fw-sbp2.c 46.1 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32 33 34
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
35
#include <linux/kernel.h>
36
#include <linux/mod_devicetable.h>
37
#include <linux/module.h>
38
#include <linux/moduleparam.h>
A
Andrew Morton 已提交
39
#include <linux/scatterlist.h>
40
#include <linux/string.h>
41
#include <linux/stringify.h>
42
#include <linux/timer.h>
43
#include <linux/workqueue.h>
44
#include <asm/system.h>
45 46 47 48 49 50 51

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-device.h"
52 53
#include "fw-topology.h"
#include "fw-transaction.h"
54

55 56 57 58 59 60 61 62 63 64 65 66
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
86 87 88
 * - delay inquiry
 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
 *
89 90 91 92 93 94 95 96 97
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
98 99
#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
#define SBP2_INQUIRY_DELAY		12
100 101 102 103 104 105 106 107 108
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109
	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 111 112
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

113
/* I don't know why the SCSI stack doesn't define something like this... */
114
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115 116 117

static const char sbp2_driver_name[] = "sbp2";

118 119 120 121 122 123 124
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
125 126
	struct fw_address_handler address_handler;
	struct list_head orb_list;
127

128
	u64 command_block_agent_address;
129
	u16 lun;
130 131
	int login_id;

132
	/*
133 134 135 136
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
137
	 */
138
	int generation;
139 140
	int retries;
	struct delayed_work work;
141
	bool has_sdev;
142
	bool blocked;
143 144
};

145 146 147 148 149 150 151
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;
152
	const char *bus_id;
153
	struct list_head lu_list;
154 155 156 157 158

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;
159
	unsigned int workarounds;
160
	unsigned int mgt_orb_timeout;
161 162 163

	int dont_block;	/* counter for each logical unit */
	int blocked;	/* ditto */
164 165
};

166 167
/*
 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168 169
 * provided in the config rom. Most devices do provide a value, which
 * we'll use for login management orbs, but with some sane limits.
170
 */
171 172
#define SBP2_MIN_LOGIN_ORB_TIMEOUT	5000U	/* Timeout in ms */
#define SBP2_MAX_LOGIN_ORB_TIMEOUT	40000U	/* Timeout in ms */
173
#define SBP2_ORB_TIMEOUT		2000U	/* Timeout in ms */
174
#define SBP2_ORB_NULL			0x80000000
175
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
176
#define SBP2_RETRY_LIMIT		0xf	/* 15 retries */
177 178 179 180 181

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
182
#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
183 184 185
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

211 212 213 214 215 216 217 218
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
219 220 221 222 223 224 225 226

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
227 228
	__be32 high;
	__be32 low;
229 230 231 232
};

struct sbp2_orb {
	struct fw_transaction t;
233
	struct kref kref;
234 235 236
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
237
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
238 239 240
	struct list_head link;
};

241 242 243
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
244
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
245 246
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
247

248 249
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
250 251 252 253 254 255

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
256 257
		__be32 misc;
		__be32 length;
258 259 260 261 262 263 264 265 266
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

struct sbp2_login_response {
267
	__be32 misc;
268
	struct sbp2_pointer command_block_agent;
269
	__be32 reconnect_hold;
270
};
271 272 273 274 275 276 277 278
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
279 280 281 282 283 284

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
285
		__be32 misc;
286 287 288 289
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
290
	struct sbp2_logical_unit *lu;
291

292
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
308
	unsigned int workarounds;
309 310 311 312 313 314 315
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
316 317 318 319 320
	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x000000,
		.workarounds		= SBP2_WORKAROUND_DELAY_INQUIRY,
	},
321 322 323 324 325 326 327 328 329 330
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
331 332 333 334 335
	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
		.firmware_revision	= 0x002600,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
336 337 338

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
339 340
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
341 342 343
	 * could change due to Apple-supplied firmware updates though.
	 */

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

361 362 363 364 365 366 367 368
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

369 370 371 372 373 374 375
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
376
	struct sbp2_logical_unit *lu = callback_data;
377 378 379 380 381 382
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
383
	    length == 0 || length > sizeof(status)) {
384 385 386 387 388 389 390 391
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
392
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
393 394 395 396 397 398 399
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
400
	list_for_each_entry(orb, &lu->orb_list, link) {
401
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
402 403
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
404 405 406 407 408 409
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

410
	if (&orb->link != &lu->orb_list)
411 412 413 414
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

415 416
	kref_put(&orb->kref, free_orb);

417 418 419 420 421 422 423 424 425 426
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

427 428 429 430 431 432 433 434 435 436 437 438 439 440
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
441
		list_del(&orb->link);
442
		spin_unlock_irqrestore(&card->lock, flags);
443
		orb->callback(orb, NULL);
444 445
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
446
	}
447 448

	kref_put(&orb->kref, free_orb);
449 450 451
}

static void
452
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
453 454
	      int node_id, int generation, u64 offset)
{
455
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
456 457 458
	unsigned long flags;

	orb->pointer.high = 0;
459
	orb->pointer.low = cpu_to_be32(orb->request_bus);
460 461

	spin_lock_irqsave(&device->card->lock, flags);
462
	list_add_tail(&orb->link, &lu->orb_list);
463 464
	spin_unlock_irqrestore(&device->card->lock, flags);

465 466 467 468
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

469
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
470
			node_id, generation, device->max_speed, offset,
471
			&orb->pointer, sizeof(orb->pointer),
472 473 474
			complete_transaction, orb);
}

475
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
476
{
477
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
478 479 480
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
481
	int retval = -ENOENT;
482 483 484

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
485
	list_splice_init(&lu->orb_list, &list);
486 487 488
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
489
		retval = 0;
490 491 492
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

493 494 495 496
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

497
	return retval;
498 499
}

500 501 502 503
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
504
		container_of(base_orb, struct sbp2_management_orb, base);
505 506

	if (status)
507
		memcpy(&orb->status, status, sizeof(*status));
508 509 510 511
	complete(&orb->done);
}

static int
512 513 514
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
515
{
516
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
517
	struct sbp2_management_orb *orb;
518
	unsigned int timeout;
519 520
	int retval = -ENOMEM;

521 522 523
	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
		return 0;

524
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
525 526 527
	if (orb == NULL)
		return -ENOMEM;

528
	kref_init(&orb->base.kref);
529 530
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
531
			       sizeof(orb->response), DMA_FROM_DEVICE);
532
	if (dma_mapping_error(orb->response_bus))
533
		goto fail_mapping_response;
534

535 536
	orb->request.response.high = 0;
	orb->request.response.low  = cpu_to_be32(orb->response_bus);
537

538
	orb->request.misc = cpu_to_be32(
539 540
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
541 542 543
		MANAGEMENT_ORB_LUN(lun_or_login_id));
	orb->request.length = cpu_to_be32(
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
544

545 546 547 548
	orb->request.status_fifo.high =
		cpu_to_be32(lu->address_handler.offset >> 32);
	orb->request.status_fifo.low  =
		cpu_to_be32(lu->address_handler.offset);
549 550

	if (function == SBP2_LOGIN_REQUEST) {
551
		/* Ask for 2^2 == 4 seconds reconnect grace period */
552
		orb->request.misc |= cpu_to_be32(
553
			MANAGEMENT_ORB_RECONNECT(2) |
554
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
555
		timeout = lu->tgt->mgt_orb_timeout;
556 557
	} else {
		timeout = SBP2_ORB_TIMEOUT;
558 559 560 561
	}

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
562

563 564 565 566 567 568
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

569 570
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
571

572
	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
573 574

	retval = -EIO;
575
	if (sbp2_cancel_orbs(lu) == 0) {
576 577
		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
578 579 580
		goto out;
	}

581
	if (orb->base.rcode != RCODE_COMPLETE) {
582 583
		fw_error("%s: management write failed, rcode 0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
584 585 586
		goto out;
	}

587 588
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
589
		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
590 591
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
592 593 594 595 596 597
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
598
			 sizeof(orb->request), DMA_TO_DEVICE);
599
 fail_mapping_request:
600
	dma_unmap_single(device->card->device, orb->response_bus,
601
			 sizeof(orb->response), DMA_FROM_DEVICE);
602
 fail_mapping_response:
603
	if (response)
604
		memcpy(response, orb->response, sizeof(orb->response));
605
	kref_put(&orb->base.kref, free_orb);
606 607 608 609 610 611

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
612
			   void *payload, size_t length, void *done)
613
{
614 615 616 617 618 619 620 621 622
	complete(done);
}

static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
{
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
	DECLARE_COMPLETION_ONSTACK(done);
	struct fw_transaction t;
	static u32 z;
623

624 625 626 627 628
	fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
			&z, sizeof(z), complete_agent_reset_write, &done);
	wait_for_completion(&done);
629 630
}

631 632 633 634 635 636 637 638
static void
complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
				   void *payload, size_t length, void *data)
{
	kfree(data);
}

static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
639
{
640
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
641
	struct fw_transaction *t;
642
	static u32 z;
643

644
	t = kmalloc(sizeof(*t), GFP_ATOMIC);
645
	if (t == NULL)
646
		return;
647 648

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
649 650
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
651
			&z, sizeof(z), complete_agent_reset_write_no_wait, t);
652 653
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
{
	struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
	unsigned long flags;

	/* serialize with comparisons of lu->generation and card->generation */
	spin_lock_irqsave(&card->lock, flags);
	lu->generation = generation;
	spin_unlock_irqrestore(&card->lock, flags);
}

static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
{
	/*
	 * We may access dont_block without taking card->lock here:
	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
	 * are currently serialized against each other.
	 * And a wrong result in sbp2_conditionally_block()'s access of
	 * dont_block is rather harmless, it simply misses its first chance.
	 */
	--lu->tgt->dont_block;
}

/*
 * Blocks lu->tgt if all of the following conditions are met:
 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 *     logical units have been finished (indicated by dont_block == 0).
 *   - lu->generation is stale.
 *
 * Note, scsi_block_requests() must be called while holding card->lock,
 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 * unblock the target.
 */
static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (!tgt->dont_block && !lu->blocked &&
	    lu->generation != card->generation) {
		lu->blocked = true;
		if (++tgt->blocked == 1) {
			scsi_block_requests(shost);
			fw_notify("blocked %s\n", lu->tgt->bus_id);
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);
}

/*
 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;
	bool unblock = false;

	spin_lock_irqsave(&card->lock, flags);
	if (lu->blocked && lu->generation == card->generation) {
		lu->blocked = false;
		unblock = --tgt->blocked == 0;
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (unblock) {
		scsi_unblock_requests(shost);
		fw_notify("unblocked %s\n", lu->tgt->bus_id);
	}
}

/*
 * Prevents future blocking of tgt and unblocks it.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_unblock(struct sbp2_target *tgt)
{
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	++tgt->dont_block;
	spin_unlock_irqrestore(&card->lock, flags);

	scsi_unblock_requests(shost);
}

755 756 757 758 759 760 761 762 763 764 765
static int sbp2_lun2int(u16 lun)
{
	struct scsi_lun eight_bytes_lun;

	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lun & 0xff;

	return scsilun_to_int(&eight_bytes_lun);
}

766
static void sbp2_release_target(struct kref *kref)
767
{
768 769 770 771
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
772
	struct scsi_device *sdev;
773
	struct fw_device *device = fw_device(tgt->unit->device.parent);
774

775 776 777
	/* prevent deadlocks */
	sbp2_unblock(tgt);

778
	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
779 780 781 782
		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
		if (sdev) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
783
		}
784 785
		sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
786

787 788 789 790 791
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
792
	fw_notify("released %s\n", tgt->bus_id);
793

794
	fw_unit_put(tgt->unit);
795
	scsi_host_put(shost);
796
	fw_device_put(device);
797 798
}

799 800
static struct workqueue_struct *sbp2_wq;

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/*
 * Always get the target's kref when scheduling work on one its units.
 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 */
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	if (queue_delayed_work(sbp2_wq, &lu->work, delay))
		kref_get(&lu->tgt->kref);
}

static void sbp2_target_put(struct sbp2_target *tgt)
{
	kref_put(&tgt->kref, sbp2_release_target);
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
static void
complete_set_busy_timeout(struct fw_card *card, int rcode,
			  void *payload, size_t length, void *done)
{
	complete(done);
}

static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
{
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
	DECLARE_COMPLETION_ONSTACK(done);
	struct fw_transaction t;
	static __be32 busy_timeout;

	/* FIXME: we should try to set dual-phase cycle_limit too */
	busy_timeout = cpu_to_be32(SBP2_RETRY_LIMIT);

	fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
			lu->tgt->node_id, lu->generation, device->max_speed,
			CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &busy_timeout,
			sizeof(busy_timeout), complete_set_busy_timeout, &done);
	wait_for_completion(&done);
}

840 841
static void sbp2_reconnect(struct work_struct *work);

842 843
static void sbp2_login(struct work_struct *work)
{
844 845
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
846 847 848
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
	struct Scsi_Host *shost;
849
	struct scsi_device *sdev;
850
	struct sbp2_login_response response;
851
	int generation, node_id, local_node_id;
852

853 854 855
	if (fw_device_is_shutdown(device))
		goto out;

856
	generation    = device->generation;
857
	smp_rmb();    /* node_id must not be older than generation */
858 859
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
860

861
	/* If this is a re-login attempt, log out, or we might be rejected. */
862
	if (lu->has_sdev)
863 864 865
		sbp2_send_management_orb(lu, device->node_id, generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);

866 867
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
868
		if (lu->retries++ < 5) {
869
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
870
		} else {
871 872
			fw_error("%s: failed to login to LUN %04x\n",
				 tgt->bus_id, lu->lun);
873 874 875
			/* Let any waiting I/O fail from now on. */
			sbp2_unblock(lu->tgt);
		}
876
		goto out;
877 878
	}

879 880
	tgt->node_id	  = node_id;
	tgt->address_high = local_node_id << 16;
881
	sbp2_set_generation(lu, generation);
882

883
	lu->command_block_agent_address =
884 885 886
		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
		      << 32) | be32_to_cpu(response.command_block_agent.low);
	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
887

888 889
	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
890

891 892
	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
	sbp2_set_busy_timeout(lu);
893

894 895 896
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

897
	/* This was a re-login. */
898
	if (lu->has_sdev) {
899
		sbp2_cancel_orbs(lu);
900
		sbp2_conditionally_unblock(lu);
901 902 903
		goto out;
	}

904 905 906
	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
		ssleep(SBP2_INQUIRY_DELAY);

907
	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
908
	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
909 910 911 912 913 914 915
	/*
	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
	 * Therefore __scsi_add_device() will get into trouble if a bus reset
	 * happens in parallel.  It will either fail or leave us with an
	 * unusable sdev.  As a workaround we check for this and retry the
	 * whole login and SCSI probing.
	 */
916

917 918 919 920 921 922 923 924
	/* Reported error during __scsi_add_device() */
	if (IS_ERR(sdev))
		goto out_logout_login;

	/* Unreported error during __scsi_add_device() */
	smp_rmb(); /* get current card generation */
	if (generation != device->card->generation) {
		scsi_remove_device(sdev);
925
		scsi_device_put(sdev);
926
		goto out_logout_login;
927
	}
928 929

	/* No error during __scsi_add_device() */
930 931
	lu->has_sdev = true;
	scsi_device_put(sdev);
932
	sbp2_allow_block(lu);
933 934 935 936 937 938 939 940 941 942 943 944 945 946
	goto out;

 out_logout_login:
	smp_rmb(); /* generation may have changed */
	generation = device->generation;
	smp_rmb(); /* node_id must not be older than generation */

	sbp2_send_management_orb(lu, device->node_id, generation,
				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
	/*
	 * If a bus reset happened, sbp2_update will have requeued
	 * lu->work already.  Reset the work from reconnect to login.
	 */
	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
947
 out:
948
	sbp2_target_put(tgt);
949
}
950

951
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
952
{
953
	struct sbp2_logical_unit *lu;
954

955 956 957
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
958

959 960 961
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
962

963 964 965 966 967
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
968

969 970 971 972 973
	lu->tgt      = tgt;
	lu->lun      = lun_entry & 0xffff;
	lu->retries  = 0;
	lu->has_sdev = false;
	lu->blocked  = false;
974
	++tgt->dont_block;
975 976
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
977

978 979 980
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
981

982 983 984 985
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
986

987 988 989 990 991 992 993 994 995 996 997 998 999
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;
1000
	unsigned int timeout;
1001 1002

	fw_csr_iterator_init(&ci, directory);
1003 1004
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
1005

1006
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1007 1008
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
1009
			break;
1010 1011 1012

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
1013
			break;
1014

1015
		case CSR_MODEL:
1016 1017 1018 1019 1020 1021 1022
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		case SBP2_CSR_UNIT_CHARACTERISTICS:
			/* the timeout value is stored in 500ms units */
			timeout = ((unsigned int) value >> 8 & 0xff) * 500;
			timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
			tgt->mgt_orb_timeout =
				  min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);

			if (timeout > tgt->mgt_orb_timeout)
				fw_notify("%s: config rom contains %ds "
					  "management ORB timeout, limiting "
1033
					  "to %ds\n", tgt->bus_id,
1034 1035 1036 1037
					  timeout / 1000,
					  tgt->mgt_orb_timeout / 1000);
			break;

1038 1039 1040 1041 1042 1043 1044 1045
		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
1046 1047 1048
			break;
		}
	}
1049 1050 1051 1052 1053 1054 1055
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
1056
	unsigned int w = sbp2_param_workarounds;
1057 1058 1059 1060

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
1061
			  tgt->bus_id);
1062

1063 1064
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
1065 1066

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1067

1068 1069 1070
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
1071

1072 1073 1074
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
1075

1076
		w |= sbp2_workarounds_table[i].workarounds;
1077 1078
		break;
	}
1079 1080
 out:
	if (w)
1081
		fw_notify("Workarounds for %s: 0x%x "
1082
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1083
			  tgt->bus_id, w, firmware_revision, model);
1084
	tgt->workarounds = w;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);
1107
	tgt->bus_id = unit->device.bus_id;
1108 1109 1110 1111 1112 1113 1114

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

1115
	fw_device_get(device);
1116
	fw_unit_get(unit);
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
1131

1132
	/* Do the login in a workqueue so we can easily reschedule retries. */
1133
	list_for_each_entry(lu, &tgt->lu_list, link)
1134
		sbp2_queue_work(lu, 0);
1135
	return 0;
1136

1137
 fail_tgt_put:
1138
	sbp2_target_put(tgt);
1139 1140 1141 1142 1143
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
1144 1145 1146 1147 1148
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
1149
	struct sbp2_target *tgt = unit->device.driver_data;
1150

1151
	sbp2_target_put(tgt);
1152 1153 1154 1155 1156
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
1157 1158
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
1159 1160
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
1161 1162
	int generation, node_id, local_node_id;

1163 1164 1165
	if (fw_device_is_shutdown(device))
		goto out;

1166
	generation    = device->generation;
1167
	smp_rmb();    /* node_id must not be older than generation */
1168 1169
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
1170

1171
	if (sbp2_send_management_orb(lu, node_id, generation,
1172
				     SBP2_RECONNECT_REQUEST,
1173
				     lu->login_id, NULL) < 0) {
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		/*
		 * If reconnect was impossible even though we are in the
		 * current generation, fall back and try to log in again.
		 *
		 * We could check for "Function rejected" status, but
		 * looking at the bus generation as simpler and more general.
		 */
		smp_rmb(); /* get current card generation */
		if (generation == device->card->generation ||
		    lu->retries++ >= 5) {
1184
			fw_error("%s: failed to reconnect\n", tgt->bus_id);
1185 1186
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1187
		}
1188 1189
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		goto out;
1190
	}
1191

1192 1193
	tgt->node_id      = node_id;
	tgt->address_high = local_node_id << 16;
1194
	sbp2_set_generation(lu, generation);
1195

1196 1197
	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
1198 1199 1200

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1201
	sbp2_conditionally_unblock(lu);
1202
 out:
1203
	sbp2_target_put(tgt);
1204 1205 1206 1207
}

static void sbp2_update(struct fw_unit *unit)
{
1208 1209
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
1210

1211 1212 1213 1214 1215 1216 1217
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
1218
		sbp2_conditionally_block(lu);
1219
		lu->retries = 0;
1220
		sbp2_queue_work(lu, 0);
1221
	}
1222 1223 1224 1225 1226
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

1227
static const struct fw_device_id sbp2_id_table[] = {
1228 1229 1230
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1231
		.version      = SBP2_SW_VERSION_ENTRY,
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

1248 1249
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1250
{
1251 1252
	int sam_status;

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1270
	sam_status = sbp2_status[0] & 0x3f;
1271

1272 1273
	switch (sam_status) {
	case SAM_STAT_GOOD:
1274 1275
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1276
	case SAM_STAT_BUSY:
1277 1278
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1279 1280
		return DID_OK << 16 | sam_status;

1281
	default:
1282
		return DID_ERROR << 16;
1283 1284 1285 1286 1287 1288
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1289 1290
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1291
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1292 1293 1294
	int result;

	if (status != NULL) {
1295
		if (STATUS_GET_DEAD(*status))
1296
			sbp2_agent_reset_no_wait(orb->lu);
1297

1298
		switch (STATUS_GET_RESPONSE(*status)) {
1299
		case SBP2_STATUS_REQUEST_COMPLETE:
1300
			result = DID_OK << 16;
1301 1302
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1303
			result = DID_BUS_BUSY << 16;
1304 1305 1306 1307
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1308
			result = DID_ERROR << 16;
1309 1310 1311
			break;
		}

1312 1313
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1314 1315
							   orb->cmd->sense_buffer);
	} else {
1316 1317
		/*
		 * If the orb completes with status == NULL, something
1318
		 * went wrong, typically a bus reset happened mid-orb
1319 1320
		 * or when sending the write (less likely).
		 */
1321
		result = DID_BUS_BUSY << 16;
1322
		sbp2_conditionally_block(orb->lu);
1323 1324 1325
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1326
			 sizeof(orb->request), DMA_TO_DEVICE);
1327

1328 1329 1330
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1331 1332 1333 1334
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1335
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1336

1337
	orb->cmd->result = result;
1338 1339 1340
	orb->done(orb->cmd);
}

1341 1342 1343
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1344 1345 1346 1347 1348
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1349 1350
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1351
			   orb->cmd->sc_data_direction);
1352 1353
	if (count == 0)
		goto fail;
1354

1355 1356
	/*
	 * Handle the special case where there is only one element in
1357 1358 1359
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1360 1361
	 * tables.
	 */
1362
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1363 1364 1365 1366 1367 1368
		orb->request.data_descriptor.high =
			cpu_to_be32(lu->tgt->address_high);
		orb->request.data_descriptor.low  =
			cpu_to_be32(sg_dma_address(sg));
		orb->request.misc |=
			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1369
		return 0;
1370 1371
	}

1372 1373
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1374 1375 1376 1377
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1378
	 */
1379 1380 1381
	for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
		sg_len = sg_dma_len(sg);
		sg_addr = sg_dma_address(sg);
1382
		while (sg_len) {
1383 1384 1385 1386 1387
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1388
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1389 1390
			orb->page_table[j].low = cpu_to_be32(sg_addr);
			orb->page_table[j].high = cpu_to_be32(l << 16);
1391 1392 1393 1394 1395 1396
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1397 1398 1399 1400 1401
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1402

1403 1404
	/*
	 * The data_descriptor pointer is the one case where we need
1405 1406 1407
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1408 1409
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1410 1411 1412 1413
	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
					 COMMAND_ORB_DATA_SIZE(j));
1414

1415 1416 1417
	return 0;

 fail_page_table:
1418
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1419 1420 1421
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1422 1423 1424 1425 1426 1427
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1428 1429
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1430
	struct sbp2_command_orb *orb;
1431
	unsigned int max_payload;
1432
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1433

1434 1435 1436 1437
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1438
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1439
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1440 1441 1442
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1443 1444
	}

1445
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1446 1447
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1448
		return SCSI_MLQUEUE_HOST_BUSY;
1449 1450
	}

1451 1452
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1453
	kref_init(&orb->base.kref);
1454

1455
	orb->lu   = lu;
1456 1457 1458
	orb->done = done;
	orb->cmd  = cmd;

1459
	orb->request.next.high   = cpu_to_be32(SBP2_ORB_NULL);
1460
	orb->request.next.low    = 0x0;
1461 1462
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1463 1464
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1465 1466
	 * if we set this to max_speed + 7, we get the right value.
	 */
1467 1468
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1469
	orb->request.misc = cpu_to_be32(
1470
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1471
		COMMAND_ORB_SPEED(device->max_speed) |
1472
		COMMAND_ORB_NOTIFY);
1473 1474

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1475 1476
		orb->request.misc |= cpu_to_be32(
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA));
1477
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1478 1479
		orb->request.misc |= cpu_to_be32(
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA));
1480

1481 1482
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1483 1484

	memset(orb->request.command_block,
1485
	       0, sizeof(orb->request.command_block));
1486 1487 1488
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1489 1490 1491 1492
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1493
		goto out;
1494

1495 1496 1497 1498
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1499
	kref_put(&orb->base.kref, free_orb);
1500
	return retval;
1501 1502
}

1503 1504
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1505
	struct sbp2_logical_unit *lu = sdev->hostdata;
1506

1507 1508 1509 1510
	/* (Re-)Adding logical units via the SCSI stack is not supported. */
	if (!lu)
		return -ENOSYS;

1511 1512
	sdev->allow_restart = 1;

1513 1514
	/* SBP-2 requires quadlet alignment of the data buffers. */
	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1515

1516
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1517
		sdev->inquiry_len = 36;
1518

1519 1520 1521
	return 0;
}

1522 1523
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1524
	struct sbp2_logical_unit *lu = sdev->hostdata;
1525

1526 1527 1528 1529
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1530

1531
	if (sdev->type == TYPE_DISK &&
1532
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1533
		sdev->skip_ms_page_8 = 1;
1534 1535

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1536
		sdev->fix_capacity = 1;
1537 1538

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1539
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1540

1541 1542 1543 1544 1545 1546 1547 1548 1549
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1550
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1551

1552
	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1553 1554
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1555 1556 1557 1558

	return SUCCESS;
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1571
	struct sbp2_logical_unit *lu;
1572 1573 1574 1575 1576
	struct fw_device *device;

	if (!sdev)
		return 0;

1577 1578
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1579 1580 1581

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1582
			lu->tgt->directory_id, lu->lun);
1583 1584 1585 1586 1587 1588 1589 1590 1591
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1592 1593 1594
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1595
	.proc_name		= sbp2_driver_name,
1596
	.queuecommand		= sbp2_scsi_queuecommand,
1597
	.slave_alloc		= sbp2_scsi_slave_alloc,
1598 1599 1600 1601 1602
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1603 1604
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1605
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1606 1607 1608 1609 1610 1611 1612
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1613 1614 1615 1616 1617
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1618 1619
static int __init sbp2_init(void)
{
1620 1621 1622 1623
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1624 1625 1626 1627 1628 1629
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1630
	destroy_workqueue(sbp2_wq);
1631 1632 1633 1634
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);