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
441 442

	spin_lock_irqsave(&device->card->lock, flags);
443
	list_add_tail(&orb->link, &lu->orb_list);
444 445
	spin_unlock_irqrestore(&device->card->lock, flags);

446 447 448 449
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

450
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
451
			node_id, generation, device->max_speed, offset,
452
			&orb->pointer, sizeof(orb->pointer),
453 454 455
			complete_transaction, orb);
}

456
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
457
{
458
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
459 460 461
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
462
	int retval = -ENOENT;
463 464 465

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
466
	list_splice_init(&lu->orb_list, &list);
467 468 469
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
470
		retval = 0;
471 472 473
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

474 475 476 477
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

478
	return retval;
479 480
}

481 482 483 484
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
485
		container_of(base_orb, struct sbp2_management_orb, base);
486 487

	if (status)
488
		memcpy(&orb->status, status, sizeof(*status));
489 490 491 492
	complete(&orb->done);
}

static int
493 494 495
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
496
{
497
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
498
	struct sbp2_management_orb *orb;
499
	unsigned int timeout;
500 501
	int retval = -ENOMEM;

502
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
503 504 505
	if (orb == NULL)
		return -ENOMEM;

506
	kref_init(&orb->base.kref);
507 508
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
509
			       sizeof(orb->response), DMA_FROM_DEVICE);
510
	if (dma_mapping_error(orb->response_bus))
511
		goto fail_mapping_response;
512 513 514 515 516

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
517 518
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
519
		MANAGEMENT_ORB_LUN(lun_or_login_id);
520
	orb->request.length =
521
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
522

523 524
	orb->request.status_fifo.high = lu->address_handler.offset >> 32;
	orb->request.status_fifo.low  = lu->address_handler.offset;
525 526

	if (function == SBP2_LOGIN_REQUEST) {
527
		/* Ask for 2^2 == 4 seconds reconnect grace period */
528
		orb->request.misc |=
529 530
			MANAGEMENT_ORB_RECONNECT(2) |
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
531
		timeout = lu->tgt->mgt_orb_timeout;
532 533
	} else {
		timeout = SBP2_ORB_TIMEOUT;
534 535
	}

536
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
537 538 539

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
540

541 542 543 544 545 546
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

547 548
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
549

550
	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
551 552

	retval = -EIO;
553
	if (sbp2_cancel_orbs(lu) == 0) {
554
		fw_error("orb reply timed out, rcode=0x%02x\n",
555 556 557 558
			 orb->base.rcode);
		goto out;
	}

559 560
	if (orb->base.rcode != RCODE_COMPLETE) {
		fw_error("management write failed, rcode 0x%02x\n",
561 562 563 564
			 orb->base.rcode);
		goto out;
	}

565 566
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
567
		fw_error("error status: %d:%d\n",
568 569
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
570 571 572 573 574 575
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
576
			 sizeof(orb->request), DMA_TO_DEVICE);
577
 fail_mapping_request:
578
	dma_unmap_single(device->card->device, orb->response_bus,
579
			 sizeof(orb->response), DMA_FROM_DEVICE);
580
 fail_mapping_response:
581 582
	if (response)
		fw_memcpy_from_be32(response,
583
				    orb->response, sizeof(orb->response));
584
	kref_put(&orb->base.kref, free_orb);
585 586 587 588 589 590 591 592 593 594 595 596 597

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
			   void *payload, size_t length, void *data)
{
	struct fw_transaction *t = data;

	kfree(t);
}

598
static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
599
{
600
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
601 602 603
	struct fw_transaction *t;
	static u32 zero;

604
	t = kzalloc(sizeof(*t), GFP_ATOMIC);
605 606 607 608
	if (t == NULL)
		return -ENOMEM;

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
609 610
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
611
			&zero, sizeof(zero), complete_agent_reset_write, t);
612 613 614 615

	return 0;
}

616
static void sbp2_release_target(struct kref *kref)
617
{
618 619 620 621
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
622
	struct fw_device *device = fw_device(tgt->unit->device.parent);
623 624 625 626 627

	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
		if (lu->sdev)
			scsi_remove_device(lu->sdev);

628 629 630 631 632
		if (!fw_device_is_shutdown(device))
			sbp2_send_management_orb(lu, tgt->node_id,
					lu->generation, SBP2_LOGOUT_REQUEST,
					lu->login_id, NULL);

633 634 635 636 637 638 639 640 641
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
	fw_notify("released %s\n", tgt->unit->device.bus_id);

	put_device(&tgt->unit->device);
	scsi_host_put(shost);
642 643
}

644 645
static struct workqueue_struct *sbp2_wq;

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/*
 * Always get the target's kref when scheduling work on one its units.
 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 */
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	if (queue_delayed_work(sbp2_wq, &lu->work, delay))
		kref_get(&lu->tgt->kref);
}

static void sbp2_target_put(struct sbp2_target *tgt)
{
	kref_put(&tgt->kref, sbp2_release_target);
}

661 662
static void sbp2_reconnect(struct work_struct *work);

663 664
static void sbp2_login(struct work_struct *work)
{
665 666 667 668 669 670 671
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct Scsi_Host *shost =
		container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
	struct scsi_device *sdev;
	struct scsi_lun eight_bytes_lun;
	struct fw_unit *unit = lu->tgt->unit;
672 673
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_login_response response;
674
	int generation, node_id, local_node_id;
675

676
	generation    = device->generation;
677
	smp_rmb();    /* node_id must not be older than generation */
678 679
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
680

681 682
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
683 684 685
		if (lu->retries++ < 5)
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		else
686 687
			fw_error("failed to login to %s LUN %04x\n",
				 unit->device.bus_id, lu->lun);
688
		goto out;
689 690
	}

691 692 693
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
694 695

	/* Get command block agent offset and login id. */
696
	lu->command_block_agent_address =
697
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
698
		response.command_block_agent.low;
699
	lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
700

701 702
	fw_notify("logged in to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);
703 704 705 706 707 708

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

709 710 711 712 713 714
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
715

716 717 718
	sdev = __scsi_add_device(shost, 0, 0,
				 scsilun_to_int(&eight_bytes_lun), lu);
	if (IS_ERR(sdev)) {
719 720 721 722 723
		smp_rmb(); /* generation may have changed */
		generation = device->generation;
		smp_rmb(); /* node_id must not be older than generation */

		sbp2_send_management_orb(lu, device->node_id, generation,
724
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
725 726 727 728
		/*
		 * Set this back to sbp2_login so we fall back and
		 * retry login on bus reset.
		 */
729 730 731 732
		PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
	} else {
		lu->sdev = sdev;
		scsi_device_put(sdev);
733
	}
734 735
 out:
	sbp2_target_put(lu->tgt);
736
}
737

738
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
739
{
740
	struct sbp2_logical_unit *lu;
741

742 743 744
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
745

746 747 748
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
749

750 751 752 753 754
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
755

756 757 758 759 760 761
	lu->tgt  = tgt;
	lu->sdev = NULL;
	lu->lun  = lun_entry & 0xffff;
	lu->retries = 0;
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
762

763 764 765
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
766

767 768 769 770
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
771

772 773 774 775 776 777 778 779 780 781 782 783 784
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;
785
	unsigned int timeout;
786 787

	fw_csr_iterator_init(&ci, directory);
788 789
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
790

791
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
792 793
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
794
			break;
795 796 797

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
798
			break;
799

800
		case CSR_MODEL:
801 802 803 804 805 806 807
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
		case SBP2_CSR_UNIT_CHARACTERISTICS:
			/* the timeout value is stored in 500ms units */
			timeout = ((unsigned int) value >> 8 & 0xff) * 500;
			timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
			tgt->mgt_orb_timeout =
				  min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);

			if (timeout > tgt->mgt_orb_timeout)
				fw_notify("%s: config rom contains %ds "
					  "management ORB timeout, limiting "
					  "to %ds\n", tgt->unit->device.bus_id,
					  timeout / 1000,
					  tgt->mgt_orb_timeout / 1000);
			break;

823 824 825 826 827 828 829 830
		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
831 832 833
			break;
		}
	}
834 835 836 837 838 839 840
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
841
	unsigned int w = sbp2_param_workarounds;
842 843 844 845 846

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
			  tgt->unit->device.bus_id);
847

848 849
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
850 851

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
852

853 854 855
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
856

857 858 859
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
860

861
		w |= sbp2_workarounds_table[i].workarounds;
862 863
		break;
	}
864 865
 out:
	if (w)
866
		fw_notify("Workarounds for %s: 0x%x "
867
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
868
			  tgt->unit->device.bus_id,
869 870
			  w, firmware_revision, model);
	tgt->workarounds = w;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
913

914 915
	get_device(&unit->device);

916
	/* Do the login in a workqueue so we can easily reschedule retries. */
917
	list_for_each_entry(lu, &tgt->lu_list, link)
918
		sbp2_queue_work(lu, 0);
919
	return 0;
920

921
 fail_tgt_put:
922
	sbp2_target_put(tgt);
923 924 925 926 927
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
928 929 930 931 932
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
933
	struct sbp2_target *tgt = unit->device.driver_data;
934

935
	sbp2_target_put(tgt);
936 937 938 939 940
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
941 942 943
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
	struct fw_unit *unit = lu->tgt->unit;
944 945 946
	struct fw_device *device = fw_device(unit->device.parent);
	int generation, node_id, local_node_id;

947
	generation    = device->generation;
948
	smp_rmb();    /* node_id must not be older than generation */
949 950
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
951

952
	if (sbp2_send_management_orb(lu, node_id, generation,
953
				     SBP2_RECONNECT_REQUEST,
954 955
				     lu->login_id, NULL) < 0) {
		if (lu->retries++ >= 5) {
956 957 958
			fw_error("failed to reconnect to %s\n",
				 unit->device.bus_id);
			/* Fall back and try to log in again. */
959 960
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
961
		}
962 963
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		goto out;
964
	}
965

966 967 968
	lu->generation        = generation;
	lu->tgt->node_id      = node_id;
	lu->tgt->address_high = local_node_id << 16;
969

970 971 972 973 974
	fw_notify("reconnected to %s LUN %04x (%d retries)\n",
		  unit->device.bus_id, lu->lun, lu->retries);

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
975 976
 out:
	sbp2_target_put(lu->tgt);
977 978 979 980
}

static void sbp2_update(struct fw_unit *unit)
{
981 982
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
983

984 985 986 987 988 989 990 991
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
		lu->retries = 0;
992
		sbp2_queue_work(lu, 0);
993
	}
994 995 996 997 998
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

999
static const struct fw_device_id sbp2_id_table[] = {
1000 1001 1002
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1003
		.version      = SBP2_SW_VERSION_ENTRY,
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

1020 1021
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1022
{
1023 1024
	int sam_status;

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1042
	sam_status = sbp2_status[0] & 0x3f;
1043

1044 1045
	switch (sam_status) {
	case SAM_STAT_GOOD:
1046 1047
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1048
	case SAM_STAT_BUSY:
1049 1050
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1051 1052
		return DID_OK << 16 | sam_status;

1053
	default:
1054
		return DID_ERROR << 16;
1055 1056 1057 1058 1059 1060
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1061 1062
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1063
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1064 1065 1066
	int result;

	if (status != NULL) {
1067
		if (STATUS_GET_DEAD(*status))
1068
			sbp2_agent_reset(orb->lu);
1069

1070
		switch (STATUS_GET_RESPONSE(*status)) {
1071
		case SBP2_STATUS_REQUEST_COMPLETE:
1072
			result = DID_OK << 16;
1073 1074
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1075
			result = DID_BUS_BUSY << 16;
1076 1077 1078 1079
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1080
			result = DID_ERROR << 16;
1081 1082 1083
			break;
		}

1084 1085
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1086 1087
							   orb->cmd->sense_buffer);
	} else {
1088 1089
		/*
		 * If the orb completes with status == NULL, something
1090
		 * went wrong, typically a bus reset happened mid-orb
1091 1092
		 * or when sending the write (less likely).
		 */
1093
		result = DID_BUS_BUSY << 16;
1094 1095 1096
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1097
			 sizeof(orb->request), DMA_TO_DEVICE);
1098

1099 1100 1101
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1102 1103 1104 1105
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1106
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1107

1108
	orb->cmd->result = result;
1109 1110 1111
	orb->done(orb->cmd);
}

1112 1113 1114
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1115 1116 1117 1118 1119
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1120 1121
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1122
			   orb->cmd->sc_data_direction);
1123 1124
	if (count == 0)
		goto fail;
1125

1126 1127
	/*
	 * Handle the special case where there is only one element in
1128 1129 1130
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1131 1132
	 * tables.
	 */
1133
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1134
		orb->request.data_descriptor.high = lu->tgt->address_high;
1135
		orb->request.data_descriptor.low  = sg_dma_address(sg);
1136
		orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1137
		return 0;
1138 1139
	}

1140 1141
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1142 1143 1144 1145
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1146
	 */
1147 1148 1149
	for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
		sg_len = sg_dma_len(sg);
		sg_addr = sg_dma_address(sg);
1150
		while (sg_len) {
1151 1152 1153 1154 1155
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1156 1157 1158 1159 1160 1161 1162 1163 1164
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1165 1166 1167 1168 1169 1170 1171
	fw_memcpy_to_be32(orb->page_table, orb->page_table,
			  sizeof(orb->page_table[0]) * j);
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1172

1173 1174
	/*
	 * The data_descriptor pointer is the one case where we need
1175 1176 1177
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1178 1179
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1180
	orb->request.data_descriptor.high = lu->tgt->address_high;
1181 1182
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
1183 1184
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
1185

1186 1187 1188
	return 0;

 fail_page_table:
1189
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1190 1191 1192
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1193 1194 1195 1196 1197 1198
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1199 1200
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1201
	struct sbp2_command_orb *orb;
1202
	unsigned int max_payload;
1203
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1204

1205 1206 1207 1208
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1209
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1210
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1211 1212 1213
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1214 1215
	}

1216
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1217 1218
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1219
		return SCSI_MLQUEUE_HOST_BUSY;
1220 1221
	}

1222 1223
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1224
	kref_init(&orb->base.kref);
1225

1226
	orb->lu   = lu;
1227 1228 1229 1230 1231
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1232 1233
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1234 1235
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1236 1237
	 * if we set this to max_speed + 7, we get the right value.
	 */
1238 1239
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1240
	orb->request.misc =
1241
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1242
		COMMAND_ORB_SPEED(device->max_speed) |
1243
		COMMAND_ORB_NOTIFY;
1244 1245 1246

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1247
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1248 1249
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1250
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1251

1252 1253
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1254

1255
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1256 1257

	memset(orb->request.command_block,
1258
	       0, sizeof(orb->request.command_block));
1259 1260 1261
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1262 1263 1264 1265
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1266
		goto out;
1267

1268 1269 1270 1271
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1272
	kref_put(&orb->base.kref, free_orb);
1273
	return retval;
1274 1275
}

1276 1277
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1278
	struct sbp2_logical_unit *lu = sdev->hostdata;
1279 1280 1281

	sdev->allow_restart = 1;

1282 1283 1284 1285 1286 1287
	/*
	 * Update the dma alignment (minimum alignment requirements for
	 * start and end of DMA transfers) to be a sector
	 */
	blk_queue_update_dma_alignment(sdev->request_queue, 511);

1288
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1289
		sdev->inquiry_len = 36;
1290

1291 1292 1293
	return 0;
}

1294 1295
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1296
	struct sbp2_logical_unit *lu = sdev->hostdata;
1297

1298 1299 1300 1301
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1302

1303
	if (sdev->type == TYPE_DISK &&
1304
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1305
		sdev->skip_ms_page_8 = 1;
1306 1307

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1308
		sdev->fix_capacity = 1;
1309 1310

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1311
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1322
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1323 1324

	fw_notify("sbp2_scsi_abort\n");
1325 1326
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1327 1328 1329 1330

	return SUCCESS;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1343
	struct sbp2_logical_unit *lu;
1344 1345 1346 1347 1348
	struct fw_device *device;

	if (!sdev)
		return 0;

1349 1350
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1351 1352 1353

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1354
			lu->tgt->directory_id, lu->lun);
1355 1356 1357 1358 1359 1360 1361 1362 1363
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1364 1365 1366
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1367
	.proc_name		= sbp2_driver_name,
1368
	.queuecommand		= sbp2_scsi_queuecommand,
1369
	.slave_alloc		= sbp2_scsi_slave_alloc,
1370 1371 1372 1373 1374
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1375 1376
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1377
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1378 1379 1380 1381 1382 1383 1384
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1385 1386 1387 1388 1389
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1390 1391
static int __init sbp2_init(void)
{
1392 1393 1394 1395
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1396 1397 1398 1399 1400 1401
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1402
	destroy_workqueue(sbp2_wq);
1403 1404 1405 1406
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);