fw-sbp2.c 45.1 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32 33 34
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
35
#include <linux/kernel.h>
36
#include <linux/mod_devicetable.h>
37
#include <linux/module.h>
38
#include <linux/moduleparam.h>
A
Andrew Morton 已提交
39
#include <linux/scatterlist.h>
40
#include <linux/string.h>
41
#include <linux/stringify.h>
42
#include <linux/timer.h>
43
#include <linux/workqueue.h>
44
#include <asm/system.h>
45 46 47 48 49 50 51

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-device.h"
52 53
#include "fw-topology.h"
#include "fw-transaction.h"
54

55 56 57 58 59 60 61 62 63 64 65 66
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
86 87 88
 * - delay inquiry
 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
 *
89 90 91 92 93 94 95 96 97
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
98 99
#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
#define SBP2_INQUIRY_DELAY		12
100 101 102 103 104 105 106 107 108
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109
	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 111 112
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

113
/* I don't know why the SCSI stack doesn't define something like this... */
114
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115 116 117

static const char sbp2_driver_name[] = "sbp2";

118 119 120 121 122 123 124 125
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
	struct scsi_device *sdev;
126 127
	struct fw_address_handler address_handler;
	struct list_head orb_list;
128

129
	u64 command_block_agent_address;
130
	u16 lun;
131 132
	int login_id;

133
	/*
134 135 136 137
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
138
	 */
139
	int generation;
140 141
	int retries;
	struct delayed_work work;
142
	bool blocked;
143 144
};

145 146 147 148 149 150 151
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;
152
	const char *bus_id;
153
	struct list_head lu_list;
154 155 156 157 158

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;
159
	unsigned int workarounds;
160
	unsigned int mgt_orb_timeout;
161 162 163

	int dont_block;	/* counter for each logical unit */
	int blocked;	/* ditto */
164 165
};

166 167
/*
 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168 169
 * provided in the config rom. Most devices do provide a value, which
 * we'll use for login management orbs, but with some sane limits.
170
 */
171 172
#define SBP2_MIN_LOGIN_ORB_TIMEOUT	5000U	/* Timeout in ms */
#define SBP2_MAX_LOGIN_ORB_TIMEOUT	40000U	/* Timeout in ms */
173
#define SBP2_ORB_TIMEOUT		2000U	/* Timeout in ms */
174
#define SBP2_ORB_NULL			0x80000000
175
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
176 177 178 179 180

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
181
#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
182 183 184
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

210 211 212 213 214 215 216 217
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
218 219 220 221 222 223 224 225 226 227 228 229 230 231

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
232
	struct kref kref;
233 234 235
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
236
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
237 238 239
	struct list_head link;
};

240 241 242
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
243
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
244 245
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
246

247 248
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

265 266
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
267 268 269 270 271 272

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
273 274 275 276 277 278 279 280
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
281 282 283 284 285 286 287 288 289 290 291

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
292
	struct sbp2_logical_unit *lu;
293

294
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
310
	unsigned int workarounds;
311 312 313 314 315 316 317
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
318 319 320 321 322
	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x000000,
		.workarounds		= SBP2_WORKAROUND_DELAY_INQUIRY,
	},
323 324 325 326 327 328 329 330 331 332
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
333 334 335

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
336 337
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
338 339 340
	 * could change due to Apple-supplied firmware updates though.
	 */

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

358 359 360 361 362 363 364 365
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

366 367 368 369 370 371 372
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
373
	struct sbp2_logical_unit *lu = callback_data;
374 375 376 377 378 379
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
380
	    length == 0 || length > sizeof(status)) {
381 382 383 384 385 386 387 388
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
389
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
390 391 392 393 394 395 396
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
397
	list_for_each_entry(orb, &lu->orb_list, link) {
398
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
399 400
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
401 402 403 404 405 406
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

407
	if (&orb->link != &lu->orb_list)
408 409 410 411
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

412 413
	kref_put(&orb->kref, free_orb);

414 415 416 417 418 419 420 421 422 423
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

424 425 426 427 428 429 430 431 432 433 434 435 436 437
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
438
		list_del(&orb->link);
439
		spin_unlock_irqrestore(&card->lock, flags);
440
		orb->callback(orb, NULL);
441 442
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
443
	}
444 445

	kref_put(&orb->kref, free_orb);
446 447 448
}

static void
449
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
450 451
	      int node_id, int generation, u64 offset)
{
452
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
453 454 455 456
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
457
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
458 459

	spin_lock_irqsave(&device->card->lock, flags);
460
	list_add_tail(&orb->link, &lu->orb_list);
461 462
	spin_unlock_irqrestore(&device->card->lock, flags);

463 464 465 466
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

467
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
468
			node_id, generation, device->max_speed, offset,
469
			&orb->pointer, sizeof(orb->pointer),
470 471 472
			complete_transaction, orb);
}

473
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
474
{
475
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
476 477 478
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
479
	int retval = -ENOENT;
480 481 482

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
483
	list_splice_init(&lu->orb_list, &list);
484 485 486
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
487
		retval = 0;
488 489 490
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

491 492 493 494
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

495
	return retval;
496 497
}

498 499 500 501
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
502
		container_of(base_orb, struct sbp2_management_orb, base);
503 504

	if (status)
505
		memcpy(&orb->status, status, sizeof(*status));
506 507 508 509
	complete(&orb->done);
}

static int
510 511 512
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
513
{
514
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
515
	struct sbp2_management_orb *orb;
516
	unsigned int timeout;
517 518
	int retval = -ENOMEM;

519 520 521
	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
		return 0;

522
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
523 524 525
	if (orb == NULL)
		return -ENOMEM;

526
	kref_init(&orb->base.kref);
527 528
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
529
			       sizeof(orb->response), DMA_FROM_DEVICE);
530
	if (dma_mapping_error(orb->response_bus))
531
		goto fail_mapping_response;
532 533 534 535 536

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
537 538
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
539
		MANAGEMENT_ORB_LUN(lun_or_login_id);
540
	orb->request.length =
541
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
542

543 544
	orb->request.status_fifo.high = lu->address_handler.offset >> 32;
	orb->request.status_fifo.low  = lu->address_handler.offset;
545 546

	if (function == SBP2_LOGIN_REQUEST) {
547
		/* Ask for 2^2 == 4 seconds reconnect grace period */
548
		orb->request.misc |=
549 550
			MANAGEMENT_ORB_RECONNECT(2) |
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
551
		timeout = lu->tgt->mgt_orb_timeout;
552 553
	} else {
		timeout = SBP2_ORB_TIMEOUT;
554 555
	}

556
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
557 558 559

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
560

561 562 563 564 565 566
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

567 568
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
569

570
	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
571 572

	retval = -EIO;
573
	if (sbp2_cancel_orbs(lu) == 0) {
574 575
		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
576 577 578
		goto out;
	}

579
	if (orb->base.rcode != RCODE_COMPLETE) {
580 581
		fw_error("%s: management write failed, rcode 0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
582 583 584
		goto out;
	}

585 586
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
587
		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
588 589
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
590 591 592 593 594 595
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
596
			 sizeof(orb->request), DMA_TO_DEVICE);
597
 fail_mapping_request:
598
	dma_unmap_single(device->card->device, orb->response_bus,
599
			 sizeof(orb->response), DMA_FROM_DEVICE);
600
 fail_mapping_response:
601 602
	if (response)
		fw_memcpy_from_be32(response,
603
				    orb->response, sizeof(orb->response));
604
	kref_put(&orb->base.kref, free_orb);
605 606 607 608 609 610

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
611
			   void *payload, size_t length, void *done)
612
{
613 614 615 616 617 618 619 620 621
	complete(done);
}

static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
{
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
	DECLARE_COMPLETION_ONSTACK(done);
	struct fw_transaction t;
	static u32 z;
622

623 624 625 626 627
	fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
			&z, sizeof(z), complete_agent_reset_write, &done);
	wait_for_completion(&done);
628 629
}

630 631 632 633 634 635 636 637
static void
complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
				   void *payload, size_t length, void *data)
{
	kfree(data);
}

static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
638
{
639
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
640
	struct fw_transaction *t;
641
	static u32 z;
642

643
	t = kmalloc(sizeof(*t), GFP_ATOMIC);
644
	if (t == NULL)
645
		return;
646 647

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
648 649
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
650
			&z, sizeof(z), complete_agent_reset_write_no_wait, t);
651 652
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
{
	struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
	unsigned long flags;

	/* serialize with comparisons of lu->generation and card->generation */
	spin_lock_irqsave(&card->lock, flags);
	lu->generation = generation;
	spin_unlock_irqrestore(&card->lock, flags);
}

static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
{
	/*
	 * We may access dont_block without taking card->lock here:
	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
	 * are currently serialized against each other.
	 * And a wrong result in sbp2_conditionally_block()'s access of
	 * dont_block is rather harmless, it simply misses its first chance.
	 */
	--lu->tgt->dont_block;
}

/*
 * Blocks lu->tgt if all of the following conditions are met:
 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 *     logical units have been finished (indicated by dont_block == 0).
 *   - lu->generation is stale.
 *
 * Note, scsi_block_requests() must be called while holding card->lock,
 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 * unblock the target.
 */
static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (!tgt->dont_block && !lu->blocked &&
	    lu->generation != card->generation) {
		lu->blocked = true;
		if (++tgt->blocked == 1) {
			scsi_block_requests(shost);
			fw_notify("blocked %s\n", lu->tgt->bus_id);
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);
}

/*
 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;
	bool unblock = false;

	spin_lock_irqsave(&card->lock, flags);
	if (lu->blocked && lu->generation == card->generation) {
		lu->blocked = false;
		unblock = --tgt->blocked == 0;
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (unblock) {
		scsi_unblock_requests(shost);
		fw_notify("unblocked %s\n", lu->tgt->bus_id);
	}
}

/*
 * Prevents future blocking of tgt and unblocks it.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_unblock(struct sbp2_target *tgt)
{
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	++tgt->dont_block;
	spin_unlock_irqrestore(&card->lock, flags);

	scsi_unblock_requests(shost);
}

754
static void sbp2_release_target(struct kref *kref)
755
{
756 757 758 759 760
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);

761 762 763
	/* prevent deadlocks */
	sbp2_unblock(tgt);

764 765 766 767
	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
		if (lu->sdev)
			scsi_remove_device(lu->sdev);

768 769
		sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
770

771 772 773 774 775
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
776
	fw_notify("released %s\n", tgt->bus_id);
777 778 779

	put_device(&tgt->unit->device);
	scsi_host_put(shost);
780 781
}

782 783
static struct workqueue_struct *sbp2_wq;

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
/*
 * Always get the target's kref when scheduling work on one its units.
 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 */
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	if (queue_delayed_work(sbp2_wq, &lu->work, delay))
		kref_get(&lu->tgt->kref);
}

static void sbp2_target_put(struct sbp2_target *tgt)
{
	kref_put(&tgt->kref, sbp2_release_target);
}

799 800
static void sbp2_reconnect(struct work_struct *work);

801 802
static void sbp2_login(struct work_struct *work)
{
803 804
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
805 806 807
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
	struct Scsi_Host *shost;
808 809
	struct scsi_device *sdev;
	struct scsi_lun eight_bytes_lun;
810
	struct sbp2_login_response response;
811
	int generation, node_id, local_node_id;
812

813 814 815
	if (fw_device_is_shutdown(device))
		goto out;

816
	generation    = device->generation;
817
	smp_rmb();    /* node_id must not be older than generation */
818 819
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
820

821 822 823 824 825
	/* If this is a re-login attempt, log out, or we might be rejected. */
	if (lu->sdev)
		sbp2_send_management_orb(lu, device->node_id, generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);

826 827
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
828
		if (lu->retries++ < 5) {
829
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
830
		} else {
831 832
			fw_error("%s: failed to login to LUN %04x\n",
				 tgt->bus_id, lu->lun);
833 834 835
			/* Let any waiting I/O fail from now on. */
			sbp2_unblock(lu->tgt);
		}
836
		goto out;
837 838
	}

839 840
	tgt->node_id	  = node_id;
	tgt->address_high = local_node_id << 16;
841
	sbp2_set_generation(lu, generation);
842 843

	/* Get command block agent offset and login id. */
844
	lu->command_block_agent_address =
845
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
846
		response.command_block_agent.low;
847
	lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
848

849 850
	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
851 852 853 854 855 856

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

857 858 859
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

860 861 862
	/* This was a re-login. */
	if (lu->sdev) {
		sbp2_cancel_orbs(lu);
863
		sbp2_conditionally_unblock(lu);
864 865 866
		goto out;
	}

867 868 869
	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
		ssleep(SBP2_INQUIRY_DELAY);

870 871 872
	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
873
	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
874

875 876
	sdev = __scsi_add_device(shost, 0, 0,
				 scsilun_to_int(&eight_bytes_lun), lu);
877 878 879 880 881 882 883
	/*
	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
	 * Therefore __scsi_add_device() will get into trouble if a bus reset
	 * happens in parallel.  It will either fail or leave us with an
	 * unusable sdev.  As a workaround we check for this and retry the
	 * whole login and SCSI probing.
	 */
884

885 886 887 888 889 890 891 892 893 894 895
	/* Reported error during __scsi_add_device() */
	if (IS_ERR(sdev))
		goto out_logout_login;

	scsi_device_put(sdev);

	/* Unreported error during __scsi_add_device() */
	smp_rmb(); /* get current card generation */
	if (generation != device->card->generation) {
		scsi_remove_device(sdev);
		goto out_logout_login;
896
	}
897 898 899

	/* No error during __scsi_add_device() */
	lu->sdev = sdev;
900
	sbp2_allow_block(lu);
901 902 903 904 905 906 907 908 909 910 911 912 913 914
	goto out;

 out_logout_login:
	smp_rmb(); /* generation may have changed */
	generation = device->generation;
	smp_rmb(); /* node_id must not be older than generation */

	sbp2_send_management_orb(lu, device->node_id, generation,
				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
	/*
	 * If a bus reset happened, sbp2_update will have requeued
	 * lu->work already.  Reset the work from reconnect to login.
	 */
	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
915
 out:
916
	sbp2_target_put(tgt);
917
}
918

919
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
920
{
921
	struct sbp2_logical_unit *lu;
922

923 924 925
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
926

927 928 929
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
930

931 932 933 934 935
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
936

937 938 939 940
	lu->tgt  = tgt;
	lu->sdev = NULL;
	lu->lun  = lun_entry & 0xffff;
	lu->retries = 0;
941 942
	lu->blocked = false;
	++tgt->dont_block;
943 944
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
945

946 947 948
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
949

950 951 952 953
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
954

955 956 957 958 959 960 961 962 963 964 965 966 967
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;
968
	unsigned int timeout;
969 970

	fw_csr_iterator_init(&ci, directory);
971 972
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
973

974
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
975 976
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
977
			break;
978 979 980

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
981
			break;
982

983
		case CSR_MODEL:
984 985 986 987 988 989 990
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

991 992 993 994 995 996 997 998 999 1000
		case SBP2_CSR_UNIT_CHARACTERISTICS:
			/* the timeout value is stored in 500ms units */
			timeout = ((unsigned int) value >> 8 & 0xff) * 500;
			timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
			tgt->mgt_orb_timeout =
				  min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);

			if (timeout > tgt->mgt_orb_timeout)
				fw_notify("%s: config rom contains %ds "
					  "management ORB timeout, limiting "
1001
					  "to %ds\n", tgt->bus_id,
1002 1003 1004 1005
					  timeout / 1000,
					  tgt->mgt_orb_timeout / 1000);
			break;

1006 1007 1008 1009 1010 1011 1012 1013
		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
1014 1015 1016
			break;
		}
	}
1017 1018 1019 1020 1021 1022 1023
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
1024
	unsigned int w = sbp2_param_workarounds;
1025 1026 1027 1028

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
1029
			  tgt->bus_id);
1030

1031 1032
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
1033 1034

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1035

1036 1037 1038
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
1039

1040 1041 1042
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
1043

1044
		w |= sbp2_workarounds_table[i].workarounds;
1045 1046
		break;
	}
1047 1048
 out:
	if (w)
1049
		fw_notify("Workarounds for %s: 0x%x "
1050
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1051
			  tgt->bus_id, w, firmware_revision, model);
1052
	tgt->workarounds = w;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);
1075
	tgt->bus_id = unit->device.bus_id;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
1096

1097 1098
	get_device(&unit->device);

1099
	/* Do the login in a workqueue so we can easily reschedule retries. */
1100
	list_for_each_entry(lu, &tgt->lu_list, link)
1101
		sbp2_queue_work(lu, 0);
1102
	return 0;
1103

1104
 fail_tgt_put:
1105
	sbp2_target_put(tgt);
1106 1107 1108 1109 1110
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
1111 1112 1113 1114 1115
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
1116
	struct sbp2_target *tgt = unit->device.driver_data;
1117

1118
	sbp2_target_put(tgt);
1119 1120 1121 1122 1123
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
1124 1125
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
1126 1127
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
1128 1129
	int generation, node_id, local_node_id;

1130 1131 1132
	if (fw_device_is_shutdown(device))
		goto out;

1133
	generation    = device->generation;
1134
	smp_rmb();    /* node_id must not be older than generation */
1135 1136
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
1137

1138
	if (sbp2_send_management_orb(lu, node_id, generation,
1139
				     SBP2_RECONNECT_REQUEST,
1140
				     lu->login_id, NULL) < 0) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		/*
		 * If reconnect was impossible even though we are in the
		 * current generation, fall back and try to log in again.
		 *
		 * We could check for "Function rejected" status, but
		 * looking at the bus generation as simpler and more general.
		 */
		smp_rmb(); /* get current card generation */
		if (generation == device->card->generation ||
		    lu->retries++ >= 5) {
1151
			fw_error("%s: failed to reconnect\n", tgt->bus_id);
1152 1153
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1154
		}
1155 1156
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		goto out;
1157
	}
1158

1159 1160
	tgt->node_id      = node_id;
	tgt->address_high = local_node_id << 16;
1161
	sbp2_set_generation(lu, generation);
1162

1163 1164
	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
1165 1166 1167

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1168
	sbp2_conditionally_unblock(lu);
1169
 out:
1170
	sbp2_target_put(tgt);
1171 1172 1173 1174
}

static void sbp2_update(struct fw_unit *unit)
{
1175 1176
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
1177

1178 1179 1180 1181 1182 1183 1184
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
1185
		sbp2_conditionally_block(lu);
1186
		lu->retries = 0;
1187
		sbp2_queue_work(lu, 0);
1188
	}
1189 1190 1191 1192 1193
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

1194
static const struct fw_device_id sbp2_id_table[] = {
1195 1196 1197
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1198
		.version      = SBP2_SW_VERSION_ENTRY,
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

1215 1216
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1217
{
1218 1219
	int sam_status;

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1237
	sam_status = sbp2_status[0] & 0x3f;
1238

1239 1240
	switch (sam_status) {
	case SAM_STAT_GOOD:
1241 1242
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1243
	case SAM_STAT_BUSY:
1244 1245
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1246 1247
		return DID_OK << 16 | sam_status;

1248
	default:
1249
		return DID_ERROR << 16;
1250 1251 1252 1253 1254 1255
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1256 1257
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1258
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1259 1260 1261
	int result;

	if (status != NULL) {
1262
		if (STATUS_GET_DEAD(*status))
1263
			sbp2_agent_reset_no_wait(orb->lu);
1264

1265
		switch (STATUS_GET_RESPONSE(*status)) {
1266
		case SBP2_STATUS_REQUEST_COMPLETE:
1267
			result = DID_OK << 16;
1268 1269
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1270
			result = DID_BUS_BUSY << 16;
1271 1272 1273 1274
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1275
			result = DID_ERROR << 16;
1276 1277 1278
			break;
		}

1279 1280
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1281 1282
							   orb->cmd->sense_buffer);
	} else {
1283 1284
		/*
		 * If the orb completes with status == NULL, something
1285
		 * went wrong, typically a bus reset happened mid-orb
1286 1287
		 * or when sending the write (less likely).
		 */
1288
		result = DID_BUS_BUSY << 16;
1289
		sbp2_conditionally_block(orb->lu);
1290 1291 1292
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1293
			 sizeof(orb->request), DMA_TO_DEVICE);
1294

1295 1296 1297
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1298 1299 1300 1301
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1302
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1303

1304
	orb->cmd->result = result;
1305 1306 1307
	orb->done(orb->cmd);
}

1308 1309 1310
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1311 1312 1313 1314 1315
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1316 1317
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1318
			   orb->cmd->sc_data_direction);
1319 1320
	if (count == 0)
		goto fail;
1321

1322 1323
	/*
	 * Handle the special case where there is only one element in
1324 1325 1326
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1327 1328
	 * tables.
	 */
1329
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1330
		orb->request.data_descriptor.high = lu->tgt->address_high;
1331
		orb->request.data_descriptor.low  = sg_dma_address(sg);
1332
		orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1333
		return 0;
1334 1335
	}

1336 1337
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1338 1339 1340 1341
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1342
	 */
1343 1344 1345
	for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
		sg_len = sg_dma_len(sg);
		sg_addr = sg_dma_address(sg);
1346
		while (sg_len) {
1347 1348 1349 1350 1351
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1352 1353 1354 1355 1356 1357 1358 1359 1360
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1361 1362 1363 1364 1365 1366 1367
	fw_memcpy_to_be32(orb->page_table, orb->page_table,
			  sizeof(orb->page_table[0]) * j);
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1368

1369 1370
	/*
	 * The data_descriptor pointer is the one case where we need
1371 1372 1373
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1374 1375
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1376
	orb->request.data_descriptor.high = lu->tgt->address_high;
1377 1378
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
1379 1380
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
1381

1382 1383 1384
	return 0;

 fail_page_table:
1385
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1386 1387 1388
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1389 1390 1391 1392 1393 1394
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1395 1396
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1397
	struct sbp2_command_orb *orb;
1398
	unsigned int max_payload;
1399
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1400

1401 1402 1403 1404
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1405
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1406
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1407 1408 1409
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1410 1411
	}

1412
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1413 1414
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1415
		return SCSI_MLQUEUE_HOST_BUSY;
1416 1417
	}

1418 1419
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1420
	kref_init(&orb->base.kref);
1421

1422
	orb->lu   = lu;
1423 1424 1425 1426 1427
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1428 1429
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1430 1431
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1432 1433
	 * if we set this to max_speed + 7, we get the right value.
	 */
1434 1435
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1436
	orb->request.misc =
1437
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1438
		COMMAND_ORB_SPEED(device->max_speed) |
1439
		COMMAND_ORB_NOTIFY;
1440 1441 1442

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1443
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1444 1445
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1446
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1447

1448 1449
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1450

1451
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1452 1453

	memset(orb->request.command_block,
1454
	       0, sizeof(orb->request.command_block));
1455 1456 1457
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1458 1459 1460 1461
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1462
		goto out;
1463

1464 1465 1466 1467
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1468
	kref_put(&orb->base.kref, free_orb);
1469
	return retval;
1470 1471
}

1472 1473
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1474
	struct sbp2_logical_unit *lu = sdev->hostdata;
1475

1476 1477 1478 1479
	/* (Re-)Adding logical units via the SCSI stack is not supported. */
	if (!lu)
		return -ENOSYS;

1480 1481
	sdev->allow_restart = 1;

1482 1483 1484 1485 1486 1487
	/*
	 * Update the dma alignment (minimum alignment requirements for
	 * start and end of DMA transfers) to be a sector
	 */
	blk_queue_update_dma_alignment(sdev->request_queue, 511);

1488
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1489
		sdev->inquiry_len = 36;
1490

1491 1492 1493
	return 0;
}

1494 1495
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1496
	struct sbp2_logical_unit *lu = sdev->hostdata;
1497

1498 1499 1500 1501
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1502

1503
	if (sdev->type == TYPE_DISK &&
1504
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1505
		sdev->skip_ms_page_8 = 1;
1506 1507

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1508
		sdev->fix_capacity = 1;
1509 1510

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1511
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1522
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1523

1524
	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1525 1526
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1527 1528 1529 1530

	return SUCCESS;
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1543
	struct sbp2_logical_unit *lu;
1544 1545 1546 1547 1548
	struct fw_device *device;

	if (!sdev)
		return 0;

1549 1550
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1551 1552 1553

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1554
			lu->tgt->directory_id, lu->lun);
1555 1556 1557 1558 1559 1560 1561 1562 1563
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1564 1565 1566
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1567
	.proc_name		= sbp2_driver_name,
1568
	.queuecommand		= sbp2_scsi_queuecommand,
1569
	.slave_alloc		= sbp2_scsi_slave_alloc,
1570 1571 1572 1573 1574
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1575 1576
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1577
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1578 1579 1580 1581 1582 1583 1584
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1585 1586 1587 1588 1589
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1590 1591
static int __init sbp2_init(void)
{
1592 1593 1594 1595
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1596 1597 1598 1599 1600 1601
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1602
	destroy_workqueue(sbp2_wq);
1603 1604 1605 1606
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);