fw-sbp2.c 46.4 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32 33 34
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
35
#include <linux/kernel.h>
36
#include <linux/mod_devicetable.h>
37
#include <linux/module.h>
38
#include <linux/moduleparam.h>
A
Andrew Morton 已提交
39
#include <linux/scatterlist.h>
40
#include <linux/string.h>
41
#include <linux/stringify.h>
42
#include <linux/timer.h>
43
#include <linux/workqueue.h>
44
#include <asm/system.h>
45 46 47 48 49 50 51

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-device.h"
52 53
#include "fw-topology.h"
#include "fw-transaction.h"
54

55 56 57 58 59 60 61 62 63 64 65 66
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
86 87 88
 * - delay inquiry
 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
 *
89 90 91 92 93 94 95 96 97
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
98 99
#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
#define SBP2_INQUIRY_DELAY		12
100 101 102 103 104 105 106 107 108
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109
	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 111 112
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

113
/* I don't know why the SCSI stack doesn't define something like this... */
114
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115 116 117

static const char sbp2_driver_name[] = "sbp2";

118 119 120 121 122 123 124
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
125 126
	struct fw_address_handler address_handler;
	struct list_head orb_list;
127

128
	u64 command_block_agent_address;
129
	u16 lun;
130 131
	int login_id;

132
	/*
133 134 135 136
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
137
	 */
138
	int generation;
139 140
	int retries;
	struct delayed_work work;
141
	bool has_sdev;
142
	bool blocked;
143 144
};

145 146 147 148 149 150 151
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;
152
	const char *bus_id;
153
	struct list_head lu_list;
154 155 156 157 158

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;
159
	unsigned int workarounds;
160
	unsigned int mgt_orb_timeout;
161 162 163

	int dont_block;	/* counter for each logical unit */
	int blocked;	/* ditto */
164 165
};

166 167
/*
 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168 169
 * provided in the config rom. Most devices do provide a value, which
 * we'll use for login management orbs, but with some sane limits.
170
 */
171 172
#define SBP2_MIN_LOGIN_ORB_TIMEOUT	5000U	/* Timeout in ms */
#define SBP2_MAX_LOGIN_ORB_TIMEOUT	40000U	/* Timeout in ms */
173
#define SBP2_ORB_TIMEOUT		2000U	/* Timeout in ms */
174
#define SBP2_ORB_NULL			0x80000000
175
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
176
#define SBP2_RETRY_LIMIT		0xf	/* 15 retries */
177 178 179 180 181

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
182
#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
183 184 185
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

211 212 213 214 215 216 217 218
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
219 220 221 222 223 224 225 226 227 228 229 230 231 232

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
233
	struct kref kref;
234 235 236
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
237
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
238 239 240
	struct list_head link;
};

241 242 243
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
244
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
245 246
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
247

248 249
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

266 267
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
268 269 270 271 272 273

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
274 275 276 277 278 279 280 281
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
282 283 284 285 286 287 288 289 290 291 292

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
293
	struct sbp2_logical_unit *lu;
294

295
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
311
	unsigned int workarounds;
312 313 314 315 316 317 318
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
319 320 321 322 323
	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x000000,
		.workarounds		= SBP2_WORKAROUND_DELAY_INQUIRY,
	},
324 325 326 327 328 329 330 331 332 333
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
334 335 336 337 338
	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
		.firmware_revision	= 0x002600,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
339 340 341

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
342 343
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
344 345 346
	 * could change due to Apple-supplied firmware updates though.
	 */

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

364 365 366 367 368 369 370 371
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

372 373 374 375 376 377 378
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
379
	struct sbp2_logical_unit *lu = callback_data;
380 381 382 383 384 385
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
386
	    length == 0 || length > sizeof(status)) {
387 388 389 390 391 392 393 394
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
395
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
396 397 398 399 400 401 402
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
403
	list_for_each_entry(orb, &lu->orb_list, link) {
404
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
405 406
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
407 408 409 410 411 412
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

413
	if (&orb->link != &lu->orb_list)
414 415 416 417
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

418 419
	kref_put(&orb->kref, free_orb);

420 421 422 423 424 425 426 427 428 429
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

430 431 432 433 434 435 436 437 438 439 440 441 442 443
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
444
		list_del(&orb->link);
445
		spin_unlock_irqrestore(&card->lock, flags);
446
		orb->callback(orb, NULL);
447 448
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
449
	}
450 451

	kref_put(&orb->kref, free_orb);
452 453 454
}

static void
455
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
456 457
	      int node_id, int generation, u64 offset)
{
458
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
459 460 461 462
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
463
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
464 465

	spin_lock_irqsave(&device->card->lock, flags);
466
	list_add_tail(&orb->link, &lu->orb_list);
467 468
	spin_unlock_irqrestore(&device->card->lock, flags);

469 470 471 472
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

473
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
474
			node_id, generation, device->max_speed, offset,
475
			&orb->pointer, sizeof(orb->pointer),
476 477 478
			complete_transaction, orb);
}

479
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
480
{
481
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
482 483 484
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
485
	int retval = -ENOENT;
486 487 488

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
489
	list_splice_init(&lu->orb_list, &list);
490 491 492
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
493
		retval = 0;
494 495 496
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

497 498 499 500
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

501
	return retval;
502 503
}

504 505 506 507
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
508
		container_of(base_orb, struct sbp2_management_orb, base);
509 510

	if (status)
511
		memcpy(&orb->status, status, sizeof(*status));
512 513 514 515
	complete(&orb->done);
}

static int
516 517 518
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
519
{
520
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
521
	struct sbp2_management_orb *orb;
522
	unsigned int timeout;
523 524
	int retval = -ENOMEM;

525 526 527
	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
		return 0;

528
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
529 530 531
	if (orb == NULL)
		return -ENOMEM;

532
	kref_init(&orb->base.kref);
533 534
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
535
			       sizeof(orb->response), DMA_FROM_DEVICE);
536
	if (dma_mapping_error(orb->response_bus))
537
		goto fail_mapping_response;
538 539 540 541 542

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
543 544
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
545
		MANAGEMENT_ORB_LUN(lun_or_login_id);
546
	orb->request.length =
547
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
548

549 550
	orb->request.status_fifo.high = lu->address_handler.offset >> 32;
	orb->request.status_fifo.low  = lu->address_handler.offset;
551 552

	if (function == SBP2_LOGIN_REQUEST) {
553
		/* Ask for 2^2 == 4 seconds reconnect grace period */
554
		orb->request.misc |=
555 556
			MANAGEMENT_ORB_RECONNECT(2) |
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
557
		timeout = lu->tgt->mgt_orb_timeout;
558 559
	} else {
		timeout = SBP2_ORB_TIMEOUT;
560 561
	}

562
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
563 564 565

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
566

567 568 569 570 571 572
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

573 574
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
575

576
	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
577 578

	retval = -EIO;
579
	if (sbp2_cancel_orbs(lu) == 0) {
580 581
		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
582 583 584
		goto out;
	}

585
	if (orb->base.rcode != RCODE_COMPLETE) {
586 587
		fw_error("%s: management write failed, rcode 0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
588 589 590
		goto out;
	}

591 592
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
593
		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
594 595
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
596 597 598 599 600 601
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
602
			 sizeof(orb->request), DMA_TO_DEVICE);
603
 fail_mapping_request:
604
	dma_unmap_single(device->card->device, orb->response_bus,
605
			 sizeof(orb->response), DMA_FROM_DEVICE);
606
 fail_mapping_response:
607 608
	if (response)
		fw_memcpy_from_be32(response,
609
				    orb->response, sizeof(orb->response));
610
	kref_put(&orb->base.kref, free_orb);
611 612 613 614 615 616

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
617
			   void *payload, size_t length, void *done)
618
{
619 620 621 622 623 624 625 626 627
	complete(done);
}

static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
{
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
	DECLARE_COMPLETION_ONSTACK(done);
	struct fw_transaction t;
	static u32 z;
628

629 630 631 632 633
	fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
			&z, sizeof(z), complete_agent_reset_write, &done);
	wait_for_completion(&done);
634 635
}

636 637 638 639 640 641 642 643
static void
complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
				   void *payload, size_t length, void *data)
{
	kfree(data);
}

static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
644
{
645
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
646
	struct fw_transaction *t;
647
	static u32 z;
648

649
	t = kmalloc(sizeof(*t), GFP_ATOMIC);
650
	if (t == NULL)
651
		return;
652 653

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
654 655
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
656
			&z, sizeof(z), complete_agent_reset_write_no_wait, t);
657 658
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
{
	struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
	unsigned long flags;

	/* serialize with comparisons of lu->generation and card->generation */
	spin_lock_irqsave(&card->lock, flags);
	lu->generation = generation;
	spin_unlock_irqrestore(&card->lock, flags);
}

static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
{
	/*
	 * We may access dont_block without taking card->lock here:
	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
	 * are currently serialized against each other.
	 * And a wrong result in sbp2_conditionally_block()'s access of
	 * dont_block is rather harmless, it simply misses its first chance.
	 */
	--lu->tgt->dont_block;
}

/*
 * Blocks lu->tgt if all of the following conditions are met:
 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 *     logical units have been finished (indicated by dont_block == 0).
 *   - lu->generation is stale.
 *
 * Note, scsi_block_requests() must be called while holding card->lock,
 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 * unblock the target.
 */
static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (!tgt->dont_block && !lu->blocked &&
	    lu->generation != card->generation) {
		lu->blocked = true;
		if (++tgt->blocked == 1) {
			scsi_block_requests(shost);
			fw_notify("blocked %s\n", lu->tgt->bus_id);
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);
}

/*
 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;
	bool unblock = false;

	spin_lock_irqsave(&card->lock, flags);
	if (lu->blocked && lu->generation == card->generation) {
		lu->blocked = false;
		unblock = --tgt->blocked == 0;
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (unblock) {
		scsi_unblock_requests(shost);
		fw_notify("unblocked %s\n", lu->tgt->bus_id);
	}
}

/*
 * Prevents future blocking of tgt and unblocks it.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_unblock(struct sbp2_target *tgt)
{
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	++tgt->dont_block;
	spin_unlock_irqrestore(&card->lock, flags);

	scsi_unblock_requests(shost);
}

760 761 762 763 764 765 766 767 768 769 770
static int sbp2_lun2int(u16 lun)
{
	struct scsi_lun eight_bytes_lun;

	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lun & 0xff;

	return scsilun_to_int(&eight_bytes_lun);
}

771
static void sbp2_release_target(struct kref *kref)
772
{
773 774 775 776
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
777
	struct scsi_device *sdev;
778
	struct fw_device *device = fw_device(tgt->unit->device.parent);
779

780 781 782
	/* prevent deadlocks */
	sbp2_unblock(tgt);

783
	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
784 785 786 787
		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
		if (sdev) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
788
		}
789 790
		sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
791

792 793 794 795 796
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
797
	fw_notify("released %s\n", tgt->bus_id);
798 799 800

	put_device(&tgt->unit->device);
	scsi_host_put(shost);
801
	fw_device_put(device);
802 803
}

804 805
static struct workqueue_struct *sbp2_wq;

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
/*
 * Always get the target's kref when scheduling work on one its units.
 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 */
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	if (queue_delayed_work(sbp2_wq, &lu->work, delay))
		kref_get(&lu->tgt->kref);
}

static void sbp2_target_put(struct sbp2_target *tgt)
{
	kref_put(&tgt->kref, sbp2_release_target);
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static void
complete_set_busy_timeout(struct fw_card *card, int rcode,
			  void *payload, size_t length, void *done)
{
	complete(done);
}

static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
{
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
	DECLARE_COMPLETION_ONSTACK(done);
	struct fw_transaction t;
	static __be32 busy_timeout;

	/* FIXME: we should try to set dual-phase cycle_limit too */
	busy_timeout = cpu_to_be32(SBP2_RETRY_LIMIT);

	fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
			lu->tgt->node_id, lu->generation, device->max_speed,
			CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &busy_timeout,
			sizeof(busy_timeout), complete_set_busy_timeout, &done);
	wait_for_completion(&done);
}

845 846
static void sbp2_reconnect(struct work_struct *work);

847 848
static void sbp2_login(struct work_struct *work)
{
849 850
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
851 852 853
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
	struct Scsi_Host *shost;
854
	struct scsi_device *sdev;
855
	struct sbp2_login_response response;
856
	int generation, node_id, local_node_id;
857

858 859 860
	if (fw_device_is_shutdown(device))
		goto out;

861
	generation    = device->generation;
862
	smp_rmb();    /* node_id must not be older than generation */
863 864
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
865

866
	/* If this is a re-login attempt, log out, or we might be rejected. */
867
	if (lu->has_sdev)
868 869 870
		sbp2_send_management_orb(lu, device->node_id, generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);

871 872
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
873
		if (lu->retries++ < 5) {
874
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
875
		} else {
876 877
			fw_error("%s: failed to login to LUN %04x\n",
				 tgt->bus_id, lu->lun);
878 879 880
			/* Let any waiting I/O fail from now on. */
			sbp2_unblock(lu->tgt);
		}
881
		goto out;
882 883
	}

884 885
	tgt->node_id	  = node_id;
	tgt->address_high = local_node_id << 16;
886
	sbp2_set_generation(lu, generation);
887 888

	/* Get command block agent offset and login id. */
889
	lu->command_block_agent_address =
890
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
891
		response.command_block_agent.low;
892
	lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
893

894 895
	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
896

897 898
	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
	sbp2_set_busy_timeout(lu);
899

900 901 902
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

903
	/* This was a re-login. */
904
	if (lu->has_sdev) {
905
		sbp2_cancel_orbs(lu);
906
		sbp2_conditionally_unblock(lu);
907 908 909
		goto out;
	}

910 911 912
	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
		ssleep(SBP2_INQUIRY_DELAY);

913
	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
914
	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
915 916 917 918 919 920 921
	/*
	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
	 * Therefore __scsi_add_device() will get into trouble if a bus reset
	 * happens in parallel.  It will either fail or leave us with an
	 * unusable sdev.  As a workaround we check for this and retry the
	 * whole login and SCSI probing.
	 */
922

923 924 925 926 927 928 929 930
	/* Reported error during __scsi_add_device() */
	if (IS_ERR(sdev))
		goto out_logout_login;

	/* Unreported error during __scsi_add_device() */
	smp_rmb(); /* get current card generation */
	if (generation != device->card->generation) {
		scsi_remove_device(sdev);
931
		scsi_device_put(sdev);
932
		goto out_logout_login;
933
	}
934 935

	/* No error during __scsi_add_device() */
936 937
	lu->has_sdev = true;
	scsi_device_put(sdev);
938
	sbp2_allow_block(lu);
939 940 941 942 943 944 945 946 947 948 949 950 951 952
	goto out;

 out_logout_login:
	smp_rmb(); /* generation may have changed */
	generation = device->generation;
	smp_rmb(); /* node_id must not be older than generation */

	sbp2_send_management_orb(lu, device->node_id, generation,
				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
	/*
	 * If a bus reset happened, sbp2_update will have requeued
	 * lu->work already.  Reset the work from reconnect to login.
	 */
	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
953
 out:
954
	sbp2_target_put(tgt);
955
}
956

957
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
958
{
959
	struct sbp2_logical_unit *lu;
960

961 962 963
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
964

965 966 967
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
968

969 970 971 972 973
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
974

975 976 977 978 979
	lu->tgt      = tgt;
	lu->lun      = lun_entry & 0xffff;
	lu->retries  = 0;
	lu->has_sdev = false;
	lu->blocked  = false;
980
	++tgt->dont_block;
981 982
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
983

984 985 986
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
987

988 989 990 991
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;
1006
	unsigned int timeout;
1007 1008

	fw_csr_iterator_init(&ci, directory);
1009 1010
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
1011

1012
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1013 1014
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
1015
			break;
1016 1017 1018

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
1019
			break;
1020

1021
		case CSR_MODEL:
1022 1023 1024 1025 1026 1027 1028
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
		case SBP2_CSR_UNIT_CHARACTERISTICS:
			/* the timeout value is stored in 500ms units */
			timeout = ((unsigned int) value >> 8 & 0xff) * 500;
			timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
			tgt->mgt_orb_timeout =
				  min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);

			if (timeout > tgt->mgt_orb_timeout)
				fw_notify("%s: config rom contains %ds "
					  "management ORB timeout, limiting "
1039
					  "to %ds\n", tgt->bus_id,
1040 1041 1042 1043
					  timeout / 1000,
					  tgt->mgt_orb_timeout / 1000);
			break;

1044 1045 1046 1047 1048 1049 1050 1051
		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
1052 1053 1054
			break;
		}
	}
1055 1056 1057 1058 1059 1060 1061
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
1062
	unsigned int w = sbp2_param_workarounds;
1063 1064 1065 1066

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
1067
			  tgt->bus_id);
1068

1069 1070
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
1071 1072

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1073

1074 1075 1076
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
1077

1078 1079 1080
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
1081

1082
		w |= sbp2_workarounds_table[i].workarounds;
1083 1084
		break;
	}
1085 1086
 out:
	if (w)
1087
		fw_notify("Workarounds for %s: 0x%x "
1088
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1089
			  tgt->bus_id, w, firmware_revision, model);
1090
	tgt->workarounds = w;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);
1113
	tgt->bus_id = unit->device.bus_id;
1114 1115 1116 1117 1118 1119 1120

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

1121
	fw_device_get(device);
1122
	get_device(&unit->device);
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
1137

1138
	/* Do the login in a workqueue so we can easily reschedule retries. */
1139
	list_for_each_entry(lu, &tgt->lu_list, link)
1140
		sbp2_queue_work(lu, 0);
1141
	return 0;
1142

1143
 fail_tgt_put:
1144
	sbp2_target_put(tgt);
1145 1146 1147 1148 1149
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
1150 1151 1152 1153 1154
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
1155
	struct sbp2_target *tgt = unit->device.driver_data;
1156

1157
	sbp2_target_put(tgt);
1158 1159 1160 1161 1162
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
1163 1164
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
1165 1166
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
1167 1168
	int generation, node_id, local_node_id;

1169 1170 1171
	if (fw_device_is_shutdown(device))
		goto out;

1172
	generation    = device->generation;
1173
	smp_rmb();    /* node_id must not be older than generation */
1174 1175
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
1176

1177
	if (sbp2_send_management_orb(lu, node_id, generation,
1178
				     SBP2_RECONNECT_REQUEST,
1179
				     lu->login_id, NULL) < 0) {
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		/*
		 * If reconnect was impossible even though we are in the
		 * current generation, fall back and try to log in again.
		 *
		 * We could check for "Function rejected" status, but
		 * looking at the bus generation as simpler and more general.
		 */
		smp_rmb(); /* get current card generation */
		if (generation == device->card->generation ||
		    lu->retries++ >= 5) {
1190
			fw_error("%s: failed to reconnect\n", tgt->bus_id);
1191 1192
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1193
		}
1194 1195
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		goto out;
1196
	}
1197

1198 1199
	tgt->node_id      = node_id;
	tgt->address_high = local_node_id << 16;
1200
	sbp2_set_generation(lu, generation);
1201

1202 1203
	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
1204 1205 1206

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1207
	sbp2_conditionally_unblock(lu);
1208
 out:
1209
	sbp2_target_put(tgt);
1210 1211 1212 1213
}

static void sbp2_update(struct fw_unit *unit)
{
1214 1215
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
1216

1217 1218 1219 1220 1221 1222 1223
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
1224
		sbp2_conditionally_block(lu);
1225
		lu->retries = 0;
1226
		sbp2_queue_work(lu, 0);
1227
	}
1228 1229 1230 1231 1232
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

1233
static const struct fw_device_id sbp2_id_table[] = {
1234 1235 1236
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1237
		.version      = SBP2_SW_VERSION_ENTRY,
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

1254 1255
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1256
{
1257 1258
	int sam_status;

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1276
	sam_status = sbp2_status[0] & 0x3f;
1277

1278 1279
	switch (sam_status) {
	case SAM_STAT_GOOD:
1280 1281
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1282
	case SAM_STAT_BUSY:
1283 1284
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1285 1286
		return DID_OK << 16 | sam_status;

1287
	default:
1288
		return DID_ERROR << 16;
1289 1290 1291 1292 1293 1294
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1295 1296
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1297
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1298 1299 1300
	int result;

	if (status != NULL) {
1301
		if (STATUS_GET_DEAD(*status))
1302
			sbp2_agent_reset_no_wait(orb->lu);
1303

1304
		switch (STATUS_GET_RESPONSE(*status)) {
1305
		case SBP2_STATUS_REQUEST_COMPLETE:
1306
			result = DID_OK << 16;
1307 1308
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1309
			result = DID_BUS_BUSY << 16;
1310 1311 1312 1313
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1314
			result = DID_ERROR << 16;
1315 1316 1317
			break;
		}

1318 1319
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1320 1321
							   orb->cmd->sense_buffer);
	} else {
1322 1323
		/*
		 * If the orb completes with status == NULL, something
1324
		 * went wrong, typically a bus reset happened mid-orb
1325 1326
		 * or when sending the write (less likely).
		 */
1327
		result = DID_BUS_BUSY << 16;
1328
		sbp2_conditionally_block(orb->lu);
1329 1330 1331
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1332
			 sizeof(orb->request), DMA_TO_DEVICE);
1333

1334 1335 1336
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1337 1338 1339 1340
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1341
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1342

1343
	orb->cmd->result = result;
1344 1345 1346
	orb->done(orb->cmd);
}

1347 1348 1349
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1350 1351 1352 1353 1354
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1355 1356
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1357
			   orb->cmd->sc_data_direction);
1358 1359
	if (count == 0)
		goto fail;
1360

1361 1362
	/*
	 * Handle the special case where there is only one element in
1363 1364 1365
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1366 1367
	 * tables.
	 */
1368
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1369
		orb->request.data_descriptor.high = lu->tgt->address_high;
1370
		orb->request.data_descriptor.low  = sg_dma_address(sg);
1371
		orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1372
		return 0;
1373 1374
	}

1375 1376
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1377 1378 1379 1380
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1381
	 */
1382 1383 1384
	for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
		sg_len = sg_dma_len(sg);
		sg_addr = sg_dma_address(sg);
1385
		while (sg_len) {
1386 1387 1388 1389 1390
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1391 1392 1393 1394 1395 1396 1397 1398 1399
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1400 1401 1402 1403 1404 1405 1406
	fw_memcpy_to_be32(orb->page_table, orb->page_table,
			  sizeof(orb->page_table[0]) * j);
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1407

1408 1409
	/*
	 * The data_descriptor pointer is the one case where we need
1410 1411 1412
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1413 1414
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1415
	orb->request.data_descriptor.high = lu->tgt->address_high;
1416 1417
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
1418 1419
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
1420

1421 1422 1423
	return 0;

 fail_page_table:
1424
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1425 1426 1427
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1428 1429 1430 1431 1432 1433
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1434 1435
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1436
	struct sbp2_command_orb *orb;
1437
	unsigned int max_payload;
1438
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1439

1440 1441 1442 1443
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1444
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1445
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1446 1447 1448
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1449 1450
	}

1451
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1452 1453
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1454
		return SCSI_MLQUEUE_HOST_BUSY;
1455 1456
	}

1457 1458
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1459
	kref_init(&orb->base.kref);
1460

1461
	orb->lu   = lu;
1462 1463 1464 1465 1466
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1467 1468
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1469 1470
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1471 1472
	 * if we set this to max_speed + 7, we get the right value.
	 */
1473 1474
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1475
	orb->request.misc =
1476
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1477
		COMMAND_ORB_SPEED(device->max_speed) |
1478
		COMMAND_ORB_NOTIFY;
1479 1480 1481

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1482
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1483 1484
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1485
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1486

1487 1488
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1489

1490
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1491 1492

	memset(orb->request.command_block,
1493
	       0, sizeof(orb->request.command_block));
1494 1495 1496
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1497 1498 1499 1500
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1501
		goto out;
1502

1503 1504 1505 1506
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1507
	kref_put(&orb->base.kref, free_orb);
1508
	return retval;
1509 1510
}

1511 1512
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1513
	struct sbp2_logical_unit *lu = sdev->hostdata;
1514

1515 1516 1517 1518
	/* (Re-)Adding logical units via the SCSI stack is not supported. */
	if (!lu)
		return -ENOSYS;

1519 1520
	sdev->allow_restart = 1;

1521 1522 1523 1524 1525 1526
	/*
	 * Update the dma alignment (minimum alignment requirements for
	 * start and end of DMA transfers) to be a sector
	 */
	blk_queue_update_dma_alignment(sdev->request_queue, 511);

1527
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1528
		sdev->inquiry_len = 36;
1529

1530 1531 1532
	return 0;
}

1533 1534
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1535
	struct sbp2_logical_unit *lu = sdev->hostdata;
1536

1537 1538 1539 1540
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1541

1542
	if (sdev->type == TYPE_DISK &&
1543
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1544
		sdev->skip_ms_page_8 = 1;
1545 1546

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1547
		sdev->fix_capacity = 1;
1548 1549

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1550
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1561
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1562

1563
	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1564 1565
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1566 1567 1568 1569

	return SUCCESS;
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1582
	struct sbp2_logical_unit *lu;
1583 1584 1585 1586 1587
	struct fw_device *device;

	if (!sdev)
		return 0;

1588 1589
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1590 1591 1592

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1593
			lu->tgt->directory_id, lu->lun);
1594 1595 1596 1597 1598 1599 1600 1601 1602
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1603 1604 1605
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1606
	.proc_name		= sbp2_driver_name,
1607
	.queuecommand		= sbp2_scsi_queuecommand,
1608
	.slave_alloc		= sbp2_scsi_slave_alloc,
1609 1610 1611 1612 1613
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1614 1615
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1616
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1617 1618 1619 1620 1621 1622 1623
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1624 1625 1626 1627 1628
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1629 1630
static int __init sbp2_init(void)
{
1631 1632 1633 1634
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1635 1636 1637 1638 1639 1640
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1641
	destroy_workqueue(sbp2_wq);
1642 1643 1644 1645
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);