fw-sbp2.c 33.4 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/moduleparam.h>
S
Stefan Richter 已提交
34
#include <linux/mod_devicetable.h>
35
#include <linux/device.h>
A
Andrew Morton 已提交
36
#include <linux/scatterlist.h>
37
#include <linux/dma-mapping.h>
38
#include <linux/blkdev.h>
39
#include <linux/timer.h>
40 41 42 43 44 45 46 47 48 49 50

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

51 52 53 54 55 56 57 58 59 60 61 62
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

63
/* I don't know why the SCSI stack doesn't define something like this... */
64
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
65 66 67 68

static const char sbp2_driver_name[] = "sbp2";

struct sbp2_device {
69
	struct kref kref;
70 71 72 73 74 75 76 77
	struct fw_unit *unit;
	struct fw_address_handler address_handler;
	struct list_head orb_list;
	u64 management_agent_address;
	u64 command_block_agent_address;
	u32 workarounds;
	int login_id;

78 79
	/*
	 * We cache these addresses and only update them once we've
80 81 82
	 * logged in or reconnected to the sbp2 device.  That way, any
	 * IO to the device will automatically fail and get retried if
	 * it happens in a window where the device is not ready to
83 84
	 * handle it (e.g. after a bus reset but before we reconnect).
	 */
85 86 87 88
	int node_id;
	int address_high;
	int generation;

89 90
	int retries;
	struct delayed_work work;
91 92 93 94
};

#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
#define SBP2_MAX_SECTORS		255	/* Max sectors supported */
95
#define SBP2_ORB_TIMEOUT		2000	/* Timeout in ms */
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

#define SBP2_ORB_NULL			0x80000000

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
#define SBP2_COMMAND_SET_SPECIFIER	0x38
#define SBP2_COMMAND_SET		0x39
#define SBP2_COMMAND_SET_REVISION	0x3b
#define SBP2_FIRMWARE_REVISION		0x3c

/* Flags for detected oddities and brokeness */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
#define SBP2_WORKAROUND_OVERRIDE	0x100

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

139 140 141 142 143 144 145 146
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
164
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
165 166 167
	struct list_head link;
};

168 169 170
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
171
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
172 173
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
174

175 176
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

193 194
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
195 196 197 198 199 200

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
201 202 203 204 205 206 207 208
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
	struct fw_unit *unit;

	struct sbp2_pointer page_table[SG_ALL];
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
	unsigned workarounds;
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
256 257 258

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
259 260
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
261 262 263
	 * could change due to Apple-supplied firmware updates though.
	 */

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
	struct sbp2_device *sd = callback_data;
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
295
	    length == 0 || length > sizeof(status)) {
296 297 298 299 300 301 302 303
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
304
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
305 306 307 308 309 310 311 312
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
	list_for_each_entry(orb, &sd->orb_list, link) {
313 314
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
		    STATUS_GET_ORB_LOW(status) == orb->request_bus &&
315
		    orb->rcode == RCODE_COMPLETE) {
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (&orb->link != &sd->orb_list)
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

	orb->rcode = rcode;
	if (rcode != RCODE_COMPLETE) {
		spin_lock_irqsave(&card->lock, flags);
		list_del(&orb->link);
		spin_unlock_irqrestore(&card->lock, flags);
		orb->callback(orb, NULL);
	}
}

static void
sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
	      int node_id, int generation, u64 offset)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
356
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
357 358 359 360 361 362

	spin_lock_irqsave(&device->card->lock, flags);
	list_add_tail(&orb->link, &sd->orb_list);
	spin_unlock_irqrestore(&device->card->lock, flags);

	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
363
			node_id, generation, device->max_speed, offset,
364
			&orb->pointer, sizeof(orb->pointer),
365 366 367
			complete_transaction, orb);
}

368
static int sbp2_cancel_orbs(struct fw_unit *unit)
369 370 371 372 373 374
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
375
	int retval = -ENOENT;
376 377 378 379 380 381 382

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
	list_splice_init(&sd->orb_list, &list);
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
383
		retval = 0;
384 385 386
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

387 388 389 390
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

391
	return retval;
392 393
}

394 395 396 397
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
398
		container_of(base_orb, struct sbp2_management_orb, base);
399 400

	if (status)
401
		memcpy(&orb->status, status, sizeof(*status));
402 403 404 405 406 407 408 409 410 411 412 413
	complete(&orb->done);
}

static int
sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
			 int function, int lun, void *response)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct sbp2_management_orb *orb;
	int retval = -ENOMEM;

414
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
415 416 417
	if (orb == NULL)
		return -ENOMEM;

418 419 420 421
	/*
	 * The sbp2 device is going to send a block read request to
	 * read out the request from host memory, so map it for dma.
	 */
422 423
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
424
			       sizeof(orb->request), DMA_TO_DEVICE);
425
	if (dma_mapping_error(orb->base.request_bus))
426 427 428 429
		goto out;

	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
430
			       sizeof(orb->response), DMA_FROM_DEVICE);
431
	if (dma_mapping_error(orb->response_bus))
432 433 434 435 436 437
		goto out;

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
438 439 440
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
		MANAGEMENT_ORB_LUN(lun);
441
	orb->request.length =
442
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
443 444 445 446 447 448

	orb->request.status_fifo.high = sd->address_handler.offset >> 32;
	orb->request.status_fifo.low  = sd->address_handler.offset;

	if (function == SBP2_LOGIN_REQUEST) {
		orb->request.misc |=
449
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
450
			MANAGEMENT_ORB_RECONNECT(0);
451 452
	}

453
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
454 455 456

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
457

458 459 460
	sbp2_send_orb(&orb->base, unit,
		      node_id, generation, sd->management_agent_address);

461 462
	wait_for_completion_timeout(&orb->done,
				    msecs_to_jiffies(SBP2_ORB_TIMEOUT));
463 464

	retval = -EIO;
465 466
	if (sbp2_cancel_orbs(unit) == 0) {
		fw_error("orb reply timed out, rcode=0x%02x\n",
467 468 469 470
			 orb->base.rcode);
		goto out;
	}

471 472
	if (orb->base.rcode != RCODE_COMPLETE) {
		fw_error("management write failed, rcode 0x%02x\n",
473 474 475 476
			 orb->base.rcode);
		goto out;
	}

477 478
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
479
		fw_error("error status: %d:%d\n",
480 481
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
482 483 484 485 486 487
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
488
			 sizeof(orb->request), DMA_TO_DEVICE);
489
	dma_unmap_single(device->card->device, orb->response_bus,
490
			 sizeof(orb->response), DMA_FROM_DEVICE);
491 492 493

	if (response)
		fw_memcpy_from_be32(response,
494
				    orb->response, sizeof(orb->response));
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	kfree(orb);

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
			   void *payload, size_t length, void *data)
{
	struct fw_transaction *t = data;

	kfree(t);
}

static int sbp2_agent_reset(struct fw_unit *unit)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct fw_transaction *t;
	static u32 zero;

516
	t = kzalloc(sizeof(*t), GFP_ATOMIC);
517 518 519 520
	if (t == NULL)
		return -ENOMEM;

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
521
			sd->node_id, sd->generation, device->max_speed,
522
			sd->command_block_agent_address + SBP2_AGENT_RESET,
523
			&zero, sizeof(zero), complete_agent_reset_write, t);
524 525 526 527

	return 0;
}

528
static void sbp2_reconnect(struct work_struct *work);
529
static struct scsi_host_template scsi_driver_template;
530

531
static void release_sbp2_device(struct kref *kref)
532 533
{
	struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
534 535
	struct Scsi_Host *host =
		container_of((void *)sd, struct Scsi_Host, hostdata[0]);
536

537
	scsi_remove_host(host);
538 539 540 541 542
	sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
				 SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
	fw_core_remove_address_handler(&sd->address_handler);
	fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
	put_device(&sd->unit->device);
543
	scsi_host_put(host);
544 545
}

546 547 548 549
static void sbp2_login(struct work_struct *work)
{
	struct sbp2_device *sd =
		container_of(work, struct sbp2_device, work.work);
550 551
	struct Scsi_Host *host =
		container_of((void *)sd, struct Scsi_Host, hostdata[0]);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	struct fw_unit *unit = sd->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_login_response response;
	int generation, node_id, local_node_id, lun, retval;

	/* FIXME: Make this work for multi-lun devices. */
	lun = 0;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

	if (sbp2_send_management_orb(unit, node_id, generation,
				     SBP2_LOGIN_REQUEST, lun, &response) < 0) {
		if (sd->retries++ < 5) {
			schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
		} else {
			fw_error("failed to login to %s\n",
				 unit->device.bus_id);
571
			kref_put(&sd->kref, release_sbp2_device);
572 573 574 575 576 577 578 579 580 581
		}
		return;
	}

	sd->generation   = generation;
	sd->node_id      = node_id;
	sd->address_high = local_node_id << 16;

	/* Get command block agent offset and login id. */
	sd->command_block_agent_address =
582
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
583
		response.command_block_agent.low;
584
	sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
585

586 587 588
	fw_notify("logged in to sbp2 unit %s (%d retries)\n",
		  unit->device.bus_id, sd->retries);
	fw_notify(" - management_agent_address:    0x%012llx\n",
589 590 591
		  (unsigned long long) sd->management_agent_address);
	fw_notify(" - command_block_agent_address: 0x%012llx\n",
		  (unsigned long long) sd->command_block_agent_address);
592
	fw_notify(" - status write address:        0x%012llx\n",
593 594 595 596 597 598 599
		  (unsigned long long) sd->address_handler.offset);

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

600
	PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
601 602
	sbp2_agent_reset(unit);

603 604 605
	/* FIXME: Loop over luns here. */
	lun = 0;
	retval = scsi_add_device(host, 0, 0, lun);
606 607 608 609
	if (retval < 0) {
		sbp2_send_management_orb(unit, sd->node_id, sd->generation,
					 SBP2_LOGOUT_REQUEST, sd->login_id,
					 NULL);
610 611 612 613
		/*
		 * Set this back to sbp2_login so we fall back and
		 * retry login on bus reset.
		 */
614
		PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
615
	}
616
	kref_put(&sd->kref, release_sbp2_device);
617
}
618 619 620 621 622 623 624

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd;
	struct fw_csr_iterator ci;
625 626
	struct Scsi_Host *host;
	int i, key, value, err;
627 628
	u32 model, firmware_revision;

629 630 631 632
	err = -ENOMEM;
	host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
	if (host == NULL)
		goto fail;
633

634
	sd = (struct sbp2_device *) host->hostdata;
635 636 637
	unit->device.driver_data = sd;
	sd->unit = unit;
	INIT_LIST_HEAD(&sd->orb_list);
638
	kref_init(&sd->kref);
639 640 641 642 643

	sd->address_handler.length = 0x100;
	sd->address_handler.address_callback = sbp2_status_write;
	sd->address_handler.callback_data = sd;

644 645 646 647
	err = fw_core_add_address_handler(&sd->address_handler,
					  &fw_high_memory_region);
	if (err < 0)
		goto fail_host;
648

649 650 651 652 653 654 655
	err = fw_device_enable_phys_dma(device);
	if (err < 0)
		goto fail_address_handler;

	err = scsi_add_host(host, &unit->device);
	if (err < 0)
		goto fail_address_handler;
656

657 658
	/*
	 * Scan unit directory to get management agent address,
659
	 * firmware revison and model.  Initialize firmware_revision
660 661
	 * and model to values that wont match anything in our table.
	 */
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	firmware_revision = 0xff000000;
	model = 0xff000000;
	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
			sd->management_agent_address =
				0xfffff0000000ULL + 4 * value;
			break;
		case SBP2_FIRMWARE_REVISION:
			firmware_revision = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
		sd->workarounds |= sbp2_workarounds_table[i].workarounds;
		break;
	}

	if (sd->workarounds)
		fw_notify("Workarounds for node %s: 0x%x "
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
			  unit->device.bus_id,
			  sd->workarounds, firmware_revision, model);

697 698
	get_device(&unit->device);

699 700
	/*
	 * We schedule work to do the login so we can easily
701
	 * reschedule retries. Always get the ref before scheduling
702 703
	 * work.
	 */
704
	INIT_DELAYED_WORK(&sd->work, sbp2_login);
705 706
	if (schedule_delayed_work(&sd->work, 0))
		kref_get(&sd->kref);
707 708

	return 0;
709 710 711 712 713 714 715

 fail_address_handler:
	fw_core_remove_address_handler(&sd->address_handler);
 fail_host:
	scsi_host_put(host);
 fail:
	return err;
716 717 718 719 720 721 722
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct sbp2_device *sd = unit->device.driver_data;

723
	kref_put(&sd->kref, release_sbp2_device);
724 725 726 727 728 729

	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
730 731
	struct sbp2_device *sd =
		container_of(work, struct sbp2_device, work.work);
732 733 734 735 736 737 738 739
	struct fw_unit *unit = sd->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	int generation, node_id, local_node_id;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

740 741 742
	if (sbp2_send_management_orb(unit, node_id, generation,
				     SBP2_RECONNECT_REQUEST,
				     sd->login_id, NULL) < 0) {
743
		if (sd->retries++ >= 5) {
744 745 746 747
			fw_error("failed to reconnect to %s\n",
				 unit->device.bus_id);
			/* Fall back and try to log in again. */
			sd->retries = 0;
748
			PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
749 750 751 752
		}
		schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
		return;
	}
753 754 755

	sd->generation   = generation;
	sd->node_id      = node_id;
756
	sd->address_high = local_node_id << 16;
757

758 759
	fw_notify("reconnected to unit %s (%d retries)\n",
		  unit->device.bus_id, sd->retries);
760 761
	sbp2_agent_reset(unit);
	sbp2_cancel_orbs(unit);
762
	kref_put(&sd->kref, release_sbp2_device);
763 764 765 766 767 768 769
}

static void sbp2_update(struct fw_unit *unit)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;

770
	sd->retries = 0;
771
	fw_device_enable_phys_dma(device);
772 773
	if (schedule_delayed_work(&sd->work, 0))
		kref_get(&sd->kref);
774 775 776 777 778
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

779
static const struct fw_device_id sbp2_id_table[] = {
780 781 782
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
783
		.version      = SBP2_SW_VERSION_ENTRY,
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

800 801
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
802
{
803 804
	int sam_status;

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

822
	sam_status = sbp2_status[0] & 0x3f;
823

824 825
	switch (sam_status) {
	case SAM_STAT_GOOD:
826 827
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
828
	case SAM_STAT_BUSY:
829 830
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
831 832
		return DID_OK << 16 | sam_status;

833
	default:
834
		return DID_ERROR << 16;
835 836 837 838 839 840
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
841 842
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
843 844 845 846 847 848
	struct fw_unit *unit = orb->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	struct scatterlist *sg;
	int result;

	if (status != NULL) {
849
		if (STATUS_GET_DEAD(*status))
850 851
			sbp2_agent_reset(unit);

852
		switch (STATUS_GET_RESPONSE(*status)) {
853
		case SBP2_STATUS_REQUEST_COMPLETE:
854
			result = DID_OK << 16;
855 856
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
857
			result = DID_BUS_BUSY << 16;
858 859 860 861
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
862
			result = DID_ERROR << 16;
863 864 865
			break;
		}

866 867
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
868 869
							   orb->cmd->sense_buffer);
	} else {
870 871
		/*
		 * If the orb completes with status == NULL, something
872
		 * went wrong, typically a bus reset happened mid-orb
873 874
		 * or when sending the write (less likely).
		 */
875
		result = DID_BUS_BUSY << 16;
876 877 878
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
879
			 sizeof(orb->request), DMA_TO_DEVICE);
880 881 882 883 884 885 886 887 888

	if (orb->cmd->use_sg > 0) {
		sg = (struct scatterlist *)orb->cmd->request_buffer;
		dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
			     orb->cmd->sc_data_direction);
	}

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
889
				 sizeof(orb->page_table_bus), DMA_TO_DEVICE);
890

891
	orb->cmd->result = result;
892 893 894 895
	orb->done(orb->cmd);
	kfree(orb);
}

896
static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
897
{
898 899 900
	struct sbp2_device *sd =
		(struct sbp2_device *)orb->cmd->device->host->hostdata;
	struct fw_unit *unit = sd->unit;
901 902 903 904 905 906 907 908 909
	struct fw_device *device = fw_device(unit->device.parent);
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	size_t size;
	dma_addr_t sg_addr;

	sg = (struct scatterlist *)orb->cmd->request_buffer;
	count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
			   orb->cmd->sc_data_direction);
910 911
	if (count == 0)
		goto fail;
912

913 914
	/*
	 * Handle the special case where there is only one element in
915 916 917
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
918 919
	 * tables.
	 */
920 921 922 923
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
		orb->request.data_descriptor.high = sd->address_high;
		orb->request.data_descriptor.low  = sg_dma_address(sg);
		orb->request.misc |=
924
			COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
925
		return 0;
926 927
	}

928 929
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
930 931 932 933
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
934
	 */
935 936 937 938 939 940 941 942 943 944 945 946 947
	for (i = 0, j = 0; i < count; i++) {
		sg_len = sg_dma_len(sg + i);
		sg_addr = sg_dma_address(sg + i);
		while (sg_len) {
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

948
	size = sizeof(orb->page_table[0]) * j;
949

950 951
	/*
	 * The data_descriptor pointer is the one case where we need
952 953 954
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
955 956
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
957 958 959 960

	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       size, DMA_TO_DEVICE);
961 962
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
963 964 965
	orb->request.data_descriptor.high = sd->address_high;
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
966 967
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
968 969

	fw_memcpy_to_be32(orb->page_table, orb->page_table, size);
970 971 972 973 974 975 976 977

	return 0;

 fail_page_table:
	dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
978 979 980 981 982 983
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
984 985 986
	struct sbp2_device *sd =
		(struct sbp2_device *)cmd->device->host->hostdata;
	struct fw_unit *unit = sd->unit;
987 988 989
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_command_orb *orb;

990 991 992 993
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
994
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
995
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
996 997 998
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
999 1000
	}

1001
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1002 1003
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1004
		goto fail_alloc;
1005 1006
	}

1007 1008
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1009 1010
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
1011
			       sizeof(orb->request), DMA_TO_DEVICE);
1012 1013
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping;
1014 1015 1016 1017 1018 1019 1020

	orb->unit = unit;
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1021 1022
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1023 1024
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1025 1026
	 * if we set this to max_speed + 7, we get the right value.
	 */
1027
	orb->request.misc =
1028 1029
		COMMAND_ORB_MAX_PAYLOAD(device->max_speed + 7) |
		COMMAND_ORB_SPEED(device->max_speed) |
1030
		COMMAND_ORB_NOTIFY;
1031 1032 1033

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1034
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1035 1036
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1037
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1038

1039
	if (cmd->use_sg && sbp2_command_orb_map_scatterlist(orb) < 0)
1040
		goto fail_map_payload;
1041

1042
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1043 1044

	memset(orb->request.command_block,
1045
	       0, sizeof(orb->request.command_block));
1046 1047 1048 1049 1050 1051 1052 1053
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;

	sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
		      sd->command_block_agent_address + SBP2_ORB_POINTER);

	return 0;
1054

1055
 fail_map_payload:
1056
	dma_unmap_single(device->card->device, orb->base.request_bus,
1057
			 sizeof(orb->request), DMA_TO_DEVICE);
1058 1059 1060
 fail_mapping:
	kfree(orb);
 fail_alloc:
1061
	return SCSI_MLQUEUE_HOST_BUSY;
1062 1063
}

1064 1065
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1066
	struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1067 1068 1069 1070 1071 1072 1073 1074

	sdev->allow_restart = 1;

	if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
		sdev->inquiry_len = 36;
	return 0;
}

1075 1076
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1077 1078
	struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
	struct fw_unit *unit = sd->unit;
1079

1080 1081 1082 1083
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1084 1085 1086 1087 1088 1089 1090
	if (sdev->type == TYPE_DISK &&
	    sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
		sdev->skip_ms_page_8 = 1;
	if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
		fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
		sdev->fix_capacity = 1;
	}
1091 1092
	if (sd->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1093 1094 1095 1096 1097 1098 1099 1100 1101
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1102 1103 1104
	struct sbp2_device *sd =
		(struct sbp2_device *)cmd->device->host->hostdata;
	struct fw_unit *unit = sd->unit;
1105 1106

	fw_notify("sbp2_scsi_abort\n");
1107
	sbp2_agent_reset(unit);
1108 1109 1110 1111 1112
	sbp2_cancel_orbs(unit);

	return SUCCESS;
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
	struct sbp2_device *sd;
	struct fw_unit *unit;
	struct fw_device *device;
	u32 directory_id;
	struct fw_csr_iterator ci;
	int key, value, lun;

	if (!sdev)
		return 0;
	sd = (struct sbp2_device *)sdev->host->hostdata;
	unit = sd->unit;
	device = fw_device(unit->device.parent);

	/* implicit directory ID */
	directory_id = ((unit->directory - device->config_rom) * 4
			+ CSR_CONFIG_ROM) & 0xffffff;

	/* explicit directory ID, overrides implicit ID if present */
	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == CSR_DIRECTORY_ID) {
			directory_id = value;
			break;
		}

	/* FIXME: Make this work for multi-lun devices. */
	lun = 0;

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
			directory_id, lun);
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1165 1166 1167 1168 1169
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
	.proc_name		= (char *)sbp2_driver_name,
	.queuecommand		= sbp2_scsi_queuecommand,
1170
	.slave_alloc		= sbp2_scsi_slave_alloc,
1171 1172 1173 1174 1175
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1176 1177
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1178
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1179 1180 1181 1182 1183 1184 1185
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1186 1187 1188 1189 1190
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static int __init sbp2_init(void)
{
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);