intel_pm.c 189.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
}
63

64
static void skl_init_clock_gating(struct drm_device *dev)
65
{
66
	struct drm_i915_private *dev_priv = dev->dev_private;
67

68 69
	gen9_init_clock_gating(dev);

70 71 72
	if (INTEL_REVID(dev) == SKL_REVID_A0) {
		/*
		 * WaDisableSDEUnitClockGating:skl
73
		 * WaSetGAPSunitClckGateDisable:skl
74 75
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77 78
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
	}
79

80
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81 82 83 84
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

85 86 87 88 89
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   I915_READ(FF_SLICE_CS_CHICKEN2) |
			   GEN9_TSG_BARRIER_ACK_DISABLE);
	}
90

91 92 93 94
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
95 96
}

97 98
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
99
	struct drm_i915_private *dev_priv = dev->dev_private;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
138
	struct drm_i915_private *dev_priv = dev->dev_private;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

164
	dev_priv->ips.r_t = dev_priv->mem_freq;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
196
		dev_priv->ips.c_m = 0;
197
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198
		dev_priv->ips.c_m = 1;
199
	} else {
200
		dev_priv->ips.c_m = 2;
201 202 203
	}
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

242
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

304 305 306
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

307
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
308
{
309 310
	struct drm_device *dev = dev_priv->dev;
	u32 val;
311

312 313
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
314 315
		if (IS_CHERRYVIEW(dev))
			chv_set_memory_pm5(dev_priv, enable);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
333

334 335
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
336 337
}

338

339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
353
static const int pessimal_latency_ns = 5000;
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

410
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

426
static int i830_get_fifo_size(struct drm_device *dev, int plane)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

443
static int i845_get_fifo_size(struct drm_device *dev, int plane)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
461 462 463 464 465
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 467
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
468 469 470 471 472
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 474
};
static const struct intel_watermark_params pineview_cursor_wm = {
475 476 477 478 479
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480 481
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
482 483 484 485 486
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
487 488
};
static const struct intel_watermark_params g4x_wm_info = {
489 490 491 492 493
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
494 495
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
496 497 498 499 500
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
501 502
};
static const struct intel_watermark_params valleyview_wm_info = {
503 504 505 506 507
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
508 509
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
510 511 512 513 514
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
515 516
};
static const struct intel_watermark_params i965_cursor_wm_info = {
517 518 519 520 521
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
522 523
};
static const struct intel_watermark_params i945_wm_info = {
524 525 526 527 528
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
529 530
};
static const struct intel_watermark_params i915_wm_info = {
531 532 533 534 535
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
536
};
537
static const struct intel_watermark_params i830_a_wm_info = {
538 539 540 541 542
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
543
};
544 545 546 547 548 549 550
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
551
static const struct intel_watermark_params i845_wm_info = {
552 553 554 555 556
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
606 607 608 609 610 611 612 613 614 615 616

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

617 618 619 620 621 622 623
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

624
	for_each_crtc(dev, crtc) {
625
		if (intel_crtc_active(crtc)) {
626 627 628 629 630 631 632 633 634
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

635
static void pineview_update_wm(struct drm_crtc *unused_crtc)
636
{
637
	struct drm_device *dev = unused_crtc->dev;
638 639 640 641 642 643 644 645 646 647
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
648
		intel_set_memory_cxsr(dev_priv, false);
649 650 651 652 653
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
654
		const struct drm_display_mode *adjusted_mode;
655
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
656 657
		int clock;

658
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
659
		clock = adjusted_mode->crtc_clock;
660 661 662 663 664 665 666

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
667
		reg |= FW_WM(wm, SR);
668 669 670 671 672 673 674 675 676
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
677
		reg |= FW_WM(wm, CURSOR_SR);
678 679 680 681 682 683 684 685
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
686
		reg |= FW_WM(wm, HPLL_SR);
687 688 689 690 691 692 693 694
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
695
		reg |= FW_WM(wm, HPLL_CURSOR);
696 697 698
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

699
		intel_set_memory_cxsr(dev_priv, true);
700
	} else {
701
		intel_set_memory_cxsr(dev_priv, false);
702 703 704 705 706 707 708 709 710 711 712 713 714
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
715
	const struct drm_display_mode *adjusted_mode;
716 717 718 719 720
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
721
	if (!intel_crtc_active(crtc)) {
722 723 724 725 726
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

727
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
728
	clock = adjusted_mode->crtc_clock;
729
	htotal = adjusted_mode->crtc_htotal;
730
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
731
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
732 733 734 735 736 737 738 739 740 741 742 743

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
744
	line_time_us = max(htotal * 1000 / clock, 1);
745
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
746
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
801
	const struct drm_display_mode *adjusted_mode;
802 803 804 805 806 807 808 809 810 811 812 813
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
814
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
815
	clock = adjusted_mode->crtc_clock;
816
	htotal = adjusted_mode->crtc_htotal;
817
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
818
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
819

820
	line_time_us = max(htotal * 1000 / clock, 1);
821 822 823 824 825 826 827 828 829 830 831
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
832
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
833 834 835 836 837 838 839 840
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

841 842 843
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

844 845 846 847 848 849 850 851 852 853 854 855
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

856
	I915_WRITE(DSPFW1,
857 858 859 860
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
861
	I915_WRITE(DSPFW2,
862 863 864
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
865
	I915_WRITE(DSPFW3,
866
		   FW_WM(wm->sr.cursor, CURSOR_SR));
867 868 869

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
870 871
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
872
		I915_WRITE(DSPFW8_CHV,
873 874
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
875
		I915_WRITE(DSPFW9_CHV,
876 877
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
878
		I915_WRITE(DSPHOWM,
879 880 881 882 883 884 885 886 887 888
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
889 890
	} else {
		I915_WRITE(DSPFW7,
891 892
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
893
		I915_WRITE(DSPHOWM,
894 895 896 897 898 899 900
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
901 902 903 904
	}

	POSTING_READ(DSPFW1);

905 906 907
	dev_priv->wm.vlv = *wm;
}

908 909
#undef FW_WM_VLV

910
static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
911
					 struct drm_plane *plane)
912
{
913
	struct drm_device *dev = crtc->dev;
914 915 916
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int entries, prec_mult, drain_latency, pixel_size;
	int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
917
	const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
918

919 920 921 922 923 924 925
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!intel_crtc->active || !plane->state->fb)
		return 0;

926
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
927
		return 0;
928

929 930
	pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);

931
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
932
		return 0;
933

934
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
935

936 937
	prec_mult = high_precision;
	drain_latency = 64 * prec_mult * 4 / entries;
938

939 940 941
	if (drain_latency > DRAIN_LATENCY_MASK) {
		prec_mult /= 2;
		drain_latency = 64 * prec_mult * 4 / entries;
942 943
	}

944 945
	if (drain_latency > DRAIN_LATENCY_MASK)
		drain_latency = DRAIN_LATENCY_MASK;
946

947 948
	return drain_latency | (prec_mult == high_precision ?
				DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
949 950
}

951 952 953
static int vlv_compute_wm(struct intel_crtc *crtc,
			  struct intel_plane *plane,
			  int fifo_size)
954
{
955
	int clock, entries, pixel_size;
956

957 958 959 960 961 962
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!crtc->active || !plane->base.state->fb)
		return 0;
963

964 965
	pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
966

967
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982
	/*
	 * Set up the watermark such that we don't start issuing memory
	 * requests until we are within PND's max deadline value (256us).
	 * Idea being to be idle as long as possible while still taking
	 * advatange of PND's deadline scheduling. The limit of 8
	 * cachelines (used when the FIFO will anyway drain in less time
	 * than 256us) should match what we would be done if trickle
	 * feed were enabled.
	 */
	return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
}

static bool vlv_compute_sr_wm(struct drm_device *dev,
			      struct vlv_wm_values *wm)
983
{
984 985 986 987 988 989
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct drm_crtc *crtc;
	enum pipe pipe = INVALID_PIPE;
	int num_planes = 0;
	int fifo_size = 0;
	struct intel_plane *plane;
990

991
	wm->sr.cursor = wm->sr.plane = 0;
992

993 994 995 996 997 998 999 1000 1001
	crtc = single_enabled_crtc(dev);
	/* maxfifo not supported on pipe C */
	if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
		pipe = to_intel_crtc(crtc)->pipe;
		num_planes = !!wm->pipe[pipe].primary +
			!!wm->pipe[pipe].sprite[0] +
			!!wm->pipe[pipe].sprite[1];
		fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
	}
1002

1003 1004
	if (fifo_size == 0 || num_planes > 1)
		return false;
1005

1006 1007
	wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
				       to_intel_plane(crtc->cursor), 0x3f);
1008

1009 1010 1011
	list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;
1012

1013 1014
		if (plane->pipe != pipe)
			continue;
1015

1016 1017 1018 1019 1020 1021 1022
		wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
					      plane, fifo_size);
		if (wm->sr.plane != 0)
			break;
	}

	return true;
1023 1024
}

1025
static void valleyview_update_wm(struct drm_crtc *crtc)
1026 1027 1028
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1029 1030
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1031
	bool cxsr_enabled;
1032
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1033

1034 1035 1036 1037
	wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
	wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
					       to_intel_plane(crtc->primary),
					       vlv_get_fifo_size(dev, pipe, 0));
1038

1039 1040 1041 1042
	wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
	wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
					      to_intel_plane(crtc->cursor),
					      0x3f);
1043

1044
	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1045

1046 1047
	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;
1048

1049 1050 1051 1052
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.sr.plane, wm.sr.cursor);
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	/*
	 * FIXME DDR DVFS introduces massive memory latencies which
	 * are not known to system agent so any deadline specified
	 * by the display may not be respected. To support DDR DVFS
	 * the watermark code needs to be rewritten to essentially
	 * bypass deadline mechanism and rely solely on the
	 * watermarks. For now disable DDR DVFS.
	 */
	if (IS_CHERRYVIEW(dev_priv))
		chv_set_memory_dvfs(dev_priv, false);

1065 1066
	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1067

1068
	vlv_write_wm_values(intel_crtc, &wm);
1069 1070 1071 1072 1073

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1074 1075 1076 1077 1078 1079 1080 1081 1082
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1083 1084
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1085
	int sprite = to_intel_plane(plane)->plane;
1086
	bool cxsr_enabled;
1087
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1088

1089
	if (enabled) {
1090
		wm.ddl[pipe].sprite[sprite] =
1091
			vlv_compute_drain_latency(crtc, plane);
1092 1093 1094 1095 1096 1097

		wm.pipe[pipe].sprite[sprite] =
			vlv_compute_wm(intel_crtc,
				       to_intel_plane(plane),
				       vlv_get_fifo_size(dev, pipe, sprite+1));
	} else {
1098
		wm.ddl[pipe].sprite[sprite] = 0;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		wm.pipe[pipe].sprite[sprite] = 0;
	}

	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);

	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      sprite_name(pipe, sprite),
		      wm.pipe[pipe].sprite[sprite],
		      wm.sr.plane, wm.sr.cursor);

	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1115

1116
	vlv_write_wm_values(intel_crtc, &wm);
1117 1118 1119

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1120 1121
}

1122 1123
#define single_plane_enabled(mask) is_power_of_2(mask)

1124
static void g4x_update_wm(struct drm_crtc *crtc)
1125
{
1126
	struct drm_device *dev = crtc->dev;
1127 1128 1129 1130 1131
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1132
	bool cxsr_enabled;
1133

1134
	if (g4x_compute_wm0(dev, PIPE_A,
1135 1136
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1137
			    &planea_wm, &cursora_wm))
1138
		enabled |= 1 << PIPE_A;
1139

1140
	if (g4x_compute_wm0(dev, PIPE_B,
1141 1142
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1143
			    &planeb_wm, &cursorb_wm))
1144
		enabled |= 1 << PIPE_B;
1145 1146 1147 1148 1149 1150

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1151
			     &plane_sr, &cursor_sr)) {
1152
		cxsr_enabled = true;
1153
	} else {
1154
		cxsr_enabled = false;
1155
		intel_set_memory_cxsr(dev_priv, false);
1156 1157
		plane_sr = cursor_sr = 0;
	}
1158

1159 1160
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1161 1162 1163 1164 1165
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1166 1167 1168 1169
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1170
	I915_WRITE(DSPFW2,
1171
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1172
		   FW_WM(cursora_wm, CURSORA));
1173 1174
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1175
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1176
		   FW_WM(cursor_sr, CURSOR_SR));
1177 1178 1179

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1180 1181
}

1182
static void i965_update_wm(struct drm_crtc *unused_crtc)
1183
{
1184
	struct drm_device *dev = unused_crtc->dev;
1185 1186 1187 1188
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1189
	bool cxsr_enabled;
1190 1191 1192 1193 1194 1195

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1196
		const struct drm_display_mode *adjusted_mode =
1197
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1198
		int clock = adjusted_mode->crtc_clock;
1199
		int htotal = adjusted_mode->crtc_htotal;
1200
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1201
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1202 1203 1204
		unsigned long line_time_us;
		int entries;

1205
		line_time_us = max(htotal * 1000 / clock, 1);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1219
			pixel_size * crtc->cursor->state->crtc_w;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1231
		cxsr_enabled = true;
1232
	} else {
1233
		cxsr_enabled = false;
1234
		/* Turn off self refresh if both pipes are enabled */
1235
		intel_set_memory_cxsr(dev_priv, false);
1236 1237 1238 1239 1240 1241
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1242 1243 1244 1245 1246 1247
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1248
	/* update cursor SR watermark */
1249
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1250 1251 1252

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1253 1254
}

1255 1256
#undef FW_WM

1257
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1258
{
1259
	struct drm_device *dev = unused_crtc->dev;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1274
		wm_info = &i830_a_wm_info;
1275 1276 1277

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1278
	if (intel_crtc_active(crtc)) {
1279
		const struct drm_display_mode *adjusted_mode;
1280
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1281 1282 1283
		if (IS_GEN2(dev))
			cpp = 4;

1284
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1285
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1286
					       wm_info, fifo_size, cpp,
1287
					       pessimal_latency_ns);
1288
		enabled = crtc;
1289
	} else {
1290
		planea_wm = fifo_size - wm_info->guard_size;
1291 1292 1293 1294 1295 1296
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1297 1298 1299

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1300
	if (intel_crtc_active(crtc)) {
1301
		const struct drm_display_mode *adjusted_mode;
1302
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1303 1304 1305
		if (IS_GEN2(dev))
			cpp = 4;

1306
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1307
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1308
					       wm_info, fifo_size, cpp,
1309
					       pessimal_latency_ns);
1310 1311 1312 1313
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1314
	} else {
1315
		planeb_wm = fifo_size - wm_info->guard_size;
1316 1317 1318
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1319 1320 1321

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1322
	if (IS_I915GM(dev) && enabled) {
1323
		struct drm_i915_gem_object *obj;
1324

1325
		obj = intel_fb_obj(enabled->primary->state->fb);
1326 1327

		/* self-refresh seems busted with untiled */
1328
		if (obj->tiling_mode == I915_TILING_NONE)
1329 1330 1331
			enabled = NULL;
	}

1332 1333 1334 1335 1336 1337
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1338
	intel_set_memory_cxsr(dev_priv, false);
1339 1340 1341 1342 1343

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1344
		const struct drm_display_mode *adjusted_mode =
1345
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1346
		int clock = adjusted_mode->crtc_clock;
1347
		int htotal = adjusted_mode->crtc_htotal;
1348
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1349
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1350 1351 1352
		unsigned long line_time_us;
		int entries;

1353
		line_time_us = max(htotal * 1000 / clock, 1);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1384 1385
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1386 1387
}

1388
static void i845_update_wm(struct drm_crtc *unused_crtc)
1389
{
1390
	struct drm_device *dev = unused_crtc->dev;
1391 1392
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1393
	const struct drm_display_mode *adjusted_mode;
1394 1395 1396 1397 1398 1399 1400
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1401
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1402
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1403
				       &i845_wm_info,
1404
				       dev_priv->display.get_fifo_size(dev, 0),
1405
				       4, pessimal_latency_ns);
1406 1407 1408 1409 1410 1411 1412 1413
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1414 1415
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1416 1417
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1418
	uint32_t pixel_rate;
1419

1420
	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1421 1422 1423 1424

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1425
	if (intel_crtc->config->pch_pfit.enabled) {
1426
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1427
		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1428

1429 1430
		pipe_w = intel_crtc->config->pipe_src_w;
		pipe_h = intel_crtc->config->pipe_src_h;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1445
/* latency must be in 0.1us units. */
1446
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1447 1448 1449 1450
			       uint32_t latency)
{
	uint64_t ret;

1451 1452 1453
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1454 1455 1456 1457 1458 1459
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1460
/* latency must be in 0.1us units. */
1461
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1462 1463 1464 1465 1466
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1467 1468 1469
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1470 1471 1472 1473 1474 1475
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1476
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1477 1478 1479 1480 1481
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1482 1483 1484 1485 1486 1487 1488 1489
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1490
struct ilk_pipe_wm_parameters {
1491 1492 1493
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1494 1495 1496
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1497 1498
};

1499
struct ilk_wm_maximums {
1500 1501 1502 1503 1504 1505
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1506 1507 1508 1509 1510 1511 1512
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1513 1514 1515 1516
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1517
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1518 1519
				   uint32_t mem_value,
				   bool is_lp)
1520
{
1521 1522
	uint32_t method1, method2;

1523
	if (!params->active || !params->pri.enabled)
1524 1525
		return 0;

1526
	method1 = ilk_wm_method1(params->pixel_rate,
1527
				 params->pri.bytes_per_pixel,
1528 1529 1530 1531 1532
				 mem_value);

	if (!is_lp)
		return method1;

1533
	method2 = ilk_wm_method2(params->pixel_rate,
1534
				 params->pipe_htotal,
1535 1536
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1537 1538 1539
				 mem_value);

	return min(method1, method2);
1540 1541
}

1542 1543 1544 1545
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1546
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1547 1548 1549 1550
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1551
	if (!params->active || !params->spr.enabled)
1552 1553
		return 0;

1554
	method1 = ilk_wm_method1(params->pixel_rate,
1555
				 params->spr.bytes_per_pixel,
1556
				 mem_value);
1557
	method2 = ilk_wm_method2(params->pixel_rate,
1558
				 params->pipe_htotal,
1559 1560
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1561 1562 1563 1564
				 mem_value);
	return min(method1, method2);
}

1565 1566 1567 1568
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1569
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1570 1571
				   uint32_t mem_value)
{
1572
	if (!params->active || !params->cur.enabled)
1573 1574
		return 0;

1575
	return ilk_wm_method2(params->pixel_rate,
1576
			      params->pipe_htotal,
1577 1578
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1579 1580 1581
			      mem_value);
}

1582
/* Only for WM_LP. */
1583
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1584
				   uint32_t pri_val)
1585
{
1586
	if (!params->active || !params->pri.enabled)
1587 1588
		return 0;

1589
	return ilk_wm_fbc(pri_val,
1590 1591
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1592 1593
}

1594 1595
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1596 1597 1598
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1599 1600 1601 1602 1603
		return 768;
	else
		return 512;
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1638 1639 1640
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1641
				     const struct intel_wm_config *config,
1642 1643 1644 1645 1646 1647
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1648
	if (is_sprite && !config->sprites_enabled)
1649 1650 1651
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1652
	if (level == 0 || config->num_pipes_active > 1) {
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1664
	if (config->sprites_enabled) {
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1676
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1677 1678 1679 1680
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1681 1682
				      int level,
				      const struct intel_wm_config *config)
1683 1684
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1685
	if (level > 0 && config->num_pipes_active > 1)
1686 1687 1688
		return 64;

	/* otherwise just report max that registers can hold */
1689
	return ilk_cursor_wm_reg_max(dev, level);
1690 1691
}

1692
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1693 1694 1695
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1696
				    struct ilk_wm_maximums *max)
1697
{
1698 1699 1700
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1701
	max->fbc = ilk_fbc_wm_reg_max(dev);
1702 1703
}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1714
static bool ilk_validate_wm_level(int level,
1715
				  const struct ilk_wm_maximums *max,
1716
				  struct intel_wm_level *result)
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1755
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1756
				 int level,
1757
				 const struct ilk_pipe_wm_parameters *p,
1758
				 struct intel_wm_level *result)
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

1778 1779
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1780 1781
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1782
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1783
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1784
	u32 linetime, ips_linetime;
1785

1786
	if (!intel_crtc->active)
1787
		return 0;
1788

1789 1790 1791
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
1792 1793 1794
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1795
					 intel_ddi_get_cdclk_freq(dev_priv));
1796

1797 1798
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
1799 1800
}

1801
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1802 1803 1804
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1805 1806
	if (IS_GEN9(dev)) {
		uint32_t val;
1807
		int ret, i;
1808
		int level, max_level = ilk_wm_max_level(dev);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

1851
		/*
1852 1853
		 * WaWmMemoryReadLatency:skl
		 *
1854 1855 1856 1857 1858 1859 1860 1861
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
1862 1863 1864 1865 1866
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
1867 1868 1869 1870 1871
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
1872 1873 1874
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
1875

1876 1877
				break;
			}
1878
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1879 1880 1881 1882 1883
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
1884 1885 1886 1887
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
1888 1889 1890 1891 1892 1893 1894
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1895 1896 1897 1898 1899 1900 1901
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1902 1903 1904
	}
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

1923
int ilk_wm_max_level(const struct drm_device *dev)
1924 1925
{
	/* how many WM levels are we expecting */
1926 1927 1928
	if (IS_GEN9(dev))
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1929
		return 4;
1930
	else if (INTEL_INFO(dev)->gen >= 6)
1931
		return 3;
1932
	else
1933 1934
		return 2;
}
1935

1936 1937
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
1938
				   const uint16_t wm[8])
1939 1940
{
	int level, max_level = ilk_wm_max_level(dev);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

1951 1952 1953 1954 1955 1956 1957
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
1958 1959 1960 1961 1962 1963 1964 1965
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2003
static void ilk_setup_wm_latency(struct drm_device *dev)
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2016 2017 2018 2019

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2020 2021 2022

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2023 2024
}

2025 2026 2027 2028 2029 2030 2031 2032
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2033
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2034
				      struct ilk_pipe_wm_parameters *p)
2035
{
2036 2037 2038 2039
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2040

2041
	if (!intel_crtc->active)
2042
		return;
2043

2044
	p->active = true;
2045
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2046
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

	if (crtc->primary->state->fb) {
		p->pri.enabled = true;
		p->pri.bytes_per_pixel =
			crtc->primary->state->fb->bits_per_pixel / 8;
	} else {
		p->pri.enabled = false;
		p->pri.bytes_per_pixel = 0;
	}

	if (crtc->cursor->state->fb) {
		p->cur.enabled = true;
		p->cur.bytes_per_pixel = 4;
	} else {
		p->cur.enabled = false;
		p->cur.bytes_per_pixel = 0;
	}
2064
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2065
	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2066

2067
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2068 2069
		struct intel_plane *intel_plane = to_intel_plane(plane);

2070
		if (intel_plane->pipe == pipe) {
2071
			p->spr = intel_plane->wm;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2083
	for_each_intel_crtc(dev, intel_crtc) {
2084
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2085

2086 2087
		if (!wm->pipe_enabled)
			continue;
2088

2089 2090 2091
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2092
	}
2093 2094
}

2095 2096
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2097
				  const struct ilk_pipe_wm_parameters *params,
2098 2099 2100
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2101
	const struct drm_i915_private *dev_priv = dev->dev_private;
2102 2103 2104 2105 2106 2107 2108
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2109
	struct ilk_wm_maximums max;
2110

2111 2112 2113 2114
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2115 2116 2117 2118 2119 2120 2121 2122
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2123
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2124

2125
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2126
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2127

2128 2129 2130
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2131
	/* At least LP0 must be valid */
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2165 2166
	ret_wm->enable = true;

2167
	for_each_intel_crtc(dev, intel_crtc) {
2168 2169 2170 2171 2172
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2173

2174 2175 2176 2177 2178
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2179
		if (!wm->enable)
2180
			ret_wm->enable = false;
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2193
			 const struct intel_wm_config *config,
2194
			 const struct ilk_wm_maximums *max,
2195 2196 2197
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2198
	int last_enabled_level = max_level;
2199

2200 2201 2202 2203 2204
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2205 2206
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2207 2208 2209 2210 2211 2212 2213

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2214 2215 2216 2217 2218
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2219 2220 2221 2222 2223 2224

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2225 2226
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2227 2228 2229
			wm->fbc_val = 0;
		}
	}
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2244 2245
}

2246 2247 2248 2249 2250 2251
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2252 2253 2254 2255 2256
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2257
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2258 2259 2260 2261 2262
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2263
static void ilk_compute_wm_results(struct drm_device *dev,
2264
				   const struct intel_pipe_wm *merged,
2265
				   enum intel_ddb_partitioning partitioning,
2266
				   struct ilk_wm_values *results)
2267
{
2268 2269
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2270

2271
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2272
	results->partitioning = partitioning;
2273

2274
	/* LP1+ register values */
2275
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2276
		const struct intel_wm_level *r;
2277

2278
		level = ilk_wm_lp_to_level(wm_lp, merged);
2279

2280
		r = &merged->wm[level];
2281

2282 2283 2284 2285 2286
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2287
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2288 2289 2290
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2291 2292 2293
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2294 2295 2296 2297 2298 2299 2300
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2301 2302 2303 2304
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2305 2306 2307 2308 2309
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2310
	}
2311

2312
	/* LP0 register values */
2313
	for_each_intel_crtc(dev, intel_crtc) {
2314 2315 2316 2317 2318 2319 2320 2321
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2322

2323 2324 2325 2326
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2327 2328 2329
	}
}

2330 2331
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2332
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2333 2334
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2335
{
2336 2337
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2338

2339 2340 2341 2342 2343
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2344 2345
	}

2346 2347
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2348 2349 2350
			return r2;
		else
			return r1;
2351
	} else if (level1 > level2) {
2352 2353 2354 2355 2356 2357
		return r1;
	} else {
		return r2;
	}
}

2358 2359 2360 2361 2362 2363 2364 2365
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2366
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2367 2368
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2369 2370 2371 2372 2373
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2374
	for_each_pipe(dev_priv, pipe) {
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2418 2419
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2420
{
2421
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2422
	bool changed = false;
2423

2424 2425 2426
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2427
		changed = true;
2428 2429 2430 2431
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2432
		changed = true;
2433 2434 2435 2436
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2437
		changed = true;
2438
	}
2439

2440 2441 2442 2443
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2444

2445 2446 2447 2448 2449 2450 2451
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2452 2453
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2454 2455
{
	struct drm_device *dev = dev_priv->dev;
2456
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2457 2458 2459
	unsigned int dirty;
	uint32_t val;

2460
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2461 2462 2463 2464 2465
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2466
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2467
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2468
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2469
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2470
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2471 2472
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2473
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2474
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2475
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2476
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2477
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2478 2479
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2480
	if (dirty & WM_DIRTY_DDB) {
2481
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2496 2497
	}

2498
	if (dirty & WM_DIRTY_FBC) {
2499 2500 2501 2502 2503 2504 2505 2506
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2507 2508 2509 2510 2511
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2512 2513 2514 2515 2516
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2517

2518
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2519
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2520
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2521
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2522
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2523
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2524 2525

	dev_priv->wm.hw = *results;
2526 2527
}

2528 2529 2530 2531 2532 2533 2534
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2535 2536 2537 2538 2539 2540
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2541
#define BXT_DDB_SIZE		512
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2560 2561 2562 2563
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2564 2565 2566 2567 2568

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2569
		if (!to_intel_crtc(crtc)->active)
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2580
	alloc->end = alloc->start + pipe_size;
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2591 2592 2593 2594
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2595 2596
	if (entry->end)
		entry->end += 1;
2597 2598
}

2599 2600
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2601 2602 2603 2604 2605 2606
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2607
		for_each_plane(dev_priv, pipe, plane) {
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
{
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		total_data_rate += skl_plane_relative_data_rate(p);
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2656
	struct drm_i915_private *dev_priv = dev->dev_private;
2657 2658
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2659
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2660
	uint16_t alloc_size, start, cursor_blocks;
2661
	uint16_t minimum[I915_MAX_PLANES];
2662 2663 2664
	unsigned int total_data_rate;
	int plane;

2665 2666
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2667 2668 2669 2670 2671 2672 2673
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2674 2675
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2676 2677

	alloc_size -= cursor_blocks;
2678
	alloc->end -= cursor_blocks;
2679

2680
	/* 1. Allocate the mininum required blocks for each active plane */
2681
	for_each_plane(dev_priv, pipe, plane) {
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		minimum[plane] = 8;
		alloc_size -= minimum[plane];
	}

2692
	/*
2693 2694
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2695 2696 2697 2698 2699
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

2700
	start = alloc->start;
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
		unsigned int data_rate;
		uint16_t plane_blocks;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		data_rate = skl_plane_relative_data_rate(p);

		/*
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2716 2717 2718
		plane_blocks = minimum[plane];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2719 2720

		ddb->plane[pipe][plane].start = start;
2721
		ddb->plane[pipe][plane].end = start + plane_blocks;
2722 2723 2724 2725 2726 2727

		start += plane_blocks;
	}

}

2728
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2729 2730
{
	/* TODO: Take into account the scalers once we support them */
2731
	return config->base.adjusted_mode.crtc_clock;
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

2748
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2749 2750 2751 2752 2753 2754 2755
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2756
			       uint64_t tiling, uint32_t latency)
2757
{
2758 2759 2760
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
2761 2762 2763 2764 2765

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

2776 2777
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2778
				plane_blocks_per_line;
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2809
		config->num_pipes_active += to_intel_crtc(crtc)->active;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2827
	struct drm_framebuffer *fb;
2828 2829
	int i = 1; /* Index for sprite planes start */

2830
	p->active = intel_crtc->active;
2831
	if (p->active) {
2832 2833
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2834

2835
		fb = crtc->primary->state->fb;
2836 2837 2838
		if (fb) {
			p->plane[0].enabled = true;
			p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
2839
			p->plane[0].tiling = fb->modifier[0];
2840 2841 2842 2843 2844 2845 2846
		} else {
			p->plane[0].enabled = false;
			p->plane[0].bytes_per_pixel = 0;
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		}
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2847
		p->plane[0].rotation = crtc->primary->state->rotation;
2848

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		fb = crtc->cursor->state->fb;
		if (fb) {
			p->cursor.enabled = true;
			p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
			p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
			p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
		} else {
			p->cursor.enabled = false;
			p->cursor.bytes_per_pixel = 0;
			p->cursor.horiz_pixels = 64;
			p->cursor.vert_pixels = 64;
		}
2861 2862 2863 2864 2865
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2866 2867
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
2868 2869 2870 2871
			p->plane[i++] = intel_plane->wm;
	}
}

2872 2873
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				 struct skl_pipe_wm_parameters *p,
2874 2875
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
2876
				 int level,
2877 2878
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
2879
{
2880 2881 2882 2883 2884
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
2885

2886
	if (latency == 0 || !p->active || !p_params->enabled)
2887 2888 2889 2890
		return false;

	method1 = skl_wm_method1(p->pixel_rate,
				 p_params->bytes_per_pixel,
2891
				 latency);
2892 2893 2894 2895
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
				 p_params->bytes_per_pixel,
2896
				 p_params->tiling,
2897
				 latency);
2898 2899 2900

	plane_bytes_per_line = p_params->horiz_pixels *
					p_params->bytes_per_pixel;
2901
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2902

2903 2904
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
		if (intel_rotation_90_or_270(p_params->rotation)) {
			switch (p_params->bytes_per_pixel) {
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
2917
			}
2918 2919
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
2920 2921 2922 2923 2924 2925 2926
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
2927

2928 2929
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2930

2931 2932 2933 2934 2935 2936 2937
	if (level >= 1 && level <= 7) {
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
			res_lines += 4;
		else
			res_blocks++;
	}
2938

2939
	if (res_blocks >= ddb_allocation || res_lines > 31)
2940 2941 2942 2943
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

2962 2963
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
						p, &p->plane[i],
2964
						ddb_blocks,
2965
						level,
2966 2967 2968 2969 2970
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2971 2972 2973
	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
						 ddb_blocks, level,
						 &result->cursor_res_b,
2974 2975 2976
						 &result->cursor_res_l);
}

2977 2978 2979
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
2980
	if (!to_intel_crtc(crtc)->active)
2981 2982 2983 2984 2985 2986 2987 2988
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
2989
				      struct skl_wm_level *trans_wm /* out */)
2990
{
2991 2992 2993
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

2994 2995
	if (!params->active)
		return;
2996 2997 2998 2999 3000

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
3001 3002
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

3020
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3031 3032
	uint32_t temp;
	int i;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

3078 3079 3080
	r->wm_linetime[pipe] = p_wm->linetime;
}

3081 3082 3083 3084 3085 3086 3087 3088 3089
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3100 3101
		if (!new->dirty[pipe])
			continue;
3102

3103
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3104

3105 3106 3107 3108 3109 3110
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
3111
		}
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

		for (i = 0; i < intel_num_planes(crtc); i++)
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
3124 3125 3126
	}
}

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3151 3152
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3153 3154 3155
{
	int plane;

3156 3157
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3158
	for_each_plane(dev_priv, pipe, plane) {
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
	bool reallocated[I915_MAX_PIPES] = {false, false, false};
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3208
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3233
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3234
			intel_wait_for_vblank(dev, pipe);
3235
			reallocated[pipe] = true;
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3258
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3259 3260 3261
	}
}

3262 3263 3264 3265 3266 3267 3268 3269 3270
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3271
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3353
	skl_flush_wm_values(dev_priv, results);
3354 3355 3356

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3357 3358 3359 3360 3361 3362 3363 3364
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
3365
	struct drm_framebuffer *fb = plane->state->fb;
3366 3367 3368 3369 3370 3371

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.bytes_per_pixel = pixel_size;
3372 3373 3374 3375 3376 3377 3378
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
3379
	intel_plane->wm.rotation = plane->state->rotation;
3380 3381 3382 3383

	skl_update_wm(crtc);
}

3384
static void ilk_update_wm(struct drm_crtc *crtc)
3385
{
3386
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3387
	struct drm_device *dev = crtc->dev;
3388
	struct drm_i915_private *dev_priv = dev->dev_private;
3389 3390 3391
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3392
	enum intel_ddb_partitioning partitioning;
3393
	struct intel_pipe_wm pipe_wm = {};
3394
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3395
	struct intel_wm_config config = {};
3396

3397
	ilk_compute_wm_parameters(crtc, &params);
3398 3399 3400 3401 3402

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3403

3404
	intel_crtc->wm.active = pipe_wm;
3405

3406 3407
	ilk_compute_wm_config(dev, &config);

3408
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3409
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3410 3411

	/* 5/6 split only in single pipe config on IVB+ */
3412 3413
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3414
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3415
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3416

3417
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3418
	} else {
3419
		best_lp_wm = &lp_wm_1_2;
3420 3421
	}

3422
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3423
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3424

3425
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3426

3427
	ilk_write_wm_values(dev_priv, &results);
3428 3429
}

3430 3431 3432 3433 3434
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3435
{
3436
	struct drm_device *dev = plane->dev;
3437
	struct intel_plane *intel_plane = to_intel_plane(plane);
3438

3439 3440 3441
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3442
	intel_plane->wm.vert_pixels = sprite_width;
3443
	intel_plane->wm.bytes_per_pixel = pixel_size;
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3455
	ilk_update_wm(crtc);
3456 3457
}

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

3528
	if (!intel_crtc->active)
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3556 3557
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3558 3559
	struct drm_crtc *crtc;

3560
	skl_ddb_get_hw_state(dev_priv, ddb);
3561 3562 3563 3564
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3565 3566 3567 3568
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3569
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3580
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3581
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3582

3583
	active->pipe_enabled = intel_crtc->active;
3584 3585

	if (active->pipe_enabled) {
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3615
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3616 3617
	struct drm_crtc *crtc;

3618
	for_each_crtc(dev, crtc)
3619 3620 3621 3622 3623 3624 3625
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3626 3627 3628 3629
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3630

3631
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3632 3633 3634 3635 3636
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3637 3638 3639 3640 3641

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3674
void intel_update_watermarks(struct drm_crtc *crtc)
3675
{
3676
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3677 3678

	if (dev_priv->display.update_wm)
3679
		dev_priv->display.update_wm(crtc);
3680 3681
}

3682 3683
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3684 3685 3686
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3687
				    bool enabled, bool scaled)
3688
{
3689
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3690 3691

	if (dev_priv->display.update_sprite_wm)
3692 3693
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3694
						   pixel_size, enabled, scaled);
3695 3696
}

3697 3698 3699 3700 3701 3702 3703 3704 3705
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3706 3707 3708 3709 3710
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3711 3712
	assert_spin_locked(&mchdev_lock);

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3730
static void ironlake_enable_drps(struct drm_device *dev)
3731 3732 3733 3734 3735
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3736 3737
	spin_lock_irq(&mchdev_lock);

3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3761 3762
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3763

3764 3765 3766
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3783
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3784
		DRM_ERROR("stuck trying to change perf mode\n");
3785
	mdelay(1);
3786 3787 3788

	ironlake_set_drps(dev, fstart);

3789
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3790
		I915_READ(0x112e0);
3791 3792
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3793
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3794 3795

	spin_unlock_irq(&mchdev_lock);
3796 3797
}

3798
static void ironlake_disable_drps(struct drm_device *dev)
3799 3800
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3801 3802 3803 3804 3805
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3806 3807 3808 3809 3810 3811 3812 3813 3814

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3815
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3816
	mdelay(1);
3817 3818
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3819
	mdelay(1);
3820

3821
	spin_unlock_irq(&mchdev_lock);
3822 3823
}

3824 3825 3826 3827 3828
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3829
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3830
{
3831
	u32 limits;
3832

3833 3834 3835 3836 3837 3838
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3839 3840 3841 3842 3843 3844 3845 3846 3847
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
3848 3849 3850 3851

	return limits;
}

3852 3853 3854
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
3855 3856
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
3857 3858 3859 3860

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3861
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3862 3863 3864 3865
			new_power = BETWEEN;
		break;

	case BETWEEN:
3866
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3867
			new_power = LOW_POWER;
3868
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3869 3870 3871 3872
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3873
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3874 3875 3876 3877
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3878
	if (val <= dev_priv->rps.min_freq_softlimit)
3879
		new_power = LOW_POWER;
3880
	if (val >= dev_priv->rps.max_freq_softlimit)
3881 3882 3883 3884 3885 3886 3887 3888
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
3889 3890
		ei_up = 16000;
		threshold_up = 95;
3891 3892

		/* Downclock if less than 85% busy over 32ms */
3893 3894
		ei_down = 32000;
		threshold_down = 85;
3895 3896 3897 3898
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
3899 3900
		ei_up = 13000;
		threshold_up = 90;
3901 3902

		/* Downclock if less than 75% busy over 32ms */
3903 3904
		ei_down = 32000;
		threshold_down = 75;
3905 3906 3907 3908
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
3909 3910
		ei_up = 10000;
		threshold_up = 85;
3911 3912

		/* Downclock if less than 60% busy over 32ms */
3913 3914
		ei_down = 32000;
		threshold_down = 60;
3915 3916 3917
		break;
	}

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

3936 3937 3938 3939
	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3940 3941 3942 3943 3944
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
3945
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3946
	if (val < dev_priv->rps.max_freq_softlimit)
3947
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
3948

3949 3950
	mask &= dev_priv->pm_rps_events;

3951
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3952 3953
}

3954 3955 3956
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3957
static void gen6_set_rps(struct drm_device *dev, u8 val)
3958 3959
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3960

3961
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3962 3963
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
3964

C
Chris Wilson 已提交
3965 3966 3967 3968 3969
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3970

3971 3972 3973 3974
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3975 3976 3977 3978 3979 3980 3981
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3982
	}
3983 3984 3985 3986

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
3987
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
3988
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3989

3990 3991
	POSTING_READ(GEN6_RPNSWREQ);

3992
	dev_priv->rps.cur_freq = val;
3993
	trace_intel_gpu_freq_change(val * 50);
3994 3995
}

3996 3997 3998 3999 4000
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4001 4002
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);

	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4028
	struct drm_device *dev = dev_priv->dev;
4029
	u32 val = dev_priv->rps.idle_freq;
4030

4031 4032
	/* CHV and latest VLV don't need to force the gfx clock */
	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
4033
		valleyview_set_rps(dev_priv->dev, val);
4034 4035 4036
		return;
	}

4037 4038 4039 4040
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

4041
	if (dev_priv->rps.cur_freq <= val)
4042 4043 4044
		return;

	/* Mask turbo interrupt so that they will not come in between */
4045 4046
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4047

4048
	vlv_force_gfx_clock(dev_priv, true);
4049

4050
	dev_priv->rps.cur_freq = val;
4051

4052
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4053 4054

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4055
				& GENFREQSTATUS) == 0, 100))
4056 4057
		DRM_ERROR("timed out waiting for Punit\n");

4058
	vlv_force_gfx_clock(dev_priv, false);
4059

4060
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4061 4062
}

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4075 4076
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4077 4078
	struct drm_device *dev = dev_priv->dev;

4079
	mutex_lock(&dev_priv->rps.hw_lock);
4080
	if (dev_priv->rps.enabled) {
4081
		if (IS_VALLEYVIEW(dev))
4082
			vlv_set_rps_idle(dev_priv);
4083
		else
4084
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4085
		dev_priv->rps.last_adj = 0;
4086
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4087
	}
4088 4089 4090 4091 4092
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
4093 4094
	u32 val;

4095
	mutex_lock(&dev_priv->rps.hw_lock);
4096 4097 4098 4099 4100
	val = dev_priv->rps.max_freq_softlimit;
	if (dev_priv->rps.enabled &&
	    dev_priv->mm.busy &&
	    dev_priv->rps.cur_freq < val) {
		intel_set_rps(dev_priv->dev, val);
4101 4102
		dev_priv->rps.last_adj = 0;
	}
4103 4104 4105
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4106
void intel_set_rps(struct drm_device *dev, u8 val)
4107
{
4108 4109 4110 4111
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4112 4113
}

Z
Zhe Wang 已提交
4114 4115 4116 4117 4118
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4119
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4120 4121
}

4122
static void gen6_disable_rps(struct drm_device *dev)
4123 4124 4125 4126
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4127 4128 4129
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4130 4131 4132 4133 4134 4135 4136
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4137 4138 4139 4140
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4141 4142
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4143
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4144

4145
	I915_WRITE(GEN6_RC_CONTROL, 0);
4146

4147
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4148 4149
}

B
Ben Widawsky 已提交
4150 4151
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4152 4153 4154 4155 4156 4157
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4158 4159 4160 4161 4162 4163 4164 4165 4166
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4167 4168
}

I
Imre Deak 已提交
4169
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4170
{
4171 4172 4173 4174
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
4175 4176 4177 4178
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

4179
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4180 4181 4182
	if (enable_rc6 >= 0) {
		int mask;

4183
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4184 4185 4186 4187 4188 4189
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4190 4191
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4192 4193 4194

		return enable_rc6 & mask;
	}
4195

4196 4197 4198
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
4199

4200
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4201
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4202 4203

	return INTEL_RC6_ENABLE;
4204 4205
}

I
Imre Deak 已提交
4206 4207 4208 4209 4210
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4211
static void gen6_init_rps_frequencies(struct drm_device *dev)
4212
{
4213 4214 4215 4216 4217 4218
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4219 4220
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4221
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4222
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
4223
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
4224
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
4225 4226 4227 4228 4229 4230 4231
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
	}
4232 4233 4234
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4235 4236 4237 4238 4239 4240 4241
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4242 4243 4244 4245
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4246 4247
	}

4248 4249
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4250 4251 4252 4253
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4254 4255 4256
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4257 4258
				/* max(RPe, 450 MHz) */
				max(dev_priv->rps.efficient_freq, (u8) 9);
4259 4260 4261 4262
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4263 4264
}

J
Jesse Barnes 已提交
4265
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4266
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4267 4268 4269 4270 4271
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4272 4273
	gen6_init_rps_frequencies(dev);

4274 4275 4276 4277 4278 4279 4280 4281
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4282 4283
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4284 4285 4286 4287 4288
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4289 4290 4291 4292 4293

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4305
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4319 4320 4321 4322
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4323 4324 4325 4326 4327 4328 4329 4330 4331
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4332 4333 4334
	/* 3b: Enable Coarse Power Gating only when RC6 is enabled */
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);

4335
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4336 4337 4338

}

4339 4340 4341
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4342
	struct intel_engine_cs *ring;
4343
	uint32_t rc6_mask = 0;
4344 4345 4346 4347 4348 4349 4350
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4351
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4352 4353 4354 4355

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4356 4357
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4358 4359 4360 4361 4362 4363 4364 4365

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4366 4367 4368 4369
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4370 4371 4372 4373

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4374
	intel_print_rc6_info(dev, rc6_mask);
4375 4376 4377 4378 4379 4380 4381 4382
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4383 4384

	/* 4 Program defaults and thresholds for RPS*/
4385 4386 4387 4388
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4403 4404

	/* 5: Enable RPS */
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4415
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4416
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4417

4418
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4419 4420
}

4421
static void gen6_enable_rps(struct drm_device *dev)
4422
{
4423
	struct drm_i915_private *dev_priv = dev->dev_private;
4424
	struct intel_engine_cs *ring;
4425
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4426 4427
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4428
	int i, ret;
4429

4430
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4431

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4446
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4447

4448 4449
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4450

4451 4452 4453 4454 4455 4456 4457 4458 4459
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4460 4461
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4462 4463 4464

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4465
	if (IS_IVYBRIDGE(dev))
4466 4467 4468
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4469
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4470 4471
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4472
	/* Check if we are enabling RC6 */
4473 4474 4475 4476
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4477 4478 4479 4480
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4481

4482 4483 4484
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4485

B
Ben Widawsky 已提交
4486
	intel_print_rc6_info(dev, rc6_mask);
4487 4488 4489 4490 4491 4492

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4493 4494
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4495 4496
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4497
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4498
	if (ret)
B
Ben Widawsky 已提交
4499
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4500 4501 4502 4503

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4504
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4505
				 (pcu_mbox & 0xff) * 50);
4506
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4507 4508
	}

4509
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4510
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4511

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4526
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4527 4528
}

4529
static void __gen6_update_ring_freq(struct drm_device *dev)
4530
{
4531
	struct drm_i915_private *dev_priv = dev->dev_private;
4532
	int min_freq = 15;
4533 4534
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4535
	int scaling_factor = 180;
4536
	struct cpufreq_policy *policy;
4537

4538
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4539

4540 4541 4542 4543 4544 4545 4546 4547 4548
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4549
		max_ia_freq = tsc_khz;
4550
	}
4551 4552 4553 4554

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4555
	min_ring_freq = I915_READ(DCLK) & 0xf;
4556 4557
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4558

4559 4560 4561 4562 4563
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4564
	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4565
	     gpu_freq--) {
4566
		int diff = dev_priv->rps.max_freq - gpu_freq;
4567 4568
		unsigned int ia_freq = 0, ring_freq = 0;

4569 4570 4571 4572
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4573
			ring_freq = mult_frac(gpu_freq, 5, 4);
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4590

B
Ben Widawsky 已提交
4591 4592
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4593 4594 4595
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4596 4597 4598
	}
}

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4611
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4612
{
4613
	struct drm_device *dev = dev_priv->dev;
4614 4615
	u32 val, rp0;

4616 4617
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4618

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4655 4656
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
4657
	struct drm_device *dev = dev_priv->dev;
4658 4659
	u32 val, rp1;

4660 4661 4662 4663 4664 4665 4666 4667 4668
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
4669 4670 4671
	return rp1;
}

4672
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4673
{
4674
	struct drm_device *dev = dev_priv->dev;
4675 4676
	u32 val, rpn;

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);
	} else { /* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
	}

4687 4688 4689
	return rpn;
}

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4701
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4702 4703 4704
{
	u32 val, rp0;

4705
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4718
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4719
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4720
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4721 4722 4723 4724 4725
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4726
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4727
{
4728
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4729 4730
}

4731 4732 4733 4734 4735 4736 4737 4738 4739
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4761
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4762 4763 4764 4765 4766 4767
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
4768 4769

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4770 4771
}

4772 4773 4774 4775 4776 4777 4778 4779
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4780 4781
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4782 4783 4784 4785 4786 4787 4788 4789
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4790
								      I915_GTT_OFFSET_NONE,
4791 4792 4793 4794
								      pctx_size);
		goto out;
	}

4795 4796
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
4815
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4816 4817 4818
	dev_priv->vlv_pctx = pctx;
}

4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4830 4831 4832
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4833
	u32 val;
4834 4835 4836 4837 4838

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
4852
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4853

4854 4855 4856
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4857
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4858 4859 4860 4861
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4862
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4863 4864
			 dev_priv->rps.efficient_freq);

4865 4866
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4867
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4868 4869
			 dev_priv->rps.rp1_freq);

4870 4871
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4872
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4873 4874
			 dev_priv->rps.min_freq);

4875 4876
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4887 4888
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4889
	struct drm_i915_private *dev_priv = dev->dev_private;
4890
	u32 val;
4891

4892
	cherryview_setup_pctx(dev);
4893 4894 4895

	mutex_lock(&dev_priv->rps.hw_lock);

4896 4897 4898 4899
	mutex_lock(&dev_priv->dpio_lock);
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
	mutex_unlock(&dev_priv->dpio_lock);

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
4923
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4924

4925 4926 4927
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4928
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4929 4930 4931 4932
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4933
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4934 4935
			 dev_priv->rps.efficient_freq);

4936 4937
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4938
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4939 4940
			 dev_priv->rps.rp1_freq);

4941 4942
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4943
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4944 4945
			 dev_priv->rps.min_freq);

4946 4947 4948 4949 4950 4951
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4952 4953
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4954 4955 4956 4957 4958 4959 4960 4961
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4962 4963
}

4964 4965 4966 4967 4968
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4969 4970 4971 4972
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4973
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4989
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4990

4991 4992 4993
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4994 4995 4996 4997 4998 4999 5000 5001 5002
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5003 5004
	/* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5018
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5019 5020 5021

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5022
	/* 4 Program defaults and thresholds for RPS*/
5023
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5034
		   GEN6_RP_MEDIA_IS_GFX |
5035 5036 5037 5038 5039 5040
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5041 5042 5043
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5044
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5045 5046 5047 5048
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5049
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5050 5051 5052
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5053
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5054 5055 5056 5057
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5058
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5059 5060
}

5061 5062 5063
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5064
	struct intel_engine_cs *ring;
5065
	u32 gtfifodbg, val, rc6_mode = 0;
5066 5067 5068 5069
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5070 5071
	valleyview_check_pctx(dev_priv);

5072
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5073 5074
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5075 5076 5077
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5078
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5079
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5080

5081 5082 5083
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5084
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5107
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5108 5109

	/* allows RC6 residency counter to work */
5110
	I915_WRITE(VLV_COUNTER_CONTROL,
5111 5112
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5113 5114
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5115

5116
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5117
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5118 5119 5120

	intel_print_rc6_info(dev, rc6_mode);

5121
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5122

5123
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5124

5125 5126 5127
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5128
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5129 5130
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5131
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5132
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5133
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5134
			 dev_priv->rps.cur_freq);
5135

5136
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5137
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5138
			 dev_priv->rps.efficient_freq);
5139

5140
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5141

5142
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5143 5144
}

5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5174
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5175 5176 5177 5178 5179 5180
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5181 5182
	assert_spin_locked(&mchdev_lock);

5183
	diff1 = now - dev_priv->ips.last_time1;
5184 5185 5186 5187 5188 5189 5190

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5191
		return dev_priv->ips.chipset_power;
5192 5193 5194 5195 5196 5197 5198 5199

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5200 5201
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5202 5203
		diff += total_count;
	} else {
5204
		diff = total_count - dev_priv->ips.last_count1;
5205 5206 5207
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5208 5209
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5220 5221
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5222

5223
	dev_priv->ips.chipset_power = ret;
5224 5225 5226 5227

	return ret;
}

5228 5229
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5230
	struct drm_device *dev = dev_priv->dev;
5231 5232
	unsigned long val;

5233
	if (INTEL_INFO(dev)->gen != 5)
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5272
{
5273
	struct drm_device *dev = dev_priv->dev;
5274 5275 5276
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5277
	if (INTEL_INFO(dev)->is_mobile)
5278 5279 5280
		return vm > 0 ? vm : 0;

	return vd;
5281 5282
}

5283
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5284
{
5285
	u64 now, diff, diffms;
5286 5287
	u32 count;

5288
	assert_spin_locked(&mchdev_lock);
5289

5290 5291 5292
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5293 5294 5295 5296 5297 5298 5299

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5300 5301
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5302 5303
		diff += count;
	} else {
5304
		diff = count - dev_priv->ips.last_count2;
5305 5306
	}

5307 5308
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5309 5310 5311 5312

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5313
	dev_priv->ips.gfx_power = diff;
5314 5315
}

5316 5317
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5318 5319 5320
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5321 5322
		return;

5323
	spin_lock_irq(&mchdev_lock);
5324 5325 5326

	__i915_update_gfx_val(dev_priv);

5327
	spin_unlock_irq(&mchdev_lock);
5328 5329
}

5330
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5331 5332 5333 5334
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5335 5336
	assert_spin_locked(&mchdev_lock);

5337
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5357
	corr2 = (corr * dev_priv->ips.corr);
5358 5359 5360 5361

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5362
	__i915_update_gfx_val(dev_priv);
5363

5364
	return dev_priv->ips.gfx_power + state2;
5365 5366
}

5367 5368
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5369
	struct drm_device *dev = dev_priv->dev;
5370 5371
	unsigned long val;

5372
	if (INTEL_INFO(dev)->gen != 5)
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5395
	spin_lock_irq(&mchdev_lock);
5396 5397 5398 5399
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5400 5401
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5402 5403 5404 5405

	ret = chipset_val + graphics_val;

out_unlock:
5406
	spin_unlock_irq(&mchdev_lock);
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5422
	spin_lock_irq(&mchdev_lock);
5423 5424 5425 5426 5427 5428
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5429 5430
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5431 5432

out_unlock:
5433
	spin_unlock_irq(&mchdev_lock);
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5450
	spin_lock_irq(&mchdev_lock);
5451 5452 5453 5454 5455 5456
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5457 5458
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5459 5460

out_unlock:
5461
	spin_unlock_irq(&mchdev_lock);
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5475
	struct intel_engine_cs *ring;
5476
	bool ret = false;
5477
	int i;
5478

5479
	spin_lock_irq(&mchdev_lock);
5480 5481 5482 5483
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5484 5485
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5486 5487

out_unlock:
5488
	spin_unlock_irq(&mchdev_lock);
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5505
	spin_lock_irq(&mchdev_lock);
5506 5507 5508 5509 5510 5511
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5512
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5513

5514
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5515 5516 5517
		ret = false;

out_unlock:
5518
	spin_unlock_irq(&mchdev_lock);
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5546 5547
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5548
	spin_lock_irq(&mchdev_lock);
5549
	i915_mch_dev = dev_priv;
5550
	spin_unlock_irq(&mchdev_lock);
5551 5552 5553 5554 5555 5556

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5557
	spin_lock_irq(&mchdev_lock);
5558
	i915_mch_dev = NULL;
5559
	spin_unlock_irq(&mchdev_lock);
5560
}
5561

5562
static void intel_init_emon(struct drm_device *dev)
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5630
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5631 5632
}

5633 5634
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5635 5636
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5637 5638 5639
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5640
		valleyview_init_gt_powersave(dev);
5641 5642 5643 5644
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5645 5646 5647
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5648
		valleyview_cleanup_gt_powersave(dev);
5649 5650
}

5651 5652 5653 5654 5655 5656
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

5657
	gen6_disable_rps_interrupts(dev);
5658 5659
}

5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
5672 5673 5674
	if (INTEL_INFO(dev)->gen < 6)
		return;

5675
	gen6_suspend_rps(dev);
5676 5677 5678

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5679 5680
}

5681 5682
void intel_disable_gt_powersave(struct drm_device *dev)
{
5683 5684
	struct drm_i915_private *dev_priv = dev->dev_private;

5685
	if (IS_IRONLAKE_M(dev)) {
5686
		ironlake_disable_drps(dev);
5687
	} else if (INTEL_INFO(dev)->gen >= 6) {
5688
		intel_suspend_gt_powersave(dev);
5689

5690
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
5691 5692 5693
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
5694 5695
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5696 5697 5698
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5699

5700
		dev_priv->rps.enabled = false;
5701
		mutex_unlock(&dev_priv->rps.hw_lock);
5702
	}
5703 5704
}

5705 5706 5707 5708 5709 5710 5711
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5712
	mutex_lock(&dev_priv->rps.hw_lock);
5713

5714
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
5715

5716 5717 5718
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5719
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
5720
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
5721
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
5722
		gen9_enable_rps(dev);
J
Jesse Barnes 已提交
5723
		__gen6_update_ring_freq(dev);
5724 5725
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5726
		__gen6_update_ring_freq(dev);
5727 5728
	} else {
		gen6_enable_rps(dev);
5729
		__gen6_update_ring_freq(dev);
5730
	}
5731 5732 5733 5734 5735 5736 5737

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

5738
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
5739

5740
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
5741

5742
	mutex_unlock(&dev_priv->rps.hw_lock);
5743 5744

	intel_runtime_pm_put(dev_priv);
5745 5746
}

5747 5748
void intel_enable_gt_powersave(struct drm_device *dev)
{
5749 5750
	struct drm_i915_private *dev_priv = dev->dev_private;

5751 5752 5753 5754
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

5755
	if (IS_IRONLAKE_M(dev)) {
5756
		mutex_lock(&dev->struct_mutex);
5757 5758
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
5759
		mutex_unlock(&dev->struct_mutex);
5760
	} else if (INTEL_INFO(dev)->gen >= 6) {
5761 5762 5763 5764
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5765 5766 5767 5768 5769 5770 5771
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5772
		 */
5773 5774 5775
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5776 5777 5778
	}
}

5779 5780 5781 5782
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5783 5784 5785 5786
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
5787 5788 5789
	dev_priv->rps.enabled = false;
}

5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5802 5803 5804 5805 5806
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5807
	for_each_pipe(dev_priv, pipe) {
5808 5809 5810
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5811
		intel_flush_primary_plane(dev_priv, pipe);
5812 5813 5814
	}
}

5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5829
static void ironlake_init_clock_gating(struct drm_device *dev)
5830 5831
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5832
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5833

5834 5835 5836 5837
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5838 5839 5840
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5858
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5859 5860 5861
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5862 5863

	ilk_init_lp_watermarks(dev);
5864 5865 5866 5867 5868 5869 5870 5871 5872

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5873
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5874 5875 5876 5877 5878 5879 5880 5881
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5882 5883
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5884 5885 5886 5887 5888 5889
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5890

5891
	/* WaDisableRenderCachePipelinedFlush:ilk */
5892 5893
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5894

5895 5896 5897
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5898
	g4x_disable_trickle_feed(dev);
5899

5900 5901 5902 5903 5904 5905 5906
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5907
	uint32_t val;
5908 5909 5910 5911 5912 5913

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5914 5915 5916
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5917 5918
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5919 5920 5921
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5922
	for_each_pipe(dev_priv, pipe) {
5923 5924 5925
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5926
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5927
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5928 5929 5930
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5931 5932
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5933
	/* WADP0ClockGatingDisable */
5934
	for_each_pipe(dev_priv, pipe) {
5935 5936 5937
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5938 5939
}

5940 5941 5942 5943 5944 5945
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5946 5947 5948
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5949 5950
}

5951
static void gen6_init_clock_gating(struct drm_device *dev)
5952 5953
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5954
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5955

5956
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5957 5958 5959 5960 5961

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5962
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5963 5964 5965
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5966 5967 5968
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5969 5970 5971
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5972 5973 5974 5975
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5976 5977
	 */
	I915_WRITE(GEN6_GT_MODE,
5978
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5979

5980
	ilk_init_lp_watermarks(dev);
5981 5982

	I915_WRITE(CACHE_MODE_0,
5983
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5999
	 *
6000 6001
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6002 6003 6004 6005 6006
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6007
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6008 6009
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6010

6011 6012 6013 6014 6015 6016 6017 6018
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6019 6020 6021 6022 6023 6024 6025 6026
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6027 6028
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6029 6030 6031 6032 6033 6034 6035
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6036 6037 6038 6039
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6040

6041
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6042

6043
	cpt_init_clock_gating(dev);
6044 6045

	gen6_check_mch_setup(dev);
6046 6047 6048 6049 6050 6051
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6052
	/*
6053
	 * WaVSThreadDispatchOverride:ivb,vlv
6054 6055 6056 6057
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6058 6059 6060 6061 6062 6063 6064 6065
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6078 6079 6080 6081 6082

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6083 6084
}

6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6097
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6098 6099
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6100
	enum pipe pipe;
B
Ben Widawsky 已提交
6101 6102 6103 6104

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
6105

6106
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6107
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6108

6109
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6110 6111 6112
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6113
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6114
	for_each_pipe(dev_priv, pipe) {
6115
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6116
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6117
			   BDW_DPRS_MASK_VBLANK_SRD);
6118
	}
6119

6120 6121 6122 6123 6124
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6125

6126 6127
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6128 6129 6130 6131

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6132

6133
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6134 6135
}

6136 6137 6138 6139
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6140
	ilk_init_lp_watermarks(dev);
6141

6142 6143 6144 6145 6146
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6147
	/* This is required by WaCatErrorRejectionIssue:hsw */
6148 6149 6150 6151
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6152 6153 6154
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6155

6156 6157 6158
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6159 6160 6161 6162
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6163
	/* WaDisable4x2SubspanOptimization:hsw */
6164 6165
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6166

6167 6168 6169
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6170 6171 6172 6173
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6174 6175
	 */
	I915_WRITE(GEN7_GT_MODE,
6176
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6177

6178 6179 6180 6181
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6182
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6183 6184
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6185 6186 6187
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6188

6189
	lpt_init_clock_gating(dev);
6190 6191
}

6192
static void ivybridge_init_clock_gating(struct drm_device *dev)
6193 6194
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6195
	uint32_t snpcr;
6196

6197
	ilk_init_lp_watermarks(dev);
6198

6199
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6200

6201
	/* WaDisableEarlyCull:ivb */
6202 6203 6204
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6205
	/* WaDisableBackToBackFlipFix:ivb */
6206 6207 6208 6209
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6210
	/* WaDisablePSDDualDispatchEnable:ivb */
6211 6212 6213 6214
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6215 6216 6217
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6218
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6219 6220 6221
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6222
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6223 6224 6225
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6226 6227 6228 6229
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6230 6231 6232 6233
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6234 6235
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6236
	}
6237

6238
	/* WaForceL3Serialization:ivb */
6239 6240 6241
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6242
	/*
6243
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6244
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6245 6246
	 */
	I915_WRITE(GEN6_UCGCTL2,
6247
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6248

6249
	/* This is required by WaCatErrorRejectionIssue:ivb */
6250 6251 6252 6253
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6254
	g4x_disable_trickle_feed(dev);
6255 6256

	gen7_setup_fixed_func_scheduler(dev_priv);
6257

6258 6259 6260 6261 6262
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6263

6264
	/* WaDisable4x2SubspanOptimization:ivb */
6265 6266
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6267

6268 6269 6270
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6271 6272 6273 6274
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6275 6276
	 */
	I915_WRITE(GEN7_GT_MODE,
6277
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6278

6279 6280 6281 6282
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6283

6284 6285
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6286 6287

	gen6_check_mch_setup(dev);
6288 6289
}

6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6301
static void valleyview_init_clock_gating(struct drm_device *dev)
6302 6303 6304
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6305
	vlv_init_display_clock_gating(dev_priv);
6306

6307
	/* WaDisableEarlyCull:vlv */
6308 6309 6310
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6311
	/* WaDisableBackToBackFlipFix:vlv */
6312 6313 6314 6315
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6316
	/* WaPsdDispatchEnable:vlv */
6317
	/* WaDisablePSDDualDispatchEnable:vlv */
6318
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6319 6320
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6321

6322 6323 6324
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6325
	/* WaForceL3Serialization:vlv */
6326 6327 6328
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6329
	/* WaDisableDopClockGating:vlv */
6330 6331 6332
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6333
	/* This is required by WaCatErrorRejectionIssue:vlv */
6334 6335 6336 6337
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6338 6339
	gen7_setup_fixed_func_scheduler(dev_priv);

6340
	/*
6341
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6342
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6343 6344
	 */
	I915_WRITE(GEN6_UCGCTL2,
6345
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6346

6347 6348 6349 6350 6351
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6352

6353 6354 6355 6356
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6357 6358
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6359

6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6371 6372 6373 6374 6375 6376
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6377
	/*
6378
	 * WaDisableVLVClockGating_VBIIssue:vlv
6379 6380 6381
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6382
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6383 6384
}

6385 6386 6387 6388
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6389
	vlv_init_display_clock_gating(dev_priv);
6390

6391 6392 6393 6394 6395
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6396 6397 6398 6399

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6400 6401 6402 6403

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6404 6405 6406 6407

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6408 6409
}

6410
static void g4x_init_clock_gating(struct drm_device *dev)
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6426 6427 6428 6429

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6430

6431 6432 6433
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6434
	g4x_disable_trickle_feed(dev);
6435 6436
}

6437
static void crestline_init_clock_gating(struct drm_device *dev)
6438 6439 6440 6441 6442 6443 6444 6445
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6446 6447
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6448 6449 6450

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6451 6452
}

6453
static void broadwater_init_clock_gating(struct drm_device *dev)
6454 6455 6456 6457 6458 6459 6460 6461 6462
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6463 6464
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6465 6466 6467

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6468 6469
}

6470
static void gen3_init_clock_gating(struct drm_device *dev)
6471 6472 6473 6474 6475 6476 6477
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6478 6479 6480

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6481 6482 6483

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6484 6485

	/* interrupts should cause a wake up from C3 */
6486
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6487 6488 6489

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6490 6491 6492

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6493 6494
}

6495
static void i85x_init_clock_gating(struct drm_device *dev)
6496 6497 6498 6499
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6500 6501 6502 6503

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6504 6505 6506

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6507 6508
}

6509
static void i830_init_clock_gating(struct drm_device *dev)
6510 6511 6512 6513
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6514 6515 6516 6517

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6518 6519 6520 6521 6522 6523
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6524 6525
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6526 6527
}

6528 6529 6530 6531 6532 6533
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6534 6535 6536 6537 6538
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6539
	intel_fbc_init(dev_priv);
6540

6541 6542 6543 6544 6545 6546
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6547
	/* For FIFO watermark updates */
6548
	if (INTEL_INFO(dev)->gen >= 9) {
6549 6550
		skl_setup_wm_latency(dev);

6551
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
6552 6553
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6554
	} else if (HAS_PCH_SPLIT(dev)) {
6555
		ilk_setup_wm_latency(dev);
6556

6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6569
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6570
		else if (IS_GEN6(dev))
6571
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6572
		else if (IS_IVYBRIDGE(dev))
6573
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6574
		else if (IS_HASWELL(dev))
6575
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6576
		else if (INTEL_INFO(dev)->gen == 8)
6577
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6578
	} else if (IS_CHERRYVIEW(dev)) {
6579
		dev_priv->display.update_wm = valleyview_update_wm;
6580
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6581 6582
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6583 6584
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6585
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6599
			intel_set_memory_cxsr(dev_priv, false);
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6617 6618 6619
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
6620
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6621 6622
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
6623
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6624 6625 6626 6627 6628 6629 6630 6631
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6632 6633 6634
	}
}

6635
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
6636
{
6637
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6638 6639 6640 6641 6642 6643 6644

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
6645
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

6660
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
6661
{
6662
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6682

6683
static int vlv_gpu_freq_div(unsigned int czclk_freq)
6684
{
6685 6686 6687 6688 6689 6690 6691 6692
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
6693 6694
	case 400:
		return 20;
6695 6696 6697
	default:
		return -1;
	}
6698
}
6699

6700 6701 6702 6703 6704 6705 6706 6707 6708
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6709 6710
}

6711
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6712
{
6713
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6714

6715 6716 6717
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
6718

6719
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6720 6721
}

6722
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6723
{
6724
	int div, czclk_freq = dev_priv->rps.cz_freq;
6725

6726 6727 6728
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
6729

6730
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6731 6732
}

6733
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6734
{
6735
	int mul, czclk_freq = dev_priv->rps.cz_freq;
6736

6737 6738 6739
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
6740

6741
	/* CHV needs even values */
6742
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6743 6744
}

6745
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6746
{
6747 6748 6749
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
6750
		return chv_gpu_freq(dev_priv, val);
6751
	else if (IS_VALLEYVIEW(dev_priv->dev))
6752 6753 6754
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
6755 6756
}

6757 6758
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
6759 6760 6761
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
6762
		return chv_freq_opcode(dev_priv, val);
6763
	else if (IS_VALLEYVIEW(dev_priv->dev))
6764 6765 6766 6767
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
6768

D
Daniel Vetter 已提交
6769
void intel_pm_setup(struct drm_device *dev)
6770 6771 6772
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
6773 6774
	mutex_init(&dev_priv->rps.hw_lock);

6775 6776
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
6777

6778
	dev_priv->pm.suspended = false;
6779
}