arm-smmu.c 50.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
37
#include <linux/iopoll.h>
38 39
#include <linux/module.h>
#include <linux/of.h>
40
#include <linux/pci.h>
41 42 43 44 45 46
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

47
#include "io-pgtable.h"
48 49

/* Maximum number of stream IDs assigned to a single device */
50
#define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
51 52 53 54 55 56 57 58 59

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
60
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
61

62 63 64 65 66 67 68 69 70 71
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
104
#define ID0_ATOSNS			(1 << 26)
105 106 107
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
108 109
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
161 162 163
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
182
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
183 184 185 186 187 188

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
189 190
#define ARM_SMMU_CB_TTBR1_LO		0x28
#define ARM_SMMU_CB_TTBR1_HI		0x2c
191 192
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
193
#define ARM_SMMU_CB_S1_MAIR1		0x3c
194 195
#define ARM_SMMU_CB_PAR_LO		0x50
#define ARM_SMMU_CB_PAR_HI		0x54
196 197 198 199
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
200
#define ARM_SMMU_CB_S1_TLBIVA		0x600
201
#define ARM_SMMU_CB_S1_TLBIASID		0x610
202 203 204
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
205
#define ARM_SMMU_CB_ATS1PR		0x800
206
#define ARM_SMMU_CB_ATSR		0x8f0
207 208 209 210 211 212 213 214 215 216 217

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

218 219 220 221
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

222 223 224 225
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
226
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
227

228
#define TTBRn_HI_ASID_SHIFT            16
229 230 231 232 233 234 235 236 237 238 239 240

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

241 242 243
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
244
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
245 246 247

#define FSYNR0_WNR			(1 << 4)

248 249 250 251 252
static int force_stage;
module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");

253 254 255 256 257
enum arm_smmu_arch_version {
	ARM_SMMU_V1 = 1,
	ARM_SMMU_V2,
};

258 259 260 261 262 263
struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

264
struct arm_smmu_master_cfg {
265 266 267 268 269
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
	struct arm_smmu_smr		*smrs;
};

270 271 272 273 274 275
struct arm_smmu_master {
	struct device_node		*of_node;
	struct rb_node			node;
	struct arm_smmu_master_cfg	cfg;
};

276 277 278 279 280
struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
281
	unsigned long			pgshift;
282 283 284 285 286 287

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
288
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
289
	u32				features;
290 291 292

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
293
	enum arm_smmu_arch_version	version;
294 295 296 297 298 299 300 301 302

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

303 304 305
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
306 307 308 309 310 311 312 313 314 315 316 317 318 319

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
};
320
#define INVALID_IRPTNDX			0xff
321

322 323 324
#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

325 326 327 328 329 330
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

331
struct arm_smmu_domain {
332
	struct arm_smmu_device		*smmu;
333 334
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
335
	struct arm_smmu_cfg		cfg;
336
	enum arm_smmu_domain_stage	stage;
337
	struct mutex			init_mutex; /* Protects smmu pointer */
338
	struct iommu_domain		domain;
339 340
};

341 342
static struct iommu_ops arm_smmu_ops;

343 344 345
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

346 347 348 349 350
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

351
static struct arm_smmu_option_prop arm_smmu_options[] = {
352 353 354 355
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

356 357 358 359 360
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

361 362 363
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
364

365 366 367 368 369 370 371 372 373 374
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

375
static struct device_node *dev_get_dev_node(struct device *dev)
376 377 378
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
379

380 381
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
382
		return bus->bridge->parent->of_node;
383 384
	}

385
	return dev->of_node;
386 387
}

388 389 390 391 392 393 394
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
395

396 397 398 399 400 401 402 403 404 405 406 407 408
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

409
static struct arm_smmu_master_cfg *
410
find_smmu_master_cfg(struct device *dev)
411
{
412 413
	struct arm_smmu_master_cfg *cfg = NULL;
	struct iommu_group *group = iommu_group_get(dev);
414

415 416 417 418
	if (group) {
		cfg = iommu_group_get_iommudata(group);
		iommu_group_put(group);
	}
419

420
	return cfg;
421 422
}

423 424 425 426 427 428 429 430
static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
431 432
		struct arm_smmu_master *this
			= container_of(*new, struct arm_smmu_master, node);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

474 475
	master->of_node			= masterspec->np;
	master->cfg.num_streamids	= masterspec->args_count;
476

477 478
	for (i = 0; i < master->cfg.num_streamids; ++i) {
		u16 streamid = masterspec->args[i];
479

480 481 482 483 484 485 486 487 488
		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
		     (streamid >= smmu->num_mapping_groups)) {
			dev_err(dev,
				"stream ID for master device %s greater than maximum allowed (%d)\n",
				masterspec->np->name, smmu->num_mapping_groups);
			return -ERANGE;
		}
		master->cfg.streamids[i] = streamid;
	}
489 490 491
	return insert_smmu_master(smmu, master);
}

492
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
493
{
494
	struct arm_smmu_device *smmu;
495
	struct arm_smmu_master *master = NULL;
496
	struct device_node *dev_node = dev_get_dev_node(dev);
497 498

	spin_lock(&arm_smmu_devices_lock);
499
	list_for_each_entry(smmu, &arm_smmu_devices, list) {
500 501 502 503
		master = find_smmu_master(smmu, dev_node);
		if (master)
			break;
	}
504
	spin_unlock(&arm_smmu_devices_lock);
505

506
	return master ? smmu : NULL;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
528
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

546 547 548 549 550 551 552
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
553
{
554
	struct arm_smmu_domain *smmu_domain = cookie;
555 556
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
557
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
558
	void __iomem *base;
559 560 561

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
562 563
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
564 565
	} else {
		base = ARM_SMMU_GR0(smmu);
566 567
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
568 569
	}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
					  bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
			iova &= ~12UL;
			iova |= ARM_SMMU_CB_ASID(cfg);
			writel_relaxed(iova, reg);
#ifdef CONFIG_64BIT
		} else {
			iova >>= 12;
			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
			writeq_relaxed(iova, reg);
#endif
		}
#ifdef CONFIG_64BIT
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
		writeq_relaxed(iova >> 12, reg);
#endif
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
	}
}

static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;


	/* Ensure new page tables are visible to the hardware walker */
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
		dsb(ishst);
	} else {
		/*
		 * If the SMMU can't walk tables in the CPU caches, treat them
		 * like non-coherent DMA since we need to flush the new entries
		 * all the way out to memory. There's no possibility of
		 * recursion here as the SMMU table walker will not be wired
		 * through another SMMU.
		 */
		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
			     DMA_TO_DEVICE);
	}
631 632
}

633 634 635 636 637 638 639
static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
	.flush_pgtable	= arm_smmu_flush_pgtable,
};

640 641 642 643 644 645
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
646
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
647 648
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
649 650
	void __iomem *cb_base;

651
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
652 653 654 655 656 657 658
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
659
				    "Unexpected context fault (fsr 0x%x)\n",
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
676 677
		dev_err_ratelimited(smmu->dev,
		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
678
		    iova, fsynr, cfg->cbndx);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
697
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
698 699 700 701 702 703

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

704 705 706
	if (!gfsr)
		return IRQ_NONE;

707 708 709 710 711 712 713
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
714
	return IRQ_HANDLED;
715 716
}

717 718
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
719 720 721
{
	u32 reg;
	bool stage1;
722 723
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
724 725 726 727
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
728 729
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744
	if (smmu->version > ARM_SMMU_V1) {
		/*
		 * CBA2R.
		 * *Must* be initialised before CBAR thanks to VMID16
		 * architectural oversight affected some implementations.
		 */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

745
	/* CBAR */
746
	reg = cfg->cbar;
747
	if (smmu->version == ARM_SMMU_V1)
748
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
749

750 751 752 753 754 755 756 757
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	} else {
758
		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
759
	}
760
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
761

762 763 764 765 766
	/* TTBRs */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
767
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
768
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
769

770 771 772 773 774 775 776 777 778 779 780
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
	} else {
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
	}
781

782 783 784 785 786 787
	/* TTBCR */
	if (stage1) {
		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
		if (smmu->version > ARM_SMMU_V1) {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
788
			reg |= TTBCR2_SEP_UPSTREAM;
789
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
790 791
		}
	} else {
792 793
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
794 795
	}

796
	/* MAIRs (stage-1 only) */
797
	if (stage1) {
798
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
799
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
800 801
		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
802 803 804 805 806 807 808 809 810
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
811
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
812 813 814
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
815
					struct arm_smmu_device *smmu)
816
{
817
	int irq, start, ret = 0;
818 819 820 821
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
822
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
823
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
824

825
	mutex_lock(&smmu_domain->init_mutex);
826 827 828
	if (smmu_domain->smmu)
		goto out_unlock;

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
856 857 858 859 860 861
		ias = smmu->va_size;
		oas = smmu->ipa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S1;
		else
			fmt = ARM_32_LPAE_S1;
862 863
		break;
	case ARM_SMMU_DOMAIN_NESTED:
864 865 866 867
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
868
	case ARM_SMMU_DOMAIN_S2:
869 870
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
871 872 873 874 875 876
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
		if (IS_ENABLED(CONFIG_64BIT))
			fmt = ARM_64_LPAE_S2;
		else
			fmt = ARM_32_LPAE_S2;
877 878 879 880
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
881 882 883 884 885
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
886
		goto out_unlock;
887

888
	cfg->cbndx = ret;
889
	if (smmu->version == ARM_SMMU_V1) {
890 891
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
892
	} else {
893
		cfg->irptndx = cfg->cbndx;
894 895
	}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

	/* Update our support page sizes to reflect the page table format */
	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
912

913 914 915 916 917 918 919
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
920
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
921 922 923 924
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
925 926
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
927 928
	}

929 930 931 932
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
933
	return 0;
934

935 936
out_clear_smmu:
	smmu_domain->smmu = NULL;
937
out_unlock:
938
	mutex_unlock(&smmu_domain->init_mutex);
939 940 941 942 943
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
944
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
945 946
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
947
	void __iomem *cb_base;
948 949 950 951 952
	int irq;

	if (!smmu)
		return;

953 954 955 956
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
957
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
958 959
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

960 961
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
962 963 964
		free_irq(irq, domain);
	}

965 966 967
	if (smmu_domain->pgtbl_ops)
		free_io_pgtable_ops(smmu_domain->pgtbl_ops);

968
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
969 970
}

971
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
972 973 974
{
	struct arm_smmu_domain *smmu_domain;

975 976
	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
977 978 979 980 981 982 983
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
984
		return NULL;
985

986 987
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
988 989

	return &smmu_domain->domain;
990 991
}

992
static void arm_smmu_domain_free(struct iommu_domain *domain)
993
{
994
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
995 996 997 998 999

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1000 1001 1002 1003 1004
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1005
					  struct arm_smmu_master_cfg *cfg)
1006 1007 1008 1009 1010 1011 1012 1013
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

1014
	if (cfg->smrs)
1015 1016
		return -EEXIST;

1017
	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1018
	if (!smrs) {
1019 1020
		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
			cfg->num_streamids);
1021 1022 1023
		return -ENOMEM;
	}

1024
	/* Allocate the SMRs on the SMMU */
1025
	for (i = 0; i < cfg->num_streamids; ++i) {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
1036
			.id	= cfg->streamids[i],
1037 1038 1039 1040
		};
	}

	/* It worked! Now, poke the actual hardware */
1041
	for (i = 0; i < cfg->num_streamids; ++i) {
1042 1043 1044 1045 1046
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

1047
	cfg->smrs = smrs;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1058
				      struct arm_smmu_master_cfg *cfg)
1059 1060 1061
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1062
	struct arm_smmu_smr *smrs = cfg->smrs;
1063

1064 1065 1066
	if (!smrs)
		return;

1067
	/* Invalidate the SMRs before freeing back to the allocator */
1068
	for (i = 0; i < cfg->num_streamids; ++i) {
1069
		u8 idx = smrs[i].idx;
1070

1071 1072 1073 1074
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

1075
	cfg->smrs = NULL;
1076 1077 1078 1079
	kfree(smrs);
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1080
				      struct arm_smmu_master_cfg *cfg)
1081 1082
{
	int i, ret;
1083
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1084 1085
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

1086
	/* Devices in an IOMMU group may already be configured */
1087
	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1088
	if (ret)
1089
		return ret == -EEXIST ? 0 : ret;
1090

1091
	for (i = 0; i < cfg->num_streamids; ++i) {
1092
		u32 idx, s2cr;
1093

1094
		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1095
		s2cr = S2CR_TYPE_TRANS |
1096
		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1097 1098 1099 1100 1101 1102 1103
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1104
					  struct arm_smmu_master_cfg *cfg)
1105
{
1106
	int i;
1107
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1108
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1109

1110 1111 1112
	/* An IOMMU group is torn down by the first device to be removed */
	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
		return;
1113 1114 1115 1116 1117

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
1118 1119 1120 1121 1122 1123 1124
	for (i = 0; i < cfg->num_streamids; ++i) {
		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];

		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

1125
	arm_smmu_master_free_smrs(smmu, cfg);
1126 1127 1128 1129
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1130
	int ret;
1131
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1132
	struct arm_smmu_device *smmu;
1133
	struct arm_smmu_master_cfg *cfg;
1134

1135
	smmu = find_smmu_for_device(dev);
1136
	if (!smmu) {
1137 1138 1139 1140
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1141 1142 1143 1144 1145
	if (dev->archdata.iommu) {
		dev_err(dev, "already attached to IOMMU domain\n");
		return -EEXIST;
	}

1146 1147 1148 1149 1150
	/* Ensure that the domain is finalised */
	ret = arm_smmu_init_domain_context(domain, smmu);
	if (IS_ERR_VALUE(ret))
		return ret;

1151
	/*
1152 1153
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1154
	 */
1155
	if (smmu_domain->smmu != smmu) {
1156 1157
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1158 1159
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
		return -EINVAL;
1160 1161 1162
	}

	/* Looks ok, so add the device to the domain */
1163
	cfg = find_smmu_master_cfg(dev);
1164
	if (!cfg)
1165 1166
		return -ENODEV;

1167 1168 1169
	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
	if (!ret)
		dev->archdata.iommu = domain;
1170 1171 1172 1173 1174
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
1175
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1176
	struct arm_smmu_master_cfg *cfg;
1177

1178
	cfg = find_smmu_master_cfg(dev);
1179 1180 1181 1182 1183
	if (!cfg)
		return;

	dev->archdata.iommu = NULL;
	arm_smmu_domain_remove_master(smmu_domain, cfg);
1184 1185 1186
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1187
			phys_addr_t paddr, size_t size, int prot)
1188
{
1189 1190
	int ret;
	unsigned long flags;
1191
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1192
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1193

1194
	if (!ops)
1195 1196
		return -ENODEV;

1197 1198 1199 1200
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1201 1202 1203 1204 1205
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1206 1207
	size_t ret;
	unsigned long flags;
1208
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1209
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1210

1211 1212 1213 1214 1215 1216 1217
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1218 1219
}

1220 1221 1222
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1223
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1224 1225 1226 1227 1228 1229 1230
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1231
	unsigned long va;
1232 1233 1234

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1235 1236 1237 1238 1239 1240 1241 1242
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
#ifdef CONFIG_64BIT
	if (smmu->version == ARM_SMMU_V2)
		writeq_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else
#endif
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
			"iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;

	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1264
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1265
					dma_addr_t iova)
1266
{
1267 1268
	phys_addr_t ret;
	unsigned long flags;
1269
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1270
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1271

1272
	if (!ops)
1273
		return 0;
1274

1275
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1276 1277
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1278
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1279
	} else {
1280
		ret = ops->iova_to_phys(ops, iova);
1281 1282
	}

1283
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1284

1285
	return ret;
1286 1287
}

1288
static bool arm_smmu_capable(enum iommu_cap cap)
1289
{
1290 1291
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1292 1293 1294 1295 1296
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1297
	case IOMMU_CAP_INTR_REMAP:
1298
		return true; /* MSIs are just memory writes */
1299 1300
	case IOMMU_CAP_NOEXEC:
		return true;
1301
	default:
1302
		return false;
1303
	}
1304 1305
}

1306 1307 1308 1309
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
	*((u16 *)data) = alias;
	return 0; /* Continue walking */
1310 1311
}

1312 1313 1314 1315 1316
static void __arm_smmu_release_pci_iommudata(void *data)
{
	kfree(data);
}

1317
static int arm_smmu_add_pci_device(struct pci_dev *pdev)
1318
{
1319 1320
	int i, ret;
	u16 sid;
1321
	struct iommu_group *group;
1322
	struct arm_smmu_master_cfg *cfg;
1323

1324 1325
	group = iommu_group_get_for_dev(&pdev->dev);
	if (IS_ERR(group))
1326
		return PTR_ERR(group);
1327

1328 1329
	cfg = iommu_group_get_iommudata(group);
	if (!cfg) {
1330 1331 1332 1333 1334 1335
		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
		if (!cfg) {
			ret = -ENOMEM;
			goto out_put_group;
		}

1336 1337 1338
		iommu_group_set_iommudata(group, cfg,
					  __arm_smmu_release_pci_iommudata);
	}
1339

1340 1341 1342
	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS) {
		ret = -ENOSPC;
		goto out_put_group;
1343 1344
	}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	/*
	 * Assume Stream ID == Requester ID for now.
	 * We need a way to describe the ID mappings in FDT.
	 */
	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
	for (i = 0; i < cfg->num_streamids; ++i)
		if (cfg->streamids[i] == sid)
			break;

	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
	if (i == cfg->num_streamids)
		cfg->streamids[cfg->num_streamids++] = sid;
1357

1358
	return 0;
1359 1360
out_put_group:
	iommu_group_put(group);
1361
	return ret;
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static int arm_smmu_add_platform_device(struct device *dev)
{
	struct iommu_group *group;
	struct arm_smmu_master *master;
	struct arm_smmu_device *smmu = find_smmu_for_device(dev);

	if (!smmu)
		return -ENODEV;

	master = find_smmu_master(smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	/* No automatic group creation for platform devices */
	group = iommu_group_alloc();
	if (IS_ERR(group))
		return PTR_ERR(group);

	iommu_group_set_iommudata(group, &master->cfg, NULL);
	return iommu_group_add_device(group, dev);
}

static int arm_smmu_add_device(struct device *dev)
{
	if (dev_is_pci(dev))
		return arm_smmu_add_pci_device(to_pci_dev(dev));

	return arm_smmu_add_platform_device(dev);
}

1394 1395
static void arm_smmu_remove_device(struct device *dev)
{
1396
	iommu_group_remove_device(dev);
1397 1398
}

1399 1400 1401
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1402
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1416
	int ret = 0;
1417
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1418

1419 1420
	mutex_lock(&smmu_domain->init_mutex);

1421 1422
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1423 1424 1425 1426 1427
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1428 1429 1430 1431 1432
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1433
		break;
1434
	default:
1435
		ret = -ENODEV;
1436
	}
1437 1438 1439 1440

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1441 1442
}

1443
static struct iommu_ops arm_smmu_ops = {
1444
	.capable		= arm_smmu_capable,
1445 1446
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1447 1448 1449 1450
	.attach_dev		= arm_smmu_attach_dev,
	.detach_dev		= arm_smmu_detach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1451
	.map_sg			= default_iommu_map_sg,
1452 1453 1454 1455 1456
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1457
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1458 1459 1460 1461 1462
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1463
	void __iomem *cb_base;
1464
	int i = 0;
1465 1466
	u32 reg;

1467 1468 1469
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1470 1471 1472

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1473
		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1474 1475
		writel_relaxed(S2CR_TYPE_BYPASS,
			gr0_base + ARM_SMMU_GR0_S2CR(i));
1476 1477
	}

1478 1479 1480 1481 1482 1483
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
	}
1484

1485 1486 1487 1488
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1489
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1490

1491
	/* Enable fault reporting */
1492
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1493 1494

	/* Disable TLB broadcasting. */
1495
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1496 1497

	/* Enable client access, but bypass when no mapping is found */
1498
	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1499 1500

	/* Disable forced broadcasting */
1501
	reg &= ~sCR0_FB;
1502 1503

	/* Don't upgrade barriers */
1504
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1505 1506

	/* Push the button */
1507
	__arm_smmu_tlb_sync(smmu);
1508
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;

	dev_notice(smmu->dev, "probing hardware configuration...\n");
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1541 1542 1543 1544 1545 1546 1547

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1564
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1565 1566 1567 1568
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1569
	if ((id & ID0_S1TS) && ((smmu->version == 1) || (id & ID0_ATOSNS))) {
1570 1571 1572 1573
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	if (id & ID0_CTTW) {
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
		dev_notice(smmu->dev, "\tcoherent table walk\n");
	}

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
1608 1609 1610
	} else {
		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
					   ID0_NUMSIDB_MASK;
1611 1612 1613 1614
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1615
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1616

1617
	/* Check for size mismatch of SMMU address space from mapped region */
1618
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1619
	size *= 2 << smmu->pgshift;
1620
	if (smmu->size != size)
1621 1622 1623
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1624

1625
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1637
	smmu->ipa_size = size;
1638

1639
	/* The output mask is also applied for bypass */
1640
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1641
	smmu->pa_size = size;
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1652
	if (smmu->version == ARM_SMMU_V1) {
1653 1654
		smmu->va_size = smmu->ipa_size;
		size = SZ_4K | SZ_2M | SZ_1G;
1655 1656
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1657 1658 1659
		smmu->va_size = arm_smmu_id_size_to_bits(size);
#ifndef CONFIG_64BIT
		smmu->va_size = min(32UL, smmu->va_size);
1660
#endif
1661 1662 1663 1664 1665 1666 1667
		size = 0;
		if (id & ID2_PTFS_4K)
			size |= SZ_4K | SZ_2M | SZ_1G;
		if (id & ID2_PTFS_16K)
			size |= SZ_16K | SZ_32M;
		if (id & ID2_PTFS_64K)
			size |= SZ_64K | SZ_512M;
1668 1669
	}

1670 1671 1672
	arm_smmu_ops.pgsize_bitmap &= size;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);

1673 1674
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1675
			   smmu->va_size, smmu->ipa_size);
1676 1677 1678

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1679
			   smmu->ipa_size, smmu->pa_size);
1680

1681 1682 1683
	return 0;
}

1684
static const struct of_device_id arm_smmu_of_match[] = {
1685 1686 1687
	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
R
Robin Murphy 已提交
1688
	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1689 1690 1691 1692 1693
	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1694 1695
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1696
	const struct of_device_id *of_id;
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1711 1712 1713
	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
	smmu->version = (enum arm_smmu_arch_version)of_id->data;

1714
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1715 1716 1717
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1733 1734 1735 1736
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1748

1749 1750 1751 1752 1753 1754 1755
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1756 1757 1758 1759
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

1776 1777
	parse_driver_options(smmu);

1778
	if (smmu->version > ARM_SMMU_V1 &&
1779 1780 1781 1782
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1783
		err = -ENODEV;
1784
		goto out_put_masters;
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
1804 1805

	arm_smmu_device_reset(smmu);
1806 1807 1808 1809 1810 1811 1812 1813
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1814 1815
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1843 1844
		struct arm_smmu_master *master
			= container_of(node, struct arm_smmu_master, node);
1845 1846 1847
		of_node_put(master->of_node);
	}

1848
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1849 1850 1851 1852 1853 1854
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
1855
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1870
	struct device_node *np;
1871 1872
	int ret;

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1884 1885 1886 1887 1888
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1889
	if (!iommu_present(&platform_bus_type))
1890 1891
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1892
#ifdef CONFIG_ARM_AMBA
1893
	if (!iommu_present(&amba_bustype))
1894
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1895
#endif
1896

1897 1898 1899 1900 1901
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type))
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif

1902 1903 1904 1905 1906 1907 1908 1909
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

1910
subsys_initcall(arm_smmu_init);
1911 1912 1913 1914 1915
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");