intel_pm.c 206.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void bxt_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

63 64
	/*
	 * FIXME:
65
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 67
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 70
}

71 72
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
73
	struct drm_i915_private *dev_priv = dev->dev_private;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = dev->dev_private;
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

138
	dev_priv->ips.r_t = dev_priv->mem_freq;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
170
		dev_priv->ips.c_m = 0;
171
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
172
		dev_priv->ips.c_m = 1;
173
	} else {
174
		dev_priv->ips.c_m = 2;
175 176 177
	}
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

216
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

278 279 280
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

281
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
282
{
283 284
	struct drm_device *dev = dev_priv->dev;
	u32 val;
285

286 287
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
288
		POSTING_READ(FW_BLC_SELF_VLV);
289
		dev_priv->wm.vlv.cxsr = enable;
290 291
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
292
		POSTING_READ(FW_BLC_SELF);
293 294 295 296
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
297
		POSTING_READ(DSPFW3);
298 299 300 301
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
302
		POSTING_READ(FW_BLC_SELF);
303 304 305 306
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
307
		POSTING_READ(INSTPM);
308 309 310
	} else {
		return;
	}
311

312 313
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
314 315
}

316

317 318 319 320 321 322 323 324 325 326 327 328 329 330
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
331
static const int pessimal_latency_ns = 5000;
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

388
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

404
static int i830_get_fifo_size(struct drm_device *dev, int plane)
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

421
static int i845_get_fifo_size(struct drm_device *dev, int plane)
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
439 440 441 442 443
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
444 445
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
446 447 448 449 450
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
451 452
};
static const struct intel_watermark_params pineview_cursor_wm = {
453 454 455 456 457
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 459
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
460 461 462 463 464
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 466
};
static const struct intel_watermark_params g4x_wm_info = {
467 468 469 470 471
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
472 473
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
474 475 476 477 478
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
479 480
};
static const struct intel_watermark_params valleyview_wm_info = {
481 482 483 484 485
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
486 487
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
488 489 490 491 492
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
493 494
};
static const struct intel_watermark_params i965_cursor_wm_info = {
495 496 497 498 499
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params i945_wm_info = {
502 503 504 505 506
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params i915_wm_info = {
509 510 511 512 513
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
514
};
515
static const struct intel_watermark_params i830_a_wm_info = {
516 517 518 519 520
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
521
};
522 523 524 525 526 527 528
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
529
static const struct intel_watermark_params i845_wm_info = {
530 531 532 533 534
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
584 585 586 587 588 589 590 591 592 593 594

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

595 596 597 598 599 600 601
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

602
	for_each_crtc(dev, crtc) {
603
		if (intel_crtc_active(crtc)) {
604 605 606 607 608 609 610 611 612
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

613
static void pineview_update_wm(struct drm_crtc *unused_crtc)
614
{
615
	struct drm_device *dev = unused_crtc->dev;
616 617 618 619 620 621 622 623 624 625
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
626
		intel_set_memory_cxsr(dev_priv, false);
627 628 629 630 631
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
632
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
633
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
634
		int clock = adjusted_mode->crtc_clock;
635 636 637 638 639 640 641

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
642
		reg |= FW_WM(wm, SR);
643 644 645 646 647 648 649 650 651
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
652
		reg |= FW_WM(wm, CURSOR_SR);
653 654 655 656 657 658 659 660
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
661
		reg |= FW_WM(wm, HPLL_SR);
662 663 664 665 666 667 668 669
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
670
		reg |= FW_WM(wm, HPLL_CURSOR);
671 672 673
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

674
		intel_set_memory_cxsr(dev_priv, true);
675
	} else {
676
		intel_set_memory_cxsr(dev_priv, false);
677 678 679 680 681 682 683 684 685 686 687 688 689
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
690
	const struct drm_display_mode *adjusted_mode;
691 692 693 694 695
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
696
	if (!intel_crtc_active(crtc)) {
697 698 699 700 701
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

702
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
703
	clock = adjusted_mode->crtc_clock;
704
	htotal = adjusted_mode->crtc_htotal;
705
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
706
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
707 708 709 710 711 712 713 714 715 716 717 718

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
719
	line_time_us = max(htotal * 1000 / clock, 1);
720
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
721
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
776
	const struct drm_display_mode *adjusted_mode;
777 778 779 780 781 782 783 784 785 786 787 788
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
789
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
790
	clock = adjusted_mode->crtc_clock;
791
	htotal = adjusted_mode->crtc_htotal;
792
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
793
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
794

795
	line_time_us = max(htotal * 1000 / clock, 1);
796 797 798 799 800 801 802 803 804 805 806
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
807
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
808 809 810 811 812 813 814 815
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

816 817 818
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

819 820 821 822 823 824 825 826 827 828 829 830
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

831
	I915_WRITE(DSPFW1,
832 833 834 835
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
836
	I915_WRITE(DSPFW2,
837 838 839
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
840
	I915_WRITE(DSPFW3,
841
		   FW_WM(wm->sr.cursor, CURSOR_SR));
842 843 844

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
845 846
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
847
		I915_WRITE(DSPFW8_CHV,
848 849
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
850
		I915_WRITE(DSPFW9_CHV,
851 852
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
853
		I915_WRITE(DSPHOWM,
854 855 856 857 858 859 860 861 862 863
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
864 865
	} else {
		I915_WRITE(DSPFW7,
866 867
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
868
		I915_WRITE(DSPHOWM,
869 870 871 872 873 874 875
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
876 877
	}

878 879 880 881 882 883
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

884
	POSTING_READ(DSPFW1);
885 886
}

887 888
#undef FW_WM_VLV

889 890 891 892 893 894
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

918 919
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

920 921 922
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
923 924

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1066
static void vlv_compute_wm(struct intel_crtc *crtc)
1067 1068 1069 1070 1071 1072 1073 1074 1075
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1076
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1077
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1078 1079 1080

	wm_state->num_active_planes = 0;

1081
	vlv_compute_fifo(crtc);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1138
					wm_state->wm[level].cursor;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1157
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1158 1159 1160 1161 1162 1163 1164
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1255 1256 1257 1258 1259 1260
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1261
	wm->level = to_i915(dev)->wm.max_level;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1280 1281 1282
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1309
	vlv_compute_wm(intel_crtc);
1310 1311
	vlv_merge_wm(dev, &wm);

1312 1313 1314
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1315
		return;
1316
	}
1317 1318 1319 1320 1321 1322 1323 1324 1325

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1326
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327 1328
		intel_set_memory_cxsr(dev_priv, false);

1329 1330 1331
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1332 1333 1334 1335 1336 1337 1338 1339
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1340
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1352 1353
}

1354 1355
#define single_plane_enabled(mask) is_power_of_2(mask)

1356
static void g4x_update_wm(struct drm_crtc *crtc)
1357
{
1358
	struct drm_device *dev = crtc->dev;
1359 1360 1361 1362 1363
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1364
	bool cxsr_enabled;
1365

1366
	if (g4x_compute_wm0(dev, PIPE_A,
1367 1368
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1369
			    &planea_wm, &cursora_wm))
1370
		enabled |= 1 << PIPE_A;
1371

1372
	if (g4x_compute_wm0(dev, PIPE_B,
1373 1374
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1375
			    &planeb_wm, &cursorb_wm))
1376
		enabled |= 1 << PIPE_B;
1377 1378 1379 1380 1381 1382

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1383
			     &plane_sr, &cursor_sr)) {
1384
		cxsr_enabled = true;
1385
	} else {
1386
		cxsr_enabled = false;
1387
		intel_set_memory_cxsr(dev_priv, false);
1388 1389
		plane_sr = cursor_sr = 0;
	}
1390

1391 1392
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393 1394 1395 1396 1397
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1398 1399 1400 1401
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1402
	I915_WRITE(DSPFW2,
1403
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1404
		   FW_WM(cursora_wm, CURSORA));
1405 1406
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1407
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1408
		   FW_WM(cursor_sr, CURSOR_SR));
1409 1410 1411

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1412 1413
}

1414
static void i965_update_wm(struct drm_crtc *unused_crtc)
1415
{
1416
	struct drm_device *dev = unused_crtc->dev;
1417 1418 1419 1420
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1421
	bool cxsr_enabled;
1422 1423 1424 1425 1426 1427

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1428
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1429
		int clock = adjusted_mode->crtc_clock;
1430
		int htotal = adjusted_mode->crtc_htotal;
1431
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1432
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1433 1434 1435
		unsigned long line_time_us;
		int entries;

1436
		line_time_us = max(htotal * 1000 / clock, 1);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450
			pixel_size * crtc->cursor->state->crtc_w;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1462
		cxsr_enabled = true;
1463
	} else {
1464
		cxsr_enabled = false;
1465
		/* Turn off self refresh if both pipes are enabled */
1466
		intel_set_memory_cxsr(dev_priv, false);
1467 1468 1469 1470 1471 1472
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1473 1474 1475 1476 1477 1478
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1479
	/* update cursor SR watermark */
1480
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1481 1482 1483

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1484 1485
}

1486 1487
#undef FW_WM

1488
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1489
{
1490
	struct drm_device *dev = unused_crtc->dev;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1505
		wm_info = &i830_a_wm_info;
1506 1507 1508

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1509
	if (intel_crtc_active(crtc)) {
1510
		const struct drm_display_mode *adjusted_mode;
1511
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1512 1513 1514
		if (IS_GEN2(dev))
			cpp = 4;

1515
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1516
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1517
					       wm_info, fifo_size, cpp,
1518
					       pessimal_latency_ns);
1519
		enabled = crtc;
1520
	} else {
1521
		planea_wm = fifo_size - wm_info->guard_size;
1522 1523 1524 1525 1526 1527
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1528 1529 1530

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1531
	if (intel_crtc_active(crtc)) {
1532
		const struct drm_display_mode *adjusted_mode;
1533
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1534 1535 1536
		if (IS_GEN2(dev))
			cpp = 4;

1537
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539
					       wm_info, fifo_size, cpp,
1540
					       pessimal_latency_ns);
1541 1542 1543 1544
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1545
	} else {
1546
		planeb_wm = fifo_size - wm_info->guard_size;
1547 1548 1549
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1550 1551 1552

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1553
	if (IS_I915GM(dev) && enabled) {
1554
		struct drm_i915_gem_object *obj;
1555

1556
		obj = intel_fb_obj(enabled->primary->state->fb);
1557 1558

		/* self-refresh seems busted with untiled */
1559
		if (obj->tiling_mode == I915_TILING_NONE)
1560 1561 1562
			enabled = NULL;
	}

1563 1564 1565 1566 1567 1568
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1569
	intel_set_memory_cxsr(dev_priv, false);
1570 1571 1572 1573 1574

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1575
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1576
		int clock = adjusted_mode->crtc_clock;
1577
		int htotal = adjusted_mode->crtc_htotal;
1578
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1579
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1580 1581 1582
		unsigned long line_time_us;
		int entries;

1583
		line_time_us = max(htotal * 1000 / clock, 1);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1614 1615
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1616 1617
}

1618
static void i845_update_wm(struct drm_crtc *unused_crtc)
1619
{
1620
	struct drm_device *dev = unused_crtc->dev;
1621 1622
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1623
	const struct drm_display_mode *adjusted_mode;
1624 1625 1626 1627 1628 1629 1630
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1631
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1632
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1633
				       &i845_wm_info,
1634
				       dev_priv->display.get_fifo_size(dev, 0),
1635
				       4, pessimal_latency_ns);
1636 1637 1638 1639 1640 1641 1642 1643
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1644
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1645
{
1646
	uint32_t pixel_rate;
1647

1648
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1649 1650 1651 1652

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1653
	if (pipe_config->pch_pfit.enabled) {
1654
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655 1656 1657 1658
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1674
/* latency must be in 0.1us units. */
1675
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1676 1677 1678 1679
			       uint32_t latency)
{
	uint64_t ret;

1680 1681 1682
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1683 1684 1685 1686 1687 1688
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1689
/* latency must be in 0.1us units. */
1690
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1691 1692 1693 1694 1695
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1696 1697 1698
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1699 1700 1701 1702 1703 1704
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1705
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1706 1707 1708 1709 1710
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1711 1712 1713 1714 1715 1716 1717
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
};

1718
struct ilk_wm_maximums {
1719 1720 1721 1722 1723 1724
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1725 1726 1727 1728 1729 1730 1731
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1732 1733 1734 1735
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1736
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1737
				   const struct intel_plane_state *pstate,
1738 1739
				   uint32_t mem_value,
				   bool is_lp)
1740
{
1741
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1742 1743
	uint32_t method1, method2;

1744
	if (!cstate->base.active || !pstate->visible)
1745 1746
		return 0;

1747
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1748 1749 1750 1751

	if (!is_lp)
		return method1;

1752 1753
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1754 1755
				 drm_rect_width(&pstate->dst),
				 bpp,
1756 1757 1758
				 mem_value);

	return min(method1, method2);
1759 1760
}

1761 1762 1763 1764
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1765
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1766
				   const struct intel_plane_state *pstate,
1767 1768
				   uint32_t mem_value)
{
1769
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1770 1771
	uint32_t method1, method2;

1772
	if (!cstate->base.active || !pstate->visible)
1773 1774
		return 0;

1775 1776 1777
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1778 1779
				 drm_rect_width(&pstate->dst),
				 bpp,
1780 1781 1782 1783
				 mem_value);
	return min(method1, method2);
}

1784 1785 1786 1787
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1788
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1789
				   const struct intel_plane_state *pstate,
1790 1791
				   uint32_t mem_value)
{
1792 1793
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1794
	if (!cstate->base.active || !pstate->visible)
1795 1796
		return 0;

1797 1798
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1799 1800
			      drm_rect_width(&pstate->dst),
			      bpp,
1801 1802 1803
			      mem_value);
}

1804
/* Only for WM_LP. */
1805
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1806
				   const struct intel_plane_state *pstate,
1807
				   uint32_t pri_val)
1808
{
1809 1810
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1811
	if (!cstate->base.active || !pstate->visible)
1812 1813
		return 0;

1814
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1815 1816
}

1817 1818
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1819 1820 1821
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1822 1823 1824 1825 1826
		return 768;
	else
		return 512;
}

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1861 1862 1863
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1864
				     const struct intel_wm_config *config,
1865 1866 1867 1868 1869 1870
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1871
	if (is_sprite && !config->sprites_enabled)
1872 1873 1874
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1875
	if (level == 0 || config->num_pipes_active > 1) {
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1887
	if (config->sprites_enabled) {
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1899
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1900 1901 1902 1903
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1904 1905
				      int level,
				      const struct intel_wm_config *config)
1906 1907
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1908
	if (level > 0 && config->num_pipes_active > 1)
1909 1910 1911
		return 64;

	/* otherwise just report max that registers can hold */
1912
	return ilk_cursor_wm_reg_max(dev, level);
1913 1914
}

1915
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1916 1917 1918
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1919
				    struct ilk_wm_maximums *max)
1920
{
1921 1922 1923
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1924
	max->fbc = ilk_fbc_wm_reg_max(dev);
1925 1926
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1937
static bool ilk_validate_wm_level(int level,
1938
				  const struct ilk_wm_maximums *max,
1939
				  struct intel_wm_level *result)
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1978
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1979
				 const struct intel_crtc *intel_crtc,
1980
				 int level,
1981
				 struct intel_crtc_state *cstate,
1982
				 struct intel_wm_level *result)
1983
{
1984
	struct intel_plane *intel_plane;
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
		struct intel_plane_state *pstate =
			to_intel_plane_state(intel_plane->base.state);

		switch (intel_plane->base.type) {
		case DRM_PLANE_TYPE_PRIMARY:
			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
							     pri_latency,
							     level);
			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
							     result->pri_val);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
							     spr_latency);
			break;
		case DRM_PLANE_TYPE_CURSOR:
			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
							     cur_latency);
			break;
		}
	}

2019 2020 2021
	result->enable = true;
}

2022 2023
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2024 2025
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2026
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2027
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2028
	u32 linetime, ips_linetime;
2029

2030
	if (!intel_crtc->active)
2031
		return 0;
2032

2033 2034 2035
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2036 2037 2038
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2039
					 dev_priv->cdclk_freq);
2040

2041 2042
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2043 2044
}

2045
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2046 2047 2048
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2049 2050
	if (IS_GEN9(dev)) {
		uint32_t val;
2051
		int ret, i;
2052
		int level, max_level = ilk_wm_max_level(dev);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2095
		/*
2096 2097
		 * WaWmMemoryReadLatency:skl
		 *
2098 2099 2100 2101 2102 2103 2104 2105
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2106 2107 2108 2109 2110
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2111 2112 2113 2114 2115
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2116 2117 2118
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2119

2120 2121
				break;
			}
2122
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2123 2124 2125 2126 2127
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2128 2129 2130 2131
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2132 2133 2134 2135 2136 2137 2138
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2139 2140 2141 2142 2143 2144 2145
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2146 2147 2148
	}
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2167
int ilk_wm_max_level(const struct drm_device *dev)
2168 2169
{
	/* how many WM levels are we expecting */
2170
	if (INTEL_INFO(dev)->gen >= 9)
2171 2172
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2173
		return 4;
2174
	else if (INTEL_INFO(dev)->gen >= 6)
2175
		return 3;
2176
	else
2177 2178
		return 2;
}
2179

2180 2181
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2182
				   const uint16_t wm[8])
2183 2184
{
	int level, max_level = ilk_wm_max_level(dev);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2195 2196 2197 2198 2199 2200 2201
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2202 2203 2204 2205 2206 2207 2208 2209
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2247
static void ilk_setup_wm_latency(struct drm_device *dev)
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2260 2261 2262 2263

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2264 2265 2266

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2267 2268
}

2269 2270 2271 2272 2273 2274 2275 2276
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, intel_crtc) {
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

2295
/* Compute new watermarks for the pipe */
2296 2297
static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
				  struct intel_pipe_wm *pipe_wm)
2298
{
2299 2300
	struct drm_crtc *crtc = cstate->base.crtc;
	struct drm_device *dev = crtc->dev;
2301
	const struct drm_i915_private *dev_priv = dev->dev_private;
2302
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2303 2304
	struct intel_plane *intel_plane;
	struct intel_plane_state *sprstate = NULL;
2305 2306 2307 2308 2309
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
	};
2310
	struct ilk_wm_maximums max;
2311

2312
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2313 2314 2315 2316
		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
			sprstate = to_intel_plane_state(intel_plane->base.state);
			break;
		}
2317 2318 2319 2320 2321 2322 2323
	}

	config.sprites_enabled = sprstate->visible;
	config.sprites_scaled = sprstate->visible &&
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2324
	pipe_wm->pipe_enabled = cstate->base.active;
2325
	pipe_wm->sprites_enabled = sprstate->visible;
2326
	pipe_wm->sprites_scaled = config.sprites_scaled;
2327

2328
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2329
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2330 2331 2332
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2333
	if (config.sprites_scaled)
2334 2335
		max_level = 0;

2336
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2337

2338
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2339
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2340

2341 2342 2343
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2344
	/* At least LP0 must be valid */
2345
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2346
		return false;
2347 2348 2349 2350 2351 2352

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

2353
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

2366
	return true;
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2378 2379
	ret_wm->enable = true;

2380
	for_each_intel_crtc(dev, intel_crtc) {
2381
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2382 2383 2384 2385
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2386

2387 2388 2389 2390 2391
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2392
		if (!wm->enable)
2393
			ret_wm->enable = false;
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2406
			 const struct intel_wm_config *config,
2407
			 const struct ilk_wm_maximums *max,
2408 2409
			 struct intel_pipe_wm *merged)
{
2410
	struct drm_i915_private *dev_priv = dev->dev_private;
2411
	int level, max_level = ilk_wm_max_level(dev);
2412
	int last_enabled_level = max_level;
2413

2414 2415 2416 2417 2418
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2419 2420
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2421 2422 2423 2424 2425 2426 2427

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2428 2429 2430 2431 2432
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2433 2434 2435 2436 2437 2438

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2439 2440
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2441 2442 2443
			wm->fbc_val = 0;
		}
	}
2444 2445 2446 2447 2448 2449 2450

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2451 2452
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
	    intel_fbc_enabled(dev_priv)) {
2453 2454 2455 2456 2457 2458
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2459 2460
}

2461 2462 2463 2464 2465 2466
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2467 2468 2469 2470 2471
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2472
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2473 2474 2475 2476 2477
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2478
static void ilk_compute_wm_results(struct drm_device *dev,
2479
				   const struct intel_pipe_wm *merged,
2480
				   enum intel_ddb_partitioning partitioning,
2481
				   struct ilk_wm_values *results)
2482
{
2483 2484
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2485

2486
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2487
	results->partitioning = partitioning;
2488

2489
	/* LP1+ register values */
2490
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2491
		const struct intel_wm_level *r;
2492

2493
		level = ilk_wm_lp_to_level(wm_lp, merged);
2494

2495
		r = &merged->wm[level];
2496

2497 2498 2499 2500 2501
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2502
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2503 2504 2505
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2506 2507 2508
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2509 2510 2511 2512 2513 2514 2515
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2516 2517 2518 2519
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2520 2521 2522 2523 2524
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2525
	}
2526

2527
	/* LP0 register values */
2528
	for_each_intel_crtc(dev, intel_crtc) {
2529
		enum pipe pipe = intel_crtc->pipe;
2530 2531
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];
2532 2533 2534 2535

		if (WARN_ON(!r->enable))
			continue;

2536
		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2537

2538 2539 2540 2541
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2542 2543 2544
	}
}

2545 2546
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2547
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2548 2549
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2550
{
2551 2552
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2553

2554 2555 2556 2557 2558
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2559 2560
	}

2561 2562
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2563 2564 2565
			return r2;
		else
			return r1;
2566
	} else if (level1 > level2) {
2567 2568 2569 2570 2571 2572
		return r1;
	} else {
		return r2;
	}
}

2573 2574 2575 2576 2577 2578 2579 2580
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2581
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2582 2583
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2584 2585 2586 2587 2588
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2589
	for_each_pipe(dev_priv, pipe) {
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2633 2634
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2635
{
2636
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2637
	bool changed = false;
2638

2639 2640 2641
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2642
		changed = true;
2643 2644 2645 2646
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2647
		changed = true;
2648 2649 2650 2651
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2652
		changed = true;
2653
	}
2654

2655 2656 2657 2658
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2659

2660 2661 2662 2663 2664 2665 2666
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2667 2668
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2669 2670
{
	struct drm_device *dev = dev_priv->dev;
2671
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2672 2673 2674
	unsigned int dirty;
	uint32_t val;

2675
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2676 2677 2678 2679 2680
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2681
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2682
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2683
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2684
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2685
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2686 2687
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2688
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2689
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2690
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2691
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2692
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2693 2694
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2695
	if (dirty & WM_DIRTY_DDB) {
2696
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2711 2712
	}

2713
	if (dirty & WM_DIRTY_FBC) {
2714 2715 2716 2717 2718 2719 2720 2721
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2722 2723 2724 2725 2726
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2727 2728 2729 2730 2731
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2732

2733
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2734
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2735
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2736
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2737
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2738
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2739 2740

	dev_priv->wm.hw = *results;
2741 2742
}

2743 2744 2745 2746 2747 2748 2749
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2750 2751 2752 2753 2754 2755
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2756
#define BXT_DDB_SIZE		512
2757 2758 2759

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2760
				   struct drm_crtc *for_crtc,
2761
				   const struct intel_wm_config *config,
2762
				   const struct skl_pipe_wm_parameters *params,
2763 2764 2765 2766 2767 2768
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2769
	if (!params->active) {
2770 2771 2772 2773 2774
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2775 2776 2777 2778
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2779 2780 2781 2782 2783

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2784
		if (!to_intel_crtc(crtc)->active)
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2795
	alloc->end = alloc->start + pipe_size;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2806 2807 2808 2809
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2810 2811
	if (entry->end)
		entry->end += 1;
2812 2813
}

2814 2815
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2816 2817 2818 2819 2820
{
	enum pipe pipe;
	int plane;
	u32 val;

2821 2822
	memset(ddb, 0, sizeof(*ddb));

2823
	for_each_pipe(dev_priv, pipe) {
2824 2825 2826
		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
			continue;

2827
		for_each_plane(dev_priv, pipe, plane) {
2828 2829 2830 2831 2832 2833
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2834 2835
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2836 2837 2838
	}
}

2839
static unsigned int
2840
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2841
{
2842 2843

	/* for planar format */
2844
	if (p->y_bytes_per_pixel) {
2845
		if (y)  /* y-plane data rate */
2846
			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2847
		else    /* uv-plane data rate */
2848
			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2849 2850 2851
	}

	/* for packed formats */
2852
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2853 2854 2855 2856 2857 2858 2859 2860
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2861 2862
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
2863 2864
{
	unsigned int total_data_rate = 0;
2865
	int plane;
2866

2867 2868
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
2869

2870 2871
		p = &params->plane[plane];
		if (!p->enabled)
2872 2873
			continue;

2874 2875 2876 2877
		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
		if (p->y_bytes_per_pixel) {
			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
		}
2878 2879 2880 2881 2882 2883
	}

	return total_data_rate;
}

static void
2884
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2885
		      const struct intel_wm_config *config,
2886
		      const struct skl_pipe_wm_parameters *params,
2887 2888 2889
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2890
	struct drm_i915_private *dev_priv = dev->dev_private;
2891 2892
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2893
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2894
	uint16_t alloc_size, start, cursor_blocks;
2895
	uint16_t minimum[I915_MAX_PLANES];
2896
	uint16_t y_minimum[I915_MAX_PLANES];
2897
	unsigned int total_data_rate;
2898
	int plane;
2899

2900
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2901
	alloc_size = skl_ddb_entry_size(alloc);
2902 2903
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2904 2905
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2906 2907 2908 2909
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2910 2911
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2912 2913

	alloc_size -= cursor_blocks;
2914
	alloc->end -= cursor_blocks;
2915

2916
	/* 1. Allocate the mininum required blocks for each active plane */
2917 2918
	for_each_plane(dev_priv, pipe, plane) {
		const struct intel_plane_wm_parameters *p;
2919

2920 2921
		p = &params->plane[plane];
		if (!p->enabled)
2922 2923
			continue;

2924 2925 2926 2927
		minimum[plane] = 8;
		alloc_size -= minimum[plane];
		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
		alloc_size -= y_minimum[plane];
2928 2929
	}

2930
	/*
2931 2932
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2933 2934 2935
	 *
	 * FIXME: we may not allocate every single block here.
	 */
2936
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2937

2938
	start = alloc->start;
2939 2940
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
2941 2942
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
2943

2944 2945
		p = &params->plane[plane];
		if (!p->enabled)
2946 2947
			continue;

2948
		data_rate = skl_plane_relative_data_rate(p, 0);
2949 2950

		/*
2951
		 * allocation for (packed formats) or (uv-plane part of planar format):
2952 2953 2954
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2955
		plane_blocks = minimum[plane];
2956 2957
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2958

2959 2960
		ddb->plane[pipe][plane].start = start;
		ddb->plane[pipe][plane].end = start + plane_blocks;
2961 2962

		start += plane_blocks;
2963 2964 2965 2966

		/*
		 * allocation for y_plane part of planar format:
		 */
2967 2968 2969
		if (p->y_bytes_per_pixel) {
			y_data_rate = skl_plane_relative_data_rate(p, 1);
			y_plane_blocks = y_minimum[plane];
2970 2971 2972
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

2973 2974
			ddb->y_plane[pipe][plane].start = start;
			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2975 2976 2977 2978

			start += y_plane_blocks;
		}

2979 2980 2981 2982
	}

}

2983
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2984 2985
{
	/* TODO: Take into account the scalers once we support them */
2986
	return config->base.adjusted_mode.crtc_clock;
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3003
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3004 3005 3006 3007 3008 3009 3010
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3011
			       uint64_t tiling, uint32_t latency)
3012
{
3013 3014 3015
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3016 3017 3018 3019 3020

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3031 3032
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3033
				plane_blocks_per_line;
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

3050 3051
	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3052 3053 3054 3055 3056
		return true;

	return false;
}

3057 3058 3059 3060
static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
3061
	struct drm_plane *plane;
3062 3063 3064

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		config->num_pipes_active += to_intel_crtc(crtc)->active;
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
	struct drm_framebuffer *fb;
	int i = 1; /* Index for sprite planes start */

	p->active = intel_crtc->active;
	if (p->active) {
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);

		fb = crtc->primary->state->fb;
		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
		if (fb) {
			p->plane[0].enabled = true;
			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);
			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
			p->plane[0].tiling = fb->modifier[0];
		} else {
			p->plane[0].enabled = false;
			p->plane[0].bytes_per_pixel = 0;
			p->plane[0].y_bytes_per_pixel = 0;
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		}
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
		p->plane[0].rotation = crtc->primary->state->rotation;

		fb = crtc->cursor->state->fb;
		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
		if (fb) {
			p->plane[PLANE_CURSOR].enabled = true;
			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
		} else {
			p->plane[PLANE_CURSOR].enabled = false;
			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
			p->plane[PLANE_CURSOR].horiz_pixels = 64;
			p->plane[PLANE_CURSOR].vert_pixels = 64;
		}
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
			p->plane[i++] = intel_plane->wm;
	}
3132 3133
}

3134
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3135 3136
				 struct skl_pipe_wm_parameters *p,
				 struct intel_plane_wm_parameters *p_params,
3137
				 uint16_t ddb_allocation,
3138
				 int level,
3139 3140
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3141
{
3142 3143 3144 3145 3146
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3147
	uint8_t bytes_per_pixel;
3148

3149
	if (latency == 0 || !p->active || !p_params->enabled)
3150 3151
		return false;

3152 3153 3154 3155
	bytes_per_pixel = p_params->y_bytes_per_pixel ?
		p_params->y_bytes_per_pixel :
		p_params->bytes_per_pixel;
	method1 = skl_wm_method1(p->pixel_rate,
3156
				 bytes_per_pixel,
3157
				 latency);
3158 3159 3160
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
3161
				 bytes_per_pixel,
3162
				 p_params->tiling,
3163
				 latency);
3164

3165
	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3166
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3167

3168 3169
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3170 3171
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3172 3173
		if (intel_rotation_90_or_270(p_params->rotation)) {
			switch (p_params->bytes_per_pixel) {
3174 3175 3176 3177 3178 3179 3180 3181
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3182
			}
3183 3184
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3185 3186 3187 3188 3189 3190 3191
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3192

3193 3194
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3195

3196
	if (level >= 1 && level <= 7) {
3197 3198
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3199 3200 3201 3202
			res_lines += 4;
		else
			res_blocks++;
	}
3203

3204
	if (res_blocks >= ddb_allocation || res_lines > 31)
3205 3206 3207 3208
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3209 3210 3211 3212 3213 3214

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3215 3216
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
3217
				 int level,
3218
				 int num_planes,
3219 3220 3221
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
3222
	int i;
3223

3224
	for (i = 0; i < num_planes; i++) {
3225 3226
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3227
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3228
						p, &p->plane[i],
3229
						ddb_blocks,
3230
						level,
3231 3232 3233
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
3234 3235 3236 3237 3238 3239 3240

	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
						 &p->plane[PLANE_CURSOR],
						 ddb_blocks, level,
						 &result->plane_res_b[PLANE_CURSOR],
						 &result->plane_res_l[PLANE_CURSOR]);
3241 3242
}

3243
static uint32_t
3244
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3245
{
3246
	if (!to_intel_crtc(crtc)->active)
3247 3248
		return 0;

3249
	if (WARN_ON(p->pixel_rate == 0))
3250
		return 0;
3251

3252
	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3253 3254
}

3255 3256
static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
3257
				      struct skl_wm_level *trans_wm /* out */)
3258
{
3259
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3260
	int i;
3261

3262
	if (!params->active)
3263
		return;
3264 3265

	/* Until we know more, just disable transition WMs */
3266
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3267
		trans_wm->plane_en[i] = false;
3268
	trans_wm->plane_en[PLANE_CURSOR] = false;
3269 3270
}

3271
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3272
				struct skl_ddb_allocation *ddb,
3273
				struct skl_pipe_wm_parameters *params,
3274 3275
				struct skl_pipe_wm *pipe_wm)
{
3276
	struct drm_device *dev = crtc->dev;
3277
	const struct drm_i915_private *dev_priv = dev->dev_private;
3278
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3279 3280 3281
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3282 3283 3284
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
3285
	}
3286
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3287

3288
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3289 3290 3291
}

static void skl_compute_wm_results(struct drm_device *dev,
3292
				   struct skl_pipe_wm_parameters *p,
3293 3294 3295 3296 3297 3298
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3299 3300
	uint32_t temp;
	int i;
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3317 3318
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3319

3320
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3321 3322
			temp |= PLANE_WM_EN;

3323
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3324 3325 3326

	}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3339 3340 3341
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3342 3343
		temp |= PLANE_WM_EN;

3344
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3345

3346 3347 3348
	r->wm_linetime[pipe] = p_wm->linetime;
}

3349 3350 3351 3352 3353 3354 3355 3356 3357
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3368 3369
		if (!new->dirty[pipe])
			continue;
3370

3371
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3372

3373 3374 3375 3376 3377
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3378
				   new->plane[pipe][PLANE_CURSOR][level]);
3379
		}
3380 3381 3382
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3383 3384
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3385

3386
		for (i = 0; i < intel_num_planes(crtc); i++) {
3387 3388 3389
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3390 3391 3392 3393
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3394 3395

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3396
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3397 3398 3399
	}
}

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3424 3425
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3426 3427 3428
{
	int plane;

3429 3430
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3431
	for_each_plane(dev_priv, pipe, plane) {
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3458
	bool reallocated[I915_MAX_PIPES] = {};
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3481
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3506
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3507
			intel_wait_for_vblank(dev, pipe);
3508
			reallocated[pipe] = true;
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3531
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3532 3533 3534
	}
}

3535
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3536
			       struct skl_pipe_wm_parameters *params,
3537
			       struct intel_wm_config *config,
3538 3539 3540 3541 3542
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

3543 3544 3545
	skl_compute_wm_pipe_parameters(crtc, params);
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3546

3547
	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3548 3549
		return false;

3550
	intel_crtc->wm.skl_active = *pipe_wm;
3551

3552 3553 3554 3555 3556
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
3557
				     struct intel_wm_config *config,
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
3578
		struct skl_pipe_wm_parameters params = {};
3579 3580 3581 3582 3583 3584 3585 3586 3587
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3588 3589
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
3590 3591 3592 3593 3594 3595 3596 3597 3598
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3599
		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3600 3601 3602 3603
		r->dirty[intel_crtc->pipe] = true;
	}
}

3604 3605 3606 3607 3608 3609 3610
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3611
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3612 3613 3614 3615 3616 3617 3618

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3619 3620
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3621 3622 3623

}

3624 3625 3626 3627 3628
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3629
	struct skl_pipe_wm_parameters params = {};
3630
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3631 3632
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};
3633

3634 3635 3636 3637 3638

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3639

3640 3641
	skl_compute_wm_global_parameters(dev, &config);

3642 3643
	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
3644 3645
		return;

3646
	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3647 3648
	results->dirty[intel_crtc->pipe] = true;

3649
	skl_update_other_pipe_wm(dev, crtc, &config, results);
3650
	skl_write_wm_values(dev_priv, results);
3651
	skl_flush_wm_values(dev_priv, results);
3652 3653 3654

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3655 3656
}

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
	struct drm_framebuffer *fb = plane->state->fb;

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;

	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
	intel_plane->wm.bytes_per_pixel =
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
	intel_plane->wm.y_bytes_per_pixel =
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;

	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
	intel_plane->wm.rotation = plane->state->rotation;

	skl_update_wm(crtc);
}

3690
static void ilk_update_wm(struct drm_crtc *crtc)
3691
{
3692 3693 3694 3695
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3696 3697
	struct ilk_wm_maximums max;
	struct ilk_wm_values results = {};
3698
	enum intel_ddb_partitioning partitioning;
3699 3700 3701
	struct intel_pipe_wm pipe_wm = {};
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
	struct intel_wm_config config = {};
3702

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
	WARN_ON(cstate->base.active != intel_crtc->active);

	intel_compute_pipe_wm(cstate, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;

	intel_crtc->wm.active = pipe_wm;

	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3716 3717

	/* 5/6 split only in single pipe config on IVB+ */
3718
	if (INTEL_INFO(dev)->gen >= 7 &&
3719 3720 3721
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3722

3723
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3724
	} else {
3725
		best_lp_wm = &lp_wm_1_2;
3726 3727
	}

3728
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3729
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3730

3731
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3732

3733
	ilk_write_wm_values(dev_priv, &results);
3734 3735
}

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct drm_device *dev = plane->dev;
	struct intel_plane *intel_plane = to_intel_plane(plane);

	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

	ilk_update_wm(crtc);
}

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3776 3777
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3778
					val & PLANE_WM_BLOCKS_MASK;
3779
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3792 3793
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3794
					val & PLANE_WM_BLOCKS_MASK;
3795
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3808
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3821
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3822 3823 3824 3825
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3826
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3827

3828
	if (!intel_crtc->active)
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3841
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3842 3843 3844 3845 3846 3847 3848 3849
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3850
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3851 3852 3853 3854 3855
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3856 3857
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3858 3859
	struct drm_crtc *crtc;

3860
	skl_ddb_get_hw_state(dev_priv, ddb);
3861 3862 3863 3864
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3865 3866 3867 3868
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3869
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3870
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3871
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3872 3873 3874 3875 3876 3877 3878 3879
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3880
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3881
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3882

3883
	active->pipe_enabled = intel_crtc->active;
3884 3885

	if (active->pipe_enabled) {
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4029 4030 4031 4032 4033 4034 4035 4036 4037
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4038
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4065 4066 4067
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4068
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4069 4070
	struct drm_crtc *crtc;

4071
	for_each_crtc(dev, crtc)
4072 4073 4074 4075 4076 4077 4078
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4079 4080 4081 4082
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4083

4084
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4085 4086 4087 4088 4089
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4090 4091 4092 4093 4094

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4127
void intel_update_watermarks(struct drm_crtc *crtc)
4128
{
4129
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4130 4131

	if (dev_priv->display.update_wm)
4132
		dev_priv->display.update_wm(crtc);
4133 4134
}

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
				    bool enabled, bool scaled)
{
	struct drm_i915_private *dev_priv = plane->dev->dev_private;

	if (dev_priv->display.update_sprite_wm)
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
						   pixel_size, enabled, scaled);
}

4150 4151 4152 4153 4154 4155 4156 4157 4158
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4159 4160 4161 4162 4163
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4164 4165
	assert_spin_locked(&mchdev_lock);

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4183
static void ironlake_enable_drps(struct drm_device *dev)
4184 4185 4186 4187 4188
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4189 4190
	spin_lock_irq(&mchdev_lock);

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4211
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4212 4213
		PXVFREQ_PX_SHIFT;

4214 4215
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4216

4217 4218 4219
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4236
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4237
		DRM_ERROR("stuck trying to change perf mode\n");
4238
	mdelay(1);
4239 4240 4241

	ironlake_set_drps(dev, fstart);

4242 4243
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4244
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4245
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4246
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4247 4248

	spin_unlock_irq(&mchdev_lock);
4249 4250
}

4251
static void ironlake_disable_drps(struct drm_device *dev)
4252 4253
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4254 4255 4256 4257 4258
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4259 4260 4261 4262 4263 4264 4265 4266 4267

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4268
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4269
	mdelay(1);
4270 4271
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4272
	mdelay(1);
4273

4274
	spin_unlock_irq(&mchdev_lock);
4275 4276
}

4277 4278 4279 4280 4281
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4282
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4283
{
4284
	u32 limits;
4285

4286 4287 4288 4289 4290 4291
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4292 4293 4294 4295 4296 4297 4298 4299 4300
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4301 4302 4303 4304

	return limits;
}

4305 4306 4307
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4308 4309
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4310 4311 4312 4313

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4314
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4315 4316 4317 4318
			new_power = BETWEEN;
		break;

	case BETWEEN:
4319
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4320
			new_power = LOW_POWER;
4321
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4322 4323 4324 4325
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4326
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4327 4328 4329 4330
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4331
	if (val <= dev_priv->rps.min_freq_softlimit)
4332
		new_power = LOW_POWER;
4333
	if (val >= dev_priv->rps.max_freq_softlimit)
4334 4335 4336 4337 4338 4339 4340 4341
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4342 4343
		ei_up = 16000;
		threshold_up = 95;
4344 4345

		/* Downclock if less than 85% busy over 32ms */
4346 4347
		ei_down = 32000;
		threshold_down = 85;
4348 4349 4350 4351
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4352 4353
		ei_up = 13000;
		threshold_up = 90;
4354 4355

		/* Downclock if less than 75% busy over 32ms */
4356 4357
		ei_down = 32000;
		threshold_down = 75;
4358 4359 4360 4361
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4362 4363
		ei_up = 10000;
		threshold_up = 85;
4364 4365

		/* Downclock if less than 60% busy over 32ms */
4366 4367
		ei_down = 32000;
		threshold_down = 60;
4368 4369 4370
		break;
	}

4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4389
	dev_priv->rps.power = new_power;
4390 4391
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4392 4393 4394
	dev_priv->rps.last_adj = 0;
}

4395 4396 4397 4398 4399
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4400
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4401
	if (val < dev_priv->rps.max_freq_softlimit)
4402
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4403

4404 4405
	mask &= dev_priv->pm_rps_events;

4406
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4407 4408
}

4409 4410 4411
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4412
static void gen6_set_rps(struct drm_device *dev, u8 val)
4413 4414
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4415

4416 4417 4418 4419
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
		return;

4420
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4421 4422
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4423

C
Chris Wilson 已提交
4424 4425 4426 4427 4428
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4429

4430 4431 4432 4433
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4434 4435 4436 4437 4438 4439 4440
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4441
	}
4442 4443 4444 4445

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4446
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4447
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4448

4449 4450
	POSTING_READ(GEN6_RPNSWREQ);

4451
	dev_priv->rps.cur_freq = val;
4452
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4453 4454
}

4455 4456 4457 4458 4459
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4460 4461
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4462 4463 4464 4465 4466

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4467 4468
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4469
	if (val != dev_priv->rps.cur_freq) {
4470
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4471 4472 4473
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4474 4475 4476 4477 4478

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4479
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4480 4481
 *
 * * If Gfx is Idle, then
4482 4483 4484
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4485 4486 4487
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4488
	u32 val = dev_priv->rps.idle_freq;
4489

4490
	if (dev_priv->rps.cur_freq <= val)
4491 4492
		return;

4493 4494 4495 4496 4497
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4498 4499
}

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4512 4513
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4514 4515
	struct drm_device *dev = dev_priv->dev;

4516
	mutex_lock(&dev_priv->rps.hw_lock);
4517
	if (dev_priv->rps.enabled) {
4518
		if (IS_VALLEYVIEW(dev))
4519
			vlv_set_rps_idle(dev_priv);
4520
		else
4521
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4522
		dev_priv->rps.last_adj = 0;
4523
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4524
	}
4525
	mutex_unlock(&dev_priv->rps.hw_lock);
4526

4527
	spin_lock(&dev_priv->rps.client_lock);
4528 4529
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4530
	spin_unlock(&dev_priv->rps.client_lock);
4531 4532
}

4533
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4534 4535
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4536
{
4537 4538 4539 4540 4541 4542 4543
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4544

4545 4546 4547
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4548
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4549 4550
		rps = NULL;

4551 4552 4553 4554 4555 4556 4557 4558
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4559

4560 4561 4562
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4563 4564
		} else
			dev_priv->rps.boosts++;
4565
	}
4566
	spin_unlock(&dev_priv->rps.client_lock);
4567 4568
}

4569
void intel_set_rps(struct drm_device *dev, u8 val)
4570
{
4571 4572 4573 4574
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4575 4576
}

Z
Zhe Wang 已提交
4577 4578 4579 4580 4581
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4582
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4583 4584
}

4585
static void gen6_disable_rps(struct drm_device *dev)
4586 4587 4588 4589
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4590 4591 4592
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4593 4594 4595 4596 4597 4598 4599
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4600 4601 4602 4603
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4604 4605
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4606
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4607

4608
	I915_WRITE(GEN6_RC_CONTROL, 0);
4609

4610
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4611 4612
}

B
Ben Widawsky 已提交
4613 4614
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4615 4616 4617 4618 4619 4620
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4621 4622 4623 4624 4625 4626 4627 4628 4629
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4630 4631
}

I
Imre Deak 已提交
4632
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4633
{
4634 4635
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4636 4637
		return 0;

4638
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4639 4640 4641
	if (enable_rc6 >= 0) {
		int mask;

4642
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4643 4644 4645 4646 4647 4648
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4649 4650
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4651 4652 4653

		return enable_rc6 & mask;
	}
4654

4655
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4656
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4657 4658

	return INTEL_RC6_ENABLE;
4659 4660
}

I
Imre Deak 已提交
4661 4662 4663 4664 4665
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4666
static void gen6_init_rps_frequencies(struct drm_device *dev)
4667
{
4668 4669 4670 4671 4672
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4673 4674
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4675
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4688 4689 4690
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4691
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4692
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4693 4694 4695 4696 4697
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4698 4699 4700 4701
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4702 4703
	}

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4714 4715
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4716 4717 4718 4719
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4720 4721 4722
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4723 4724
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4725 4726 4727 4728
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4729 4730
}

J
Jesse Barnes 已提交
4731
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4732
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4733 4734 4735 4736 4737
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4738 4739
	gen6_init_rps_frequencies(dev);

4740 4741 4742 4743 4744 4745
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4746 4747 4748 4749 4750 4751 4752 4753
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4754 4755
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4756 4757 4758 4759 4760
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4761 4762 4763 4764 4765

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4777
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4778 4779 4780 4781 4782

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4783 4784

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4785
	if (IS_SKYLAKE(dev))
4786 4787 4788
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4789 4790 4791 4792
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4793 4794 4795 4796

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4797 4798
	I915_WRITE(GEN6_RC_SLEEP, 0);

4799 4800 4801 4802
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4803 4804 4805 4806 4807
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
4808
	/* WaRsUseTimeoutMode */
S
Sagar Arun Kamble 已提交
4809
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4810 4811
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4812 4813 4814
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4815 4816
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4817 4818 4819
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4820
	}
Z
Zhe Wang 已提交
4821

4822 4823
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4824
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4825
	 */
4826
	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4827
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4828 4829 4830 4831
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4832

4833
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4834 4835 4836

}

4837 4838 4839
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4840
	struct intel_engine_cs *ring;
4841
	uint32_t rc6_mask = 0;
4842 4843 4844 4845 4846 4847 4848
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4849
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4850 4851 4852 4853

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4854 4855
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4856 4857 4858 4859 4860 4861 4862 4863

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4864 4865 4866 4867
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4868 4869 4870 4871

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4872
	intel_print_rc6_info(dev, rc6_mask);
4873 4874 4875 4876 4877 4878 4879 4880
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4881 4882

	/* 4 Program defaults and thresholds for RPS*/
4883 4884 4885 4886
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4901 4902

	/* 5: Enable RPS */
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4913
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4914
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4915

4916
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4917 4918
}

4919
static void gen6_enable_rps(struct drm_device *dev)
4920
{
4921
	struct drm_i915_private *dev_priv = dev->dev_private;
4922
	struct intel_engine_cs *ring;
4923
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4924 4925
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4926
	int i, ret;
4927

4928
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4929

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4944
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4945

4946 4947
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4948

4949 4950 4951 4952 4953 4954 4955 4956 4957
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4958 4959
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4960 4961 4962

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4963
	if (IS_IVYBRIDGE(dev))
4964 4965 4966
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4967
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4968 4969
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4970
	/* Check if we are enabling RC6 */
4971 4972 4973 4974
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4975 4976 4977 4978
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4979

4980 4981 4982
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4983

B
Ben Widawsky 已提交
4984
	intel_print_rc6_info(dev, rc6_mask);
4985 4986 4987 4988 4989 4990

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4991 4992
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4993 4994
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4995
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4996
	if (ret)
B
Ben Widawsky 已提交
4997
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4998 4999 5000 5001

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5002
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5003
				 (pcu_mbox & 0xff) * 50);
5004
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5005 5006
	}

5007
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5008
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5009

5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5024
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5025 5026
}

5027
static void __gen6_update_ring_freq(struct drm_device *dev)
5028
{
5029
	struct drm_i915_private *dev_priv = dev->dev_private;
5030
	int min_freq = 15;
5031 5032
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5033
	unsigned int max_gpu_freq, min_gpu_freq;
5034
	int scaling_factor = 180;
5035
	struct cpufreq_policy *policy;
5036

5037
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5038

5039 5040 5041 5042 5043 5044 5045 5046 5047
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5048
		max_ia_freq = tsc_khz;
5049
	}
5050 5051 5052 5053

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5054
	min_ring_freq = I915_READ(DCLK) & 0xf;
5055 5056
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5057

5058 5059 5060 5061 5062 5063 5064 5065 5066
	if (IS_SKYLAKE(dev)) {
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5067 5068 5069 5070 5071
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5072 5073
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5074 5075
		unsigned int ia_freq = 0, ring_freq = 0;

5076 5077 5078 5079 5080 5081 5082
		if (IS_SKYLAKE(dev)) {
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5083 5084 5085
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5086
			ring_freq = mult_frac(gpu_freq, 5, 4);
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5103

B
Ben Widawsky 已提交
5104 5105
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5106 5107 5108
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5109 5110 5111
	}
}

5112 5113 5114 5115
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5116
	if (!HAS_CORE_RING_FREQ(dev))
5117 5118 5119 5120 5121 5122 5123
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5124
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5125
{
5126
	struct drm_device *dev = dev_priv->dev;
5127 5128
	u32 val, rp0;

5129
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5130

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5146
	}
5147 5148 5149

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5163 5164 5165 5166
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5167 5168 5169
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5170 5171 5172
	return rp1;
}

5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5184
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5185 5186 5187
{
	u32 val, rp0;

5188
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5201
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5202
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5203
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5204 5205 5206 5207 5208
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5209
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5210
{
5211
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5212 5213
}

5214 5215 5216 5217 5218 5219 5220 5221 5222
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5244
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5245 5246 5247 5248 5249 5250
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5251 5252

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5253 5254
}

5255 5256 5257 5258 5259 5260 5261 5262
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5263 5264
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5265 5266 5267 5268 5269 5270 5271 5272
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5273
								      I915_GTT_OFFSET_NONE,
5274 5275 5276 5277
								      pctx_size);
		goto out;
	}

5278 5279
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5298
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5299 5300 5301
	dev_priv->vlv_pctx = pctx;
}

5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5313 5314 5315
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5316
	u32 val;
5317 5318 5319 5320 5321

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5335
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5336

5337 5338 5339
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5340
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5341 5342 5343 5344
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5345
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5346 5347
			 dev_priv->rps.efficient_freq);

5348 5349
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5350
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5351 5352
			 dev_priv->rps.rp1_freq);

5353 5354
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5355
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5356 5357
			 dev_priv->rps.min_freq);

5358 5359
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5370 5371
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5372
	struct drm_i915_private *dev_priv = dev->dev_private;
5373
	u32 val;
5374

5375
	cherryview_setup_pctx(dev);
5376 5377 5378

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5379
	mutex_lock(&dev_priv->sb_lock);
5380
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5381
	mutex_unlock(&dev_priv->sb_lock);
5382

5383 5384 5385 5386
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5387
	default:
5388 5389 5390
		dev_priv->mem_freq = 1600;
		break;
	}
5391
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5392

5393 5394 5395
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5396
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5397 5398 5399 5400
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5401
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5402 5403
			 dev_priv->rps.efficient_freq);

5404 5405
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5406
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5407 5408
			 dev_priv->rps.rp1_freq);

5409 5410
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5411
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5412
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5413 5414
			 dev_priv->rps.min_freq);

5415 5416 5417 5418 5419 5420
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5421 5422
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5423 5424 5425 5426 5427 5428 5429 5430
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5431 5432
}

5433 5434 5435 5436 5437
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5438 5439 5440 5441
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5442
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5458
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5459

5460 5461 5462
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5463 5464 5465 5466 5467 5468 5469 5470 5471
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5472 5473
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5487
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5488 5489 5490

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5491
	/* 4 Program defaults and thresholds for RPS*/
5492
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5503
		   GEN6_RP_MEDIA_IS_GFX |
5504 5505 5506 5507
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5508 5509 5510 5511 5512 5513
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5514 5515
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5516 5517 5518
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5519
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5520 5521 5522 5523
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5524
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5525 5526 5527
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5528
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5529 5530 5531 5532
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5533
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5534 5535
}

5536 5537 5538
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5539
	struct intel_engine_cs *ring;
5540
	u32 gtfifodbg, val, rc6_mode = 0;
5541 5542 5543 5544
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5545 5546
	valleyview_check_pctx(dev_priv);

5547
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5548 5549
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5550 5551 5552
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5553
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5554
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5555

5556 5557 5558
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5559
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5582
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5583 5584

	/* allows RC6 residency counter to work */
5585
	I915_WRITE(VLV_COUNTER_CONTROL,
5586 5587
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5588 5589
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5590

5591
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5592
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5593 5594 5595

	intel_print_rc6_info(dev, rc6_mode);

5596
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5597

D
Deepak S 已提交
5598 5599 5600 5601 5602 5603
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5604
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5605

5606 5607 5608
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5609
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5610 5611
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5612
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5613
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5614
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5615
			 dev_priv->rps.cur_freq);
5616

5617
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5618
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5619
			 dev_priv->rps.efficient_freq);
5620

5621
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5622

5623
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5624 5625
}

5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5655
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5656 5657 5658 5659 5660 5661
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5662 5663
	assert_spin_locked(&mchdev_lock);

5664
	diff1 = now - dev_priv->ips.last_time1;
5665 5666 5667 5668 5669 5670 5671

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5672
		return dev_priv->ips.chipset_power;
5673 5674 5675 5676 5677 5678 5679 5680

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5681 5682
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5683 5684
		diff += total_count;
	} else {
5685
		diff = total_count - dev_priv->ips.last_count1;
5686 5687 5688
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5689 5690
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5701 5702
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5703

5704
	dev_priv->ips.chipset_power = ret;
5705 5706 5707 5708

	return ret;
}

5709 5710
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5711
	struct drm_device *dev = dev_priv->dev;
5712 5713
	unsigned long val;

5714
	if (INTEL_INFO(dev)->gen != 5)
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5753
{
5754
	struct drm_device *dev = dev_priv->dev;
5755 5756 5757
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5758
	if (INTEL_INFO(dev)->is_mobile)
5759 5760 5761
		return vm > 0 ? vm : 0;

	return vd;
5762 5763
}

5764
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5765
{
5766
	u64 now, diff, diffms;
5767 5768
	u32 count;

5769
	assert_spin_locked(&mchdev_lock);
5770

5771 5772 5773
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5774 5775 5776 5777 5778 5779 5780

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5781 5782
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5783 5784
		diff += count;
	} else {
5785
		diff = count - dev_priv->ips.last_count2;
5786 5787
	}

5788 5789
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5790 5791 5792 5793

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5794
	dev_priv->ips.gfx_power = diff;
5795 5796
}

5797 5798
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5799 5800 5801
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5802 5803
		return;

5804
	spin_lock_irq(&mchdev_lock);
5805 5806 5807

	__i915_update_gfx_val(dev_priv);

5808
	spin_unlock_irq(&mchdev_lock);
5809 5810
}

5811
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5812 5813 5814 5815
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5816 5817
	assert_spin_locked(&mchdev_lock);

5818
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5838
	corr2 = (corr * dev_priv->ips.corr);
5839 5840 5841 5842

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5843
	__i915_update_gfx_val(dev_priv);
5844

5845
	return dev_priv->ips.gfx_power + state2;
5846 5847
}

5848 5849
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5850
	struct drm_device *dev = dev_priv->dev;
5851 5852
	unsigned long val;

5853
	if (INTEL_INFO(dev)->gen != 5)
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5876
	spin_lock_irq(&mchdev_lock);
5877 5878 5879 5880
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5881 5882
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5883 5884 5885 5886

	ret = chipset_val + graphics_val;

out_unlock:
5887
	spin_unlock_irq(&mchdev_lock);
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5903
	spin_lock_irq(&mchdev_lock);
5904 5905 5906 5907 5908 5909
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5910 5911
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5912 5913

out_unlock:
5914
	spin_unlock_irq(&mchdev_lock);
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5931
	spin_lock_irq(&mchdev_lock);
5932 5933 5934 5935 5936 5937
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5938 5939
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5940 5941

out_unlock:
5942
	spin_unlock_irq(&mchdev_lock);
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5956
	struct intel_engine_cs *ring;
5957
	bool ret = false;
5958
	int i;
5959

5960
	spin_lock_irq(&mchdev_lock);
5961 5962 5963 5964
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5965 5966
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5967 5968

out_unlock:
5969
	spin_unlock_irq(&mchdev_lock);
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5986
	spin_lock_irq(&mchdev_lock);
5987 5988 5989 5990 5991 5992
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5993
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5994

5995
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5996 5997 5998
		ret = false;

out_unlock:
5999
	spin_unlock_irq(&mchdev_lock);
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6027 6028
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6029
	spin_lock_irq(&mchdev_lock);
6030
	i915_mch_dev = dev_priv;
6031
	spin_unlock_irq(&mchdev_lock);
6032 6033 6034 6035 6036 6037

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6038
	spin_lock_irq(&mchdev_lock);
6039
	i915_mch_dev = NULL;
6040
	spin_unlock_irq(&mchdev_lock);
6041
}
6042

6043
static void intel_init_emon(struct drm_device *dev)
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6061
		I915_WRITE(PEW(i), 0);
6062
	for (i = 0; i < 3; i++)
6063
		I915_WRITE(DEW(i), 0);
6064 6065 6066

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6067
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6088
		I915_WRITE(PXW(i), val);
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6104
		I915_WRITE(PXWL(i), 0);
6105 6106 6107 6108 6109 6110

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6111
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6112 6113
}

6114 6115
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
6116 6117
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

6118 6119 6120
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6121
		valleyview_init_gt_powersave(dev);
6122 6123 6124 6125
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6126 6127 6128
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6129
		valleyview_cleanup_gt_powersave(dev);
6130 6131
}

6132 6133 6134 6135 6136 6137
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6138
	gen6_disable_rps_interrupts(dev);
6139 6140
}

6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6153 6154 6155
	if (INTEL_INFO(dev)->gen < 6)
		return;

6156
	gen6_suspend_rps(dev);
6157 6158 6159

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6160 6161
}

6162 6163
void intel_disable_gt_powersave(struct drm_device *dev)
{
6164 6165
	struct drm_i915_private *dev_priv = dev->dev_private;

6166
	if (IS_IRONLAKE_M(dev)) {
6167
		ironlake_disable_drps(dev);
6168
	} else if (INTEL_INFO(dev)->gen >= 6) {
6169
		intel_suspend_gt_powersave(dev);
6170

6171
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6172 6173 6174
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6175 6176
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6177 6178 6179
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6180

6181
		dev_priv->rps.enabled = false;
6182
		mutex_unlock(&dev_priv->rps.hw_lock);
6183
	}
6184 6185
}

6186 6187 6188 6189 6190 6191 6192
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6193
	mutex_lock(&dev_priv->rps.hw_lock);
6194

6195
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6196

6197 6198 6199
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6200
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6201
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6202
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6203
		gen9_enable_rps(dev);
6204 6205
		if (IS_SKYLAKE(dev))
			__gen6_update_ring_freq(dev);
6206 6207
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6208
		__gen6_update_ring_freq(dev);
6209 6210
	} else {
		gen6_enable_rps(dev);
6211
		__gen6_update_ring_freq(dev);
6212
	}
6213 6214 6215 6216 6217 6218 6219

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6220
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6221

6222
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6223

6224
	mutex_unlock(&dev_priv->rps.hw_lock);
6225 6226

	intel_runtime_pm_put(dev_priv);
6227 6228
}

6229 6230
void intel_enable_gt_powersave(struct drm_device *dev)
{
6231 6232
	struct drm_i915_private *dev_priv = dev->dev_private;

6233 6234 6235 6236
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6237
	if (IS_IRONLAKE_M(dev)) {
6238
		mutex_lock(&dev->struct_mutex);
6239 6240
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6241
		mutex_unlock(&dev->struct_mutex);
6242
	} else if (INTEL_INFO(dev)->gen >= 6) {
6243 6244 6245 6246
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6247 6248 6249 6250 6251 6252 6253
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6254
		 */
6255 6256 6257
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6258 6259 6260
	}
}

6261 6262 6263 6264
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6265 6266 6267 6268
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6269 6270 6271
	dev_priv->rps.enabled = false;
}

6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6284 6285 6286
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6287
	enum pipe pipe;
6288

6289
	for_each_pipe(dev_priv, pipe) {
6290 6291 6292
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6293 6294 6295

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6296 6297 6298
	}
}

6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6313
static void ironlake_init_clock_gating(struct drm_device *dev)
6314 6315
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6316
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6317

6318 6319 6320 6321
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6322 6323 6324
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6342
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6343 6344 6345
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6346 6347

	ilk_init_lp_watermarks(dev);
6348 6349 6350 6351 6352 6353 6354 6355 6356

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6357
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6358 6359 6360 6361 6362 6363 6364 6365
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6366 6367
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6368 6369 6370 6371 6372 6373
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6374

6375
	/* WaDisableRenderCachePipelinedFlush:ilk */
6376 6377
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6378

6379 6380 6381
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6382
	g4x_disable_trickle_feed(dev);
6383

6384 6385 6386 6387 6388 6389 6390
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6391
	uint32_t val;
6392 6393 6394 6395 6396 6397

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6398 6399 6400
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6401 6402
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6403 6404 6405
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6406
	for_each_pipe(dev_priv, pipe) {
6407 6408 6409
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6410
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6411
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6412 6413 6414
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6415 6416
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6417
	/* WADP0ClockGatingDisable */
6418
	for_each_pipe(dev_priv, pipe) {
6419 6420 6421
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6422 6423
}

6424 6425 6426 6427 6428 6429
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6430 6431 6432
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6433 6434
}

6435
static void gen6_init_clock_gating(struct drm_device *dev)
6436 6437
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6438
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6439

6440
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6441 6442 6443 6444 6445

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6446
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6447 6448 6449
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6450 6451 6452
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6453 6454 6455
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6456 6457 6458 6459
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6460 6461
	 */
	I915_WRITE(GEN6_GT_MODE,
6462
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6463

6464
	ilk_init_lp_watermarks(dev);
6465 6466

	I915_WRITE(CACHE_MODE_0,
6467
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6483
	 *
6484 6485
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6486 6487 6488 6489 6490
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6491
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6492 6493
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6494

6495 6496 6497 6498 6499 6500 6501 6502
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6503 6504 6505 6506 6507 6508 6509 6510
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6511 6512
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6513 6514 6515 6516 6517 6518 6519
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6520 6521 6522 6523
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6524

6525
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6526

6527
	cpt_init_clock_gating(dev);
6528 6529

	gen6_check_mch_setup(dev);
6530 6531 6532 6533 6534 6535
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6536
	/*
6537
	 * WaVSThreadDispatchOverride:ivb,vlv
6538 6539 6540 6541
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6542 6543 6544 6545 6546 6547 6548 6549
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6550 6551 6552 6553 6554 6555 6556 6557
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6558
	if (HAS_PCH_LPT_LP(dev))
6559 6560 6561
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6562 6563

	/* WADPOClockGatingDisable:hsw */
6564 6565
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6566
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6567 6568
}

6569 6570 6571 6572
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6573
	if (HAS_PCH_LPT_LP(dev)) {
6574 6575 6576 6577 6578 6579 6580
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6581
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6582 6583
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6584
	enum pipe pipe;
6585
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6586

6587
	ilk_init_lp_watermarks(dev);
6588

6589
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6590
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6591

6592
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6593 6594 6595
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6596
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6597
	for_each_pipe(dev_priv, pipe) {
6598
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6599
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6600
			   BDW_DPRS_MASK_VBLANK_SRD);
6601
	}
6602

6603 6604 6605 6606 6607
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6608

6609 6610
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6611 6612 6613 6614

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6615

6616 6617 6618 6619 6620 6621 6622 6623 6624
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6625 6626 6627 6628 6629 6630 6631
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6632
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6633 6634
}

6635 6636 6637 6638
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6639
	ilk_init_lp_watermarks(dev);
6640

6641 6642 6643 6644 6645
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6646
	/* This is required by WaCatErrorRejectionIssue:hsw */
6647 6648 6649 6650
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6651 6652 6653
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6654

6655 6656 6657
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6658 6659 6660 6661
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6662
	/* WaDisable4x2SubspanOptimization:hsw */
6663 6664
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6665

6666 6667 6668
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6669 6670 6671 6672
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6673 6674
	 */
	I915_WRITE(GEN7_GT_MODE,
6675
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6676

6677 6678 6679 6680
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6681
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6682 6683
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6684 6685 6686
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6687

6688
	lpt_init_clock_gating(dev);
6689 6690
}

6691
static void ivybridge_init_clock_gating(struct drm_device *dev)
6692 6693
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6694
	uint32_t snpcr;
6695

6696
	ilk_init_lp_watermarks(dev);
6697

6698
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6699

6700
	/* WaDisableEarlyCull:ivb */
6701 6702 6703
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6704
	/* WaDisableBackToBackFlipFix:ivb */
6705 6706 6707 6708
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6709
	/* WaDisablePSDDualDispatchEnable:ivb */
6710 6711 6712 6713
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6714 6715 6716
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6717
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6718 6719 6720
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6721
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6722 6723 6724
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6725 6726 6727 6728
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6729 6730 6731 6732
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6733 6734
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6735
	}
6736

6737
	/* WaForceL3Serialization:ivb */
6738 6739 6740
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6741
	/*
6742
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6743
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6744 6745
	 */
	I915_WRITE(GEN6_UCGCTL2,
6746
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6747

6748
	/* This is required by WaCatErrorRejectionIssue:ivb */
6749 6750 6751 6752
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6753
	g4x_disable_trickle_feed(dev);
6754 6755

	gen7_setup_fixed_func_scheduler(dev_priv);
6756

6757 6758 6759 6760 6761
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6762

6763
	/* WaDisable4x2SubspanOptimization:ivb */
6764 6765
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6766

6767 6768 6769
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6770 6771 6772 6773
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6774 6775
	 */
	I915_WRITE(GEN7_GT_MODE,
6776
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6777

6778 6779 6780 6781
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6782

6783 6784
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6785 6786

	gen6_check_mch_setup(dev);
6787 6788
}

6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6800
static void valleyview_init_clock_gating(struct drm_device *dev)
6801 6802 6803
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6804
	vlv_init_display_clock_gating(dev_priv);
6805

6806
	/* WaDisableEarlyCull:vlv */
6807 6808 6809
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6810
	/* WaDisableBackToBackFlipFix:vlv */
6811 6812 6813 6814
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6815
	/* WaPsdDispatchEnable:vlv */
6816
	/* WaDisablePSDDualDispatchEnable:vlv */
6817
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6818 6819
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6820

6821 6822 6823
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6824
	/* WaForceL3Serialization:vlv */
6825 6826 6827
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6828
	/* WaDisableDopClockGating:vlv */
6829 6830 6831
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6832
	/* This is required by WaCatErrorRejectionIssue:vlv */
6833 6834 6835 6836
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6837 6838
	gen7_setup_fixed_func_scheduler(dev_priv);

6839
	/*
6840
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6841
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6842 6843
	 */
	I915_WRITE(GEN6_UCGCTL2,
6844
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6845

6846 6847 6848 6849 6850
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6851

6852 6853 6854 6855
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6856 6857
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6858

6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6870 6871 6872 6873 6874 6875
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6876
	/*
6877
	 * WaDisableVLVClockGating_VBIIssue:vlv
6878 6879 6880
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6881
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6882 6883
}

6884 6885 6886 6887
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6888
	vlv_init_display_clock_gating(dev_priv);
6889

6890 6891 6892 6893 6894
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6895 6896 6897 6898

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6899 6900 6901 6902

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6903 6904 6905 6906

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6907 6908 6909 6910 6911 6912

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6913 6914
}

6915
static void g4x_init_clock_gating(struct drm_device *dev)
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6931 6932 6933 6934

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6935

6936 6937 6938
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6939
	g4x_disable_trickle_feed(dev);
6940 6941
}

6942
static void crestline_init_clock_gating(struct drm_device *dev)
6943 6944 6945 6946 6947 6948 6949 6950
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6951 6952
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6953 6954 6955

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6956 6957
}

6958
static void broadwater_init_clock_gating(struct drm_device *dev)
6959 6960 6961 6962 6963 6964 6965 6966 6967
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6968 6969
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6970 6971 6972

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6973 6974
}

6975
static void gen3_init_clock_gating(struct drm_device *dev)
6976 6977 6978 6979 6980 6981 6982
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6983 6984 6985

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6986 6987 6988

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6989 6990

	/* interrupts should cause a wake up from C3 */
6991
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6992 6993 6994

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6995 6996 6997

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6998 6999
}

7000
static void i85x_init_clock_gating(struct drm_device *dev)
7001 7002 7003 7004
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7005 7006 7007 7008

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7009 7010 7011

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7012 7013
}

7014
static void i830_init_clock_gating(struct drm_device *dev)
7015 7016 7017 7018
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7019 7020 7021 7022

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7023 7024 7025 7026 7027 7028
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7029 7030
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
7031 7032
}

7033 7034 7035 7036 7037 7038
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7039 7040 7041 7042 7043
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7044
	intel_fbc_init(dev_priv);
7045

7046 7047 7048 7049 7050 7051
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7052
	/* For FIFO watermark updates */
7053
	if (INTEL_INFO(dev)->gen >= 9) {
7054 7055
		skl_setup_wm_latency(dev);

7056 7057 7058
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
7059
		dev_priv->display.update_wm = skl_update_wm;
7060
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7061
	} else if (HAS_PCH_SPLIT(dev)) {
7062
		ilk_setup_wm_latency(dev);
7063

7064 7065 7066 7067 7068
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
7069
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7070 7071 7072 7073 7074 7075
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7076
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7077
		else if (IS_GEN6(dev))
7078
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7079
		else if (IS_IVYBRIDGE(dev))
7080
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7081
		else if (IS_HASWELL(dev))
7082
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7083
		else if (INTEL_INFO(dev)->gen == 8)
7084
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7085
	} else if (IS_CHERRYVIEW(dev)) {
7086 7087 7088
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7089 7090
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7091
	} else if (IS_VALLEYVIEW(dev)) {
7092 7093 7094
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7108
			intel_set_memory_cxsr(dev_priv, false);
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7126 7127 7128
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7129
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7130 7131
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7132
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7133 7134 7135 7136 7137 7138 7139 7140
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7141 7142 7143
	}
}

7144
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7145
{
7146
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7147 7148 7149 7150 7151 7152 7153

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7154
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7169
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7170
{
7171
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7191

7192
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7193
{
7194 7195 7196 7197 7198 7199 7200 7201
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7202 7203
	case 400:
		return 20;
7204 7205 7206
	default:
		return -1;
	}
7207
}
7208

7209 7210
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7211
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7212 7213 7214 7215 7216 7217

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7218 7219
}

7220
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7221
{
7222
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7223

7224 7225 7226
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7227

7228
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7229 7230
}

7231
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7232
{
7233
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7234

7235 7236 7237
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7238

7239
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7240 7241
}

7242
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7243
{
7244
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7245

7246 7247 7248
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7249

7250
	/* CHV needs even values */
7251
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7252 7253
}

7254
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7255
{
7256
	if (IS_GEN9(dev_priv->dev))
7257 7258
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7259
	else if (IS_CHERRYVIEW(dev_priv->dev))
7260
		return chv_gpu_freq(dev_priv, val);
7261
	else if (IS_VALLEYVIEW(dev_priv->dev))
7262 7263 7264
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7265 7266
}

7267 7268
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7269
	if (IS_GEN9(dev_priv->dev))
7270 7271
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7272
	else if (IS_CHERRYVIEW(dev_priv->dev))
7273
		return chv_freq_opcode(dev_priv, val);
7274
	else if (IS_VALLEYVIEW(dev_priv->dev))
7275 7276
		return byt_freq_opcode(dev_priv, val);
	else
7277
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7278
}
7279

7280 7281
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7282
	struct drm_i915_gem_request *req;
7283 7284 7285 7286 7287
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7288
	struct drm_i915_gem_request *req = boost->req;
7289

7290 7291 7292
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7293

7294
	i915_gem_request_unreference__unlocked(req);
7295 7296 7297 7298
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7299
				       struct drm_i915_gem_request *req)
7300 7301 7302
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7303
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7304 7305
		return;

7306 7307 7308
	if (i915_gem_request_completed(req, true))
		return;

7309 7310 7311 7312
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7313 7314
	i915_gem_request_reference(req);
	boost->req = req;
7315 7316 7317 7318 7319

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7320
void intel_pm_setup(struct drm_device *dev)
7321 7322 7323
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7324
	mutex_init(&dev_priv->rps.hw_lock);
7325
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7326

7327 7328
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7329
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7330 7331
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7332

7333
	dev_priv->pm.suspended = false;
7334
}