core.c 69.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
29
#include <linux/pm_qos.h>
30
#include <asm/unaligned.h>
31 32

#include "nvme.h"
S
Sagi Grimberg 已提交
33
#include "fabrics.h"
34

35 36
#define NVME_MINORS		(1U << MINORBITS)

37 38 39
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40
EXPORT_SYMBOL_GPL(admin_timeout);
41 42 43 44

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45
EXPORT_SYMBOL_GPL(nvme_io_timeout);
46

47
static unsigned char shutdown_timeout = 5;
48 49 50
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

51 52
static u8 nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, byte, 0644);
K
Keith Busch 已提交
53
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54

55 56 57
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

58
static unsigned long default_ps_max_latency_us = 100000;
59 60 61 62
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
		 "max power saving latency for new devices; use PM QOS to change per device");

63 64 65 66
static bool force_apst;
module_param(force_apst, bool, 0644);
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");

67 68 69 70
static bool streams;
module_param(streams, bool, 0644);
MODULE_PARM_DESC(streams, "turn on support for Streams write directives");

71 72 73
struct workqueue_struct *nvme_wq;
EXPORT_SYMBOL_GPL(nvme_wq);

74
static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
75
static DEFINE_SPINLOCK(dev_list_lock);
76

77 78
static struct class *nvme_class;

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
		return -EBUSY;
	if (!queue_work(nvme_wq, &ctrl->reset_work))
		return -EBUSY;
	return 0;
}
EXPORT_SYMBOL_GPL(nvme_reset_ctrl);

static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
{
	int ret;

	ret = nvme_reset_ctrl(ctrl);
	if (!ret)
		flush_work(&ctrl->reset_work);
	return ret;
}

99
static blk_status_t nvme_error_status(struct request *req)
100 101 102
{
	switch (nvme_req(req)->status & 0x7ff) {
	case NVME_SC_SUCCESS:
103
		return BLK_STS_OK;
104
	case NVME_SC_CAP_EXCEEDED:
105
		return BLK_STS_NOSPC;
106
	case NVME_SC_ONCS_NOT_SUPPORTED:
107
		return BLK_STS_NOTSUPP;
108 109 110
	case NVME_SC_WRITE_FAULT:
	case NVME_SC_READ_ERROR:
	case NVME_SC_UNWRITTEN_BLOCK:
111 112 113
		return BLK_STS_MEDIUM;
	default:
		return BLK_STS_IOERR;
114 115 116
	}
}

117
static inline bool nvme_req_needs_retry(struct request *req)
118
{
119 120
	if (blk_noretry_request(req))
		return false;
121
	if (nvme_req(req)->status & NVME_SC_DNR)
122 123 124
		return false;
	if (jiffies - req->start_time >= req->timeout)
		return false;
125
	if (nvme_req(req)->retries >= nvme_max_retries)
126 127
		return false;
	return true;
128 129 130 131
}

void nvme_complete_rq(struct request *req)
{
132 133 134 135
	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
		nvme_req(req)->retries++;
		blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
		return;
136 137
	}

138
	blk_mq_end_request(req, nvme_error_status(req));
139 140 141
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);

142 143 144 145 146 147 148 149 150 151 152 153 154
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
155
	nvme_req(req)->status = status;
156
	blk_mq_complete_request(req);
157

158 159 160
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

161 162 163
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
164
	enum nvme_ctrl_state old_state;
165 166 167
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
168 169

	old_state = ctrl->state;
170 171 172
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
173
		case NVME_CTRL_NEW:
174
		case NVME_CTRL_RESETTING:
175
		case NVME_CTRL_RECONNECTING:
176 177 178 179 180 181 182 183 184
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
185 186 187 188 189 190 191 192 193
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
194 195 196 197 198 199 200 201 202 203 204
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
205
		case NVME_CTRL_RECONNECTING:
206 207 208 209 210 211
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
212 213 214 215 216 217 218 219 220
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
221 222 223 224 225 226 227
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

228 229
	spin_unlock_irq(&ctrl->lock);

230 231 232 233
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

234 235 236 237
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

238 239
	if (ns->ndev)
		nvme_nvm_unregister(ns);
240

241 242 243 244 245
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
246 247

	put_disk(ns->disk);
248 249
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
250 251 252
	kfree(ns);
}

253
static void nvme_put_ns(struct nvme_ns *ns)
254 255 256 257 258 259 260 261 262 263
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
264 265 266 267 268 269
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
270 271 272
	spin_unlock(&dev_list_lock);

	return ns;
273 274 275 276 277 278

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
279 280
}

281
struct request *nvme_alloc_request(struct request_queue *q,
282
		struct nvme_command *cmd, unsigned int flags, int qid)
283
{
284
	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
285 286
	struct request *req;

287
	if (qid == NVME_QID_ANY) {
288
		req = blk_mq_alloc_request(q, op, flags);
289
	} else {
290
		req = blk_mq_alloc_request_hctx(q, op, flags,
291 292
				qid ? qid - 1 : 0);
	}
293
	if (IS_ERR(req))
294
		return req;
295 296

	req->cmd_flags |= REQ_FAILFAST_DRIVER;
297
	nvme_req(req)->cmd = cmd;
298

299 300
	return req;
}
301
EXPORT_SYMBOL_GPL(nvme_alloc_request);
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
{
	struct nvme_command c;

	memset(&c, 0, sizeof(c));

	c.directive.opcode = nvme_admin_directive_send;
	c.directive.nsid = cpu_to_le32(0xffffffff);
	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
	c.directive.dtype = NVME_DIR_IDENTIFY;
	c.directive.tdtype = NVME_DIR_STREAMS;
	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;

	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
}

static int nvme_disable_streams(struct nvme_ctrl *ctrl)
{
	return nvme_toggle_streams(ctrl, false);
}

static int nvme_enable_streams(struct nvme_ctrl *ctrl)
{
	return nvme_toggle_streams(ctrl, true);
}

static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
				  struct streams_directive_params *s, u32 nsid)
{
	struct nvme_command c;

	memset(&c, 0, sizeof(c));
	memset(s, 0, sizeof(*s));

	c.directive.opcode = nvme_admin_directive_recv;
	c.directive.nsid = cpu_to_le32(nsid);
	c.directive.numd = sizeof(*s);
	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
	c.directive.dtype = NVME_DIR_STREAMS;

	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
}

static int nvme_configure_directives(struct nvme_ctrl *ctrl)
{
	struct streams_directive_params s;
	int ret;

	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
		return 0;
	if (!streams)
		return 0;

	ret = nvme_enable_streams(ctrl);
	if (ret)
		return ret;

	ret = nvme_get_stream_params(ctrl, &s, 0xffffffff);
	if (ret)
		return ret;

	ctrl->nssa = le16_to_cpu(s.nssa);
	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
		dev_info(ctrl->device, "too few streams (%u) available\n",
					ctrl->nssa);
		nvme_disable_streams(ctrl);
		return 0;
	}

	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
	return 0;
}

/*
 * Check if 'req' has a write hint associated with it. If it does, assign
 * a valid namespace stream to the write.
 */
static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
				     struct request *req, u16 *control,
				     u32 *dsmgmt)
{
	enum rw_hint streamid = req->write_hint;

	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
		streamid = 0;
	else {
		streamid--;
		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
			return;

		*control |= NVME_RW_DTYPE_STREAMS;
		*dsmgmt |= streamid << 16;
	}

	if (streamid < ARRAY_SIZE(req->q->write_hints))
		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
}

M
Ming Lin 已提交
402 403 404 405 406 407 408 409
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

410
static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
411 412
		struct nvme_command *cmnd)
{
413
	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
M
Ming Lin 已提交
414
	struct nvme_dsm_range *range;
415
	struct bio *bio;
M
Ming Lin 已提交
416

417
	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
M
Ming Lin 已提交
418
	if (!range)
419
		return BLK_STS_RESOURCE;
M
Ming Lin 已提交
420

421 422 423 424 425 426 427 428 429 430 431 432
	__rq_for_each_bio(bio, req) {
		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;

		range[n].cattr = cpu_to_le32(0);
		range[n].nlb = cpu_to_le32(nlb);
		range[n].slba = cpu_to_le64(slba);
		n++;
	}

	if (WARN_ON_ONCE(n != segments)) {
		kfree(range);
433
		return BLK_STS_IOERR;
434
	}
M
Ming Lin 已提交
435 436 437 438

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
439
	cmnd->dsm.nr = cpu_to_le32(segments - 1);
M
Ming Lin 已提交
440 441
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

442 443
	req->special_vec.bv_page = virt_to_page(range);
	req->special_vec.bv_offset = offset_in_page(range);
444
	req->special_vec.bv_len = sizeof(*range) * segments;
445
	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
M
Ming Lin 已提交
446

447
	return BLK_STS_OK;
M
Ming Lin 已提交
448 449
}

450 451
static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
		struct request *req, struct nvme_command *cmnd)
M
Ming Lin 已提交
452
{
453
	struct nvme_ctrl *ctrl = ns->ctrl;
M
Ming Lin 已提交
454 455 456
	u16 control = 0;
	u32 dsmgmt = 0;

457 458 459 460 461
	/*
	 * If formated with metadata, require the block layer provide a buffer
	 * unless this namespace is formated such that the metadata can be
	 * stripped/generated by the controller with PRACT=1.
	 */
462 463
	if (ns && ns->ms &&
	    (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
464 465 466
	    !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
		return BLK_STS_NOTSUPP;

M
Ming Lin 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480
	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

481 482 483
	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);

M
Ming Lin 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
503
	return 0;
M
Ming Lin 已提交
504 505
}

506
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
507 508
		struct nvme_command *cmd)
{
509
	blk_status_t ret = BLK_STS_OK;
M
Ming Lin 已提交
510

511
	if (!(req->rq_flags & RQF_DONTPREP)) {
512
		nvme_req(req)->retries = 0;
513
		nvme_req(req)->flags = 0;
514 515 516
		req->rq_flags |= RQF_DONTPREP;
	}

517 518 519
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
520
		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
521 522
		break;
	case REQ_OP_FLUSH:
M
Ming Lin 已提交
523
		nvme_setup_flush(ns, cmd);
524
		break;
525 526
	case REQ_OP_WRITE_ZEROES:
		/* currently only aliased to deallocate for a few ctrls: */
527
	case REQ_OP_DISCARD:
M
Ming Lin 已提交
528
		ret = nvme_setup_discard(ns, req, cmd);
529 530 531
		break;
	case REQ_OP_READ:
	case REQ_OP_WRITE:
532
		ret = nvme_setup_rw(ns, req, cmd);
533 534 535
		break;
	default:
		WARN_ON_ONCE(1);
536
		return BLK_STS_IOERR;
537
	}
M
Ming Lin 已提交
538

539
	cmd->common.command_id = req->tag;
M
Ming Lin 已提交
540 541 542 543
	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

544 545 546 547 548
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
549
		union nvme_result *result, void *buffer, unsigned bufflen,
550
		unsigned timeout, int qid, int at_head, int flags)
551 552 553 554
{
	struct request *req;
	int ret;

555
	req = nvme_alloc_request(q, cmd, flags, qid);
556 557 558 559 560
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

561 562 563 564
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
565 566
	}

567
	blk_execute_rq(req->q, NULL, req, at_head);
568 569
	if (result)
		*result = nvme_req(req)->result;
570 571 572 573
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
574 575 576 577
 out:
	blk_mq_free_request(req);
	return ret;
}
578
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
579 580 581 582

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
583 584
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
585
}
586
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
587

588 589 590 591
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
592
{
593
	bool write = nvme_is_write(cmd);
594 595
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
596
	struct request *req;
597 598
	struct bio *bio = NULL;
	void *meta = NULL;
599 600
	int ret;

601
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
602 603 604 605 606 607
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
608 609 610 611 612 613
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

614 615 616 617 618 619 620 621
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

622
		if (meta_buffer && meta_len) {
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
640 641
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
658 659 660 661
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
662
	if (result)
663
		*result = le32_to_cpu(nvme_req(req)->result.u32);
664 665 666 667 668 669 670 671 672 673 674 675
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
676 677 678 679 680
 out:
	blk_mq_free_request(req);
	return ret;
}

681 682 683 684 685 686 687 688
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

689
static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
S
Sagi Grimberg 已提交
690 691 692 693 694
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

695
	if (status) {
S
Sagi Grimberg 已提交
696
		dev_err(ctrl->device,
697 698
			"failed nvme_keep_alive_end_io error=%d\n",
				status);
S
Sagi Grimberg 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
734
		nvme_reset_ctrl(ctrl);
S
Sagi Grimberg 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

K
Keith Busch 已提交
758
static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
759 760 761 762 763 764
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
765
	c.identify.cns = NVME_ID_CNS_CTRL;
766 767 768 769 770 771 772 773 774 775 776 777

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid)
{
	struct nvme_command c = { };
	int status;
	void *data;
	int pos;
	int len;

	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;

	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data,
				      NVME_IDENTIFY_DATA_SIZE);
	if (status)
		goto free_data;

	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
		struct nvme_ns_id_desc *cur = data + pos;

		if (cur->nidl == 0)
			break;

		switch (cur->nidt) {
		case NVME_NIDT_EUI64:
			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_EUI64_LEN;
			memcpy(ns->eui, data + pos + sizeof(*cur), len);
			break;
		case NVME_NIDT_NGUID:
			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_NGUID_LEN;
			memcpy(ns->nguid, data + pos + sizeof(*cur), len);
			break;
		case NVME_NIDT_UUID:
			if (cur->nidl != NVME_NIDT_UUID_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_UUID_LEN;
			uuid_copy(&ns->uuid, data + pos + sizeof(*cur));
			break;
		default:
			/* Skip unnkown types */
			len = cur->nidl;
			break;
		}

		len += sizeof(*cur);
	}
free_data:
	kfree(data);
	return status;
}

849 850 851 852 853
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
854
	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
855 856 857 858
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

K
Keith Busch 已提交
859
static int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
860 861 862 863 864 865
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
866 867
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
868
	c.identify.cns = NVME_ID_CNS_NS;
869 870 871 872 873 874 875 876 877 878 879 880

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

K
Keith Busch 已提交
881
static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
882
		      void *buffer, size_t buflen, u32 *result)
883 884
{
	struct nvme_command c;
885
	union nvme_result res;
886
	int ret;
887 888 889 890 891 892

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

893
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
894
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
895
	if (ret >= 0 && result)
896
		*result = le32_to_cpu(res.u32);
897
	return ret;
898 899
}

C
Christoph Hellwig 已提交
900 901 902 903 904 905
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

906
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
907
			&result);
908
	if (status < 0)
C
Christoph Hellwig 已提交
909 910
		return status;

911 912 913 914 915 916
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
917
		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
918 919 920 921 922 923
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
924 925
	return 0;
}
926
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
927

928 929 930 931 932 933 934 935 936
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
937 938
	if (io.flags)
		return -EINVAL;
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

978
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
979 980 981 982 983 984 985 986 987 988 989
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
990 991
	if (cmd.flags)
		return -EINVAL;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1010
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
	default:
1036 1037 1038 1039
#ifdef CONFIG_NVM
		if (ns->ndev)
			return nvme_nvm_ioctl(ns, cmd, arg);
#endif
1040
		if (is_sed_ioctl(cmd))
1041
			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1042
					 (void __user *) arg);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
1064 1065 1066 1067
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
	struct nvme_ns *ns = disk->private_data;
	u16 old_ms = ns->ms;
	u8 pi_type = 0;

	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/* PI implementation requires metadata equal t10 pi tuple size */
	if (ns->ms == sizeof(struct t10_pi_tuple))
		pi_type = id->dps & NVME_NS_DPS_PI_MASK;

	if (blk_get_integrity(disk) &&
	    (ns->pi_type != pi_type || ns->ms != old_ms ||
	     bs != queue_logical_block_size(disk->queue) ||
	     (ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
}

1103 1104 1105 1106
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

1107
	memset(&integrity, 0, sizeof(integrity));
1108 1109 1110
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
1111 1112
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1113 1114 1115 1116
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
1117 1118
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
1129 1130 1131 1132
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
}
1133 1134 1135 1136 1137
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

1138 1139 1140 1141 1142 1143
static void nvme_set_chunk_size(struct nvme_ns *ns)
{
	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
}

1144 1145
static void nvme_config_discard(struct nvme_ns *ns)
{
1146
	struct nvme_ctrl *ctrl = ns->ctrl;
1147
	u32 logical_block_size = queue_logical_block_size(ns->queue);
1148

1149 1150 1151
	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
			NVME_DSM_MAX_RANGES);

1152 1153 1154 1155 1156 1157 1158 1159 1160
	if (ctrl->nr_streams && ns->sws && ns->sgs) {
		unsigned int sz = logical_block_size * ns->sws * ns->sgs;

		ns->queue->limits.discard_alignment = sz;
		ns->queue->limits.discard_granularity = sz;
	} else {
		ns->queue->limits.discard_alignment = logical_block_size;
		ns->queue->limits.discard_granularity = logical_block_size;
	}
1161
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1162
	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1163
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1164 1165 1166

	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1167 1168
}

1169
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1170
{
1171
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1172
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1173 1174 1175
		return -ENODEV;
	}

1176 1177 1178
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
1179 1180
	}

1181
	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1182
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1183
	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1184
		memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid));
1185 1186 1187 1188 1189 1190 1191 1192
	if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) {
		 /* Don't treat error as fatal we potentially
		  * already have a NGUID or EUI-64
		  */
		if (nvme_identify_ns_descs(ns, ns->ns_id))
			dev_warn(ns->ctrl->device,
				 "%s: Identify Descriptors failed\n", __func__);
	}
1193 1194 1195 1196 1197 1198 1199

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
1200
	struct nvme_ctrl *ctrl = ns->ctrl;
1201
	u16 bs;
1202 1203 1204 1205 1206

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
1207
	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1208 1209 1210
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
1211
	ns->noiob = le16_to_cpu(id->noiob);
1212 1213 1214

	blk_mq_freeze_queue(disk->queue);

1215
	if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1216
		nvme_prep_integrity(disk, id, bs);
1217
	blk_queue_logical_block_size(ns->queue, bs);
1218 1219
	if (ns->noiob)
		nvme_set_chunk_size(ns);
K
Keith Busch 已提交
1220
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1221 1222 1223 1224 1225 1226
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

1227
	if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1228 1229
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
1230
}
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
1248
	kfree(id);
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1327
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1345
#ifdef CONFIG_BLK_SED_OPAL
1346 1347
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
		bool send)
1348
{
1349
	struct nvme_ctrl *ctrl = data;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	struct nvme_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (send)
		cmd.common.opcode = nvme_admin_security_send;
	else
		cmd.common.opcode = nvme_admin_security_recv;
	cmd.common.nsid = 0;
	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
	cmd.common.cdw10[1] = cpu_to_le32(len);

	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */

1367
static const struct block_device_operations nvme_fops = {
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1378 1379 1380 1381 1382 1383 1384 1385
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
K
Keith Busch 已提交
1386 1387
		if (csts == ~0)
			return -ENODEV;
1388 1389 1390 1391 1392 1393 1394
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1395
			dev_err(ctrl->device,
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1421

1422
	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1423 1424
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1425 1426
	return nvme_wait_ready(ctrl, cap, false);
}
1427
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1440
		dev_err(ctrl->device,
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1459
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1460 1461 1462

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
1463
	unsigned long timeout = jiffies + (shutdown_timeout * HZ);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1482
			dev_err(ctrl->device,
1483 1484 1485 1486 1487 1488 1489
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1490
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1491

1492 1493 1494
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1495 1496
	bool vwc = false;

1497
	if (ctrl->max_hw_sectors) {
1498 1499 1500
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1501
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1502
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1503
	}
K
Keith Busch 已提交
1504 1505
	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1506
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1507 1508 1509
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519 1520
static void nvme_configure_apst(struct nvme_ctrl *ctrl)
{
	/*
	 * APST (Autonomous Power State Transition) lets us program a
	 * table of power state transitions that the controller will
	 * perform automatically.  We configure it with a simple
	 * heuristic: we are willing to spend at most 2% of the time
	 * transitioning between power states.  Therefore, when running
	 * in any given state, we will enter the next lower-power
A
Andy Lutomirski 已提交
1521
	 * non-operational state after waiting 50 * (enlat + exlat)
1522
	 * microseconds, as long as that state's exit latency is under
1523 1524 1525 1526 1527 1528 1529 1530 1531
	 * the requested maximum latency.
	 *
	 * We will not autonomously enter any non-operational state for
	 * which the total latency exceeds ps_max_latency_us.  Users
	 * can set ps_max_latency_us to zero to turn off APST.
	 */

	unsigned apste;
	struct nvme_feat_auto_pst *table;
1532 1533
	u64 max_lat_us = 0;
	int max_ps = -1;
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	int ret;

	/*
	 * If APST isn't supported or if we haven't been initialized yet,
	 * then don't do anything.
	 */
	if (!ctrl->apsta)
		return;

	if (ctrl->npss > 31) {
		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
		return;
	}

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return;

	if (ctrl->ps_max_latency_us == 0) {
		/* Turn off APST. */
		apste = 0;
1555
		dev_dbg(ctrl->device, "APST disabled\n");
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	} else {
		__le64 target = cpu_to_le64(0);
		int state;

		/*
		 * Walk through all states from lowest- to highest-power.
		 * According to the spec, lower-numbered states use more
		 * power.  NPSS, despite the name, is the index of the
		 * lowest-power state, not the number of states.
		 */
		for (state = (int)ctrl->npss; state >= 0; state--) {
1567
			u64 total_latency_us, exit_latency_us, transition_ms;
1568 1569 1570 1571

			if (target)
				table->entries[state] = target;

1572 1573 1574 1575 1576 1577 1578 1579
			/*
			 * Don't allow transitions to the deepest state
			 * if it's quirked off.
			 */
			if (state == ctrl->npss &&
			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
				continue;

1580 1581 1582 1583 1584 1585 1586 1587
			/*
			 * Is this state a useful non-operational state for
			 * higher-power states to autonomously transition to?
			 */
			if (!(ctrl->psd[state].flags &
			      NVME_PS_FLAGS_NON_OP_STATE))
				continue;

1588 1589 1590
			exit_latency_us =
				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
			if (exit_latency_us > ctrl->ps_max_latency_us)
1591 1592
				continue;

1593 1594 1595 1596
			total_latency_us =
				exit_latency_us +
				le32_to_cpu(ctrl->psd[state].entry_lat);

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
			/*
			 * This state is good.  Use it as the APST idle
			 * target for higher power states.
			 */
			transition_ms = total_latency_us + 19;
			do_div(transition_ms, 20);
			if (transition_ms > (1 << 24) - 1)
				transition_ms = (1 << 24) - 1;

			target = cpu_to_le64((state << 3) |
					     (transition_ms << 8));
1608 1609 1610 1611 1612 1613

			if (max_ps == -1)
				max_ps = state;

			if (total_latency_us > max_lat_us)
				max_lat_us = total_latency_us;
1614 1615 1616
		}

		apste = 1;
1617 1618 1619 1620 1621 1622 1623

		if (max_ps == -1) {
			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
		} else {
			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
				max_ps, max_lat_us, (int)sizeof(*table), table);
		}
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	}

	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
				table, sizeof(*table), NULL);
	if (ret)
		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);

	kfree(table);
}

static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	u64 latency;

	switch (val) {
	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
	case PM_QOS_LATENCY_ANY:
		latency = U64_MAX;
		break;

	default:
		latency = val;
	}

	if (ctrl->ps_max_latency_us != latency) {
		ctrl->ps_max_latency_us = latency;
		nvme_configure_apst(ctrl);
	}
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
struct nvme_core_quirk_entry {
	/*
	 * NVMe model and firmware strings are padded with spaces.  For
	 * simplicity, strings in the quirk table are padded with NULLs
	 * instead.
	 */
	u16 vid;
	const char *mn;
	const char *fr;
	unsigned long quirks;
};

static const struct nvme_core_quirk_entry core_quirks[] = {
1668
	{
1669 1670 1671 1672 1673 1674
		/*
		 * This Toshiba device seems to die using any APST states.  See:
		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
		 */
		.vid = 0x1179,
		.mn = "THNSF5256GPUK TOSHIBA",
1675
		.quirks = NVME_QUIRK_NO_APST,
1676
	}
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
};

/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
	size_t matchlen;

	if (!match)
		return true;

	matchlen = strlen(match);
	WARN_ON_ONCE(matchlen > len);

	if (memcmp(idstr, match, matchlen))
		return false;

	for (; matchlen < len; matchlen++)
		if (idstr[matchlen] != ' ')
			return false;

	return true;
}

static bool quirk_matches(const struct nvme_id_ctrl *id,
			  const struct nvme_core_quirk_entry *q)
{
	return q->vid == le16_to_cpu(id->vid) &&
		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
		string_matches(id->fr, q->fr, sizeof(id->fr));
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1718
	u32 max_hw_sectors;
1719
	u8 prev_apsta;
1720

1721 1722
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1723
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1724 1725 1726
		return ret;
	}

1727 1728
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1729
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1730 1731 1732 1733
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1734
	if (ctrl->vs >= NVME_VS(1, 1, 0))
1735 1736
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1737 1738
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1739
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1740 1741 1742
		return -EIO;
	}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	if (!ctrl->identified) {
		/*
		 * Check for quirks.  Quirk can depend on firmware version,
		 * so, in principle, the set of quirks present can change
		 * across a reset.  As a possible future enhancement, we
		 * could re-scan for quirks every time we reinitialize
		 * the device, but we'd have to make sure that the driver
		 * behaves intelligently if the quirks change.
		 */

		int i;

		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
			if (quirk_matches(id, &core_quirks[i]))
				ctrl->quirks |= core_quirks[i].quirks;
		}
	}

1761
	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1762
		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1763 1764 1765
		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
	}

1766
	ctrl->oacs = le16_to_cpu(id->oacs);
1767
	ctrl->vid = le16_to_cpu(id->vid);
1768
	ctrl->oncs = le16_to_cpup(&id->oncs);
1769
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1770
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1771
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1772 1773 1774 1775
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1776
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1777
	else
1778 1779 1780
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1781

1782
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1783
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1784
	ctrl->kas = le16_to_cpu(id->kas);
1785

1786 1787
	ctrl->npss = id->npss;
	prev_apsta = ctrl->apsta;
1788 1789
	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
		if (force_apst && id->apsta) {
1790
			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1791 1792 1793 1794 1795 1796 1797
			ctrl->apsta = 1;
		} else {
			ctrl->apsta = 0;
		}
	} else {
		ctrl->apsta = id->apsta;
	}
1798 1799
	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));

1800
	if (ctrl->ops->flags & NVME_F_FABRICS) {
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1812 1813

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1814
			dev_err(ctrl->device,
S
Sagi Grimberg 已提交
1815 1816 1817
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1818 1819
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
1820 1821
		ctrl->hmpre = le32_to_cpu(id->hmpre);
		ctrl->hmmin = le32_to_cpu(id->hmmin);
1822
	}
1823

1824
	kfree(id);
1825

1826 1827 1828 1829 1830 1831
	if (ctrl->apsta && !prev_apsta)
		dev_pm_qos_expose_latency_tolerance(ctrl->device);
	else if (!ctrl->apsta && prev_apsta)
		dev_pm_qos_hide_latency_tolerance(ctrl->device);

	nvme_configure_apst(ctrl);
1832
	nvme_configure_directives(ctrl);
1833

1834
	ctrl->identified = true;
1835

1836
	return ret;
1837
}
1838
EXPORT_SYMBOL_GPL(nvme_init_identify);
1839

1840
static int nvme_dev_open(struct inode *inode, struct file *file)
1841
{
1842 1843 1844
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1864 1865
}

1866
static int nvme_dev_release(struct inode *inode, struct file *file)
1867
{
1868 1869 1870 1871
	nvme_put_ctrl(file->private_data);
	return 0;
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1885
		dev_warn(ctrl->device,
1886 1887 1888 1889 1890
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1891
	dev_warn(ctrl->device,
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1915
		return nvme_dev_user_cmd(ctrl, argp);
1916
	case NVME_IOCTL_RESET:
1917
		dev_warn(ctrl->device, "resetting controller\n");
1918
		return nvme_reset_ctrl_sync(ctrl);
1919 1920
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1921 1922 1923
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

1944
	ret = nvme_reset_ctrl_sync(ctrl);
1945 1946 1947
	if (ret < 0)
		return ret;
	return count;
1948
}
1949
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1950

K
Keith Busch 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1962 1963 1964
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1965
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1966 1967 1968 1969
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

1970 1971
	if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
		return sprintf(buf, "eui.%16phN\n", ns->nguid);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1986 1987 1988 1989 1990 1991 1992 1993
static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
	return sprintf(buf, "%pU\n", ns->nguid);
}
static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);

1994 1995 1996
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1997
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

	/* For backward compatibility expose the NGUID to userspace if
	 * we have no UUID set
	 */
	if (uuid_is_null(&ns->uuid)) {
		printk_ratelimited(KERN_WARNING
				   "No UUID available providing old NGUID\n");
		return sprintf(buf, "%pU\n", ns->nguid);
	}
	return sprintf(buf, "%pU\n", &ns->uuid);
2008 2009 2010 2011 2012 2013
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
2014
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2015 2016 2017 2018 2019 2020 2021
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
2022
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2023 2024 2025 2026 2027
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
2028
	&dev_attr_wwid.attr,
2029
	&dev_attr_uuid.attr,
2030
	&dev_attr_nguid.attr,
2031 2032 2033 2034 2035
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
2036
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2037 2038 2039
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
2040
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2041 2042

	if (a == &dev_attr_uuid.attr) {
2043 2044 2045 2046 2047
		if (uuid_is_null(&ns->uuid) ||
		    !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
			return 0;
	}
	if (a == &dev_attr_nguid.attr) {
2048
		if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
2060
	.is_visible	= nvme_ns_attrs_are_visible,
2061 2062
};

M
Ming Lin 已提交
2063
#define nvme_show_str_function(field)						\
2064 2065 2066 2067 2068 2069 2070 2071
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
2085

M
Ming Lin 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static ssize_t nvme_sysfs_show_state(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	static const char *const state_name[] = {
		[NVME_CTRL_NEW]		= "new",
		[NVME_CTRL_LIVE]	= "live",
		[NVME_CTRL_RESETTING]	= "resetting",
		[NVME_CTRL_RECONNECTING]= "reconnecting",
		[NVME_CTRL_DELETING]	= "deleting",
		[NVME_CTRL_DEAD]	= "dead",
	};

	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
	    state_name[ctrl->state])
		return sprintf(buf, "%s\n", state_name[ctrl->state]);

	return sprintf(buf, "unknown state\n");
}

static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);

M
Ming Lin 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

2152 2153
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
2154
	&dev_attr_rescan_controller.attr,
2155 2156 2157
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
2158
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
2159 2160 2161 2162
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
2163
	&dev_attr_state.attr,
2164 2165 2166
	NULL
};

M
Ming Lin 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

2189
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
2190 2191
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
2192 2193 2194 2195 2196 2197 2198
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

2199 2200 2201 2202 2203 2204 2205 2206
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

2207
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2208
{
2209
	struct nvme_ns *ns, *ret = NULL;
2210

2211
	mutex_lock(&ctrl->namespaces_mutex);
2212
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2213 2214 2215 2216 2217
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
2218 2219 2220
		if (ns->ns_id > nsid)
			break;
	}
2221 2222
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
2223 2224
}

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
{
	struct streams_directive_params s;
	int ret;

	if (!ctrl->nr_streams)
		return 0;

	ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
	if (ret)
		return ret;

	ns->sws = le32_to_cpu(s.sws);
	ns->sgs = le16_to_cpu(s.sgs);

	if (ns->sws) {
		unsigned int bs = 1 << ns->lba_shift;

		blk_queue_io_min(ns->queue, bs * ns->sws);
		if (ns->sgs)
			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
	}

	return 0;
}

2251 2252 2253 2254
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
2255 2256
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
2257 2258 2259 2260 2261 2262
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

2263 2264 2265 2266
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

2267 2268
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
2269
		goto out_release_instance;
2270 2271 2272 2273 2274 2275 2276 2277 2278
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2279
	nvme_set_queue_limits(ctrl, ns->queue);
2280
	nvme_setup_streams_ns(ctrl, ns);
2281

2282
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2283

2284 2285 2286
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

2287 2288
	if (nvme_nvm_ns_supported(ns, id) &&
				nvme_nvm_register(ns, disk_name, node)) {
2289
		dev_warn(ctrl->device, "%s: LightNVM init failure\n", __func__);
2290 2291
		goto out_free_id;
	}
2292

2293 2294 2295
	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_id;
2296

2297 2298 2299 2300 2301 2302 2303 2304
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
	ns->disk = disk;

	__nvme_revalidate_disk(disk, id);
2305

2306 2307 2308 2309
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

2310
	kref_get(&ctrl->kref);
2311 2312 2313

	kfree(id);

2314
	device_add_disk(ctrl->device, ns->disk);
2315 2316 2317 2318
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
2319 2320 2321
	if (ns->ndev && nvme_nvm_register_sysfs(ns))
		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
			ns->disk->disk_name);
2322
	return;
2323 2324
 out_free_id:
	kfree(id);
2325 2326
 out_free_queue:
	blk_cleanup_queue(ns->queue);
2327 2328
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2329 2330 2331 2332 2333 2334
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
2335 2336
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
2337

2338
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2339 2340
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
2341 2342
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
2343 2344
		if (ns->ndev)
			nvme_nvm_unregister_sysfs(ns);
2345 2346 2347
		del_gendisk(ns->disk);
		blk_cleanup_queue(ns->queue);
	}
2348 2349

	mutex_lock(&ns->ctrl->namespaces_mutex);
2350
	list_del_init(&ns->list);
2351 2352
	mutex_unlock(&ns->ctrl->namespaces_mutex);

2353 2354 2355
	nvme_put_ns(ns);
}

2356 2357 2358 2359
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

2360
	ns = nvme_find_get_ns(ctrl, nsid);
2361
	if (ns) {
2362
		if (ns->disk && revalidate_disk(ns->disk))
2363
			nvme_ns_remove(ns);
2364
		nvme_put_ns(ns);
2365 2366 2367 2368
	} else
		nvme_alloc_ns(ctrl, nsid);
}

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
2394
			goto free;
2395 2396 2397 2398 2399 2400 2401 2402 2403

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
2404 2405
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
2406
					nvme_ns_remove(ns);
2407 2408
					nvme_put_ns(ns);
				}
2409 2410 2411 2412 2413
			}
		}
		nn -= j;
	}
 out:
2414 2415
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
2416 2417 2418 2419
	kfree(ns_list);
	return ret;
}

2420
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2421 2422 2423
{
	unsigned i;

2424 2425 2426
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

2427
	nvme_remove_invalid_namespaces(ctrl, nn);
2428 2429
}

2430
static void nvme_scan_work(struct work_struct *work)
2431
{
2432 2433
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
2434
	struct nvme_id_ctrl *id;
2435
	unsigned nn;
2436

2437 2438 2439
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

2440 2441
	if (nvme_identify_ctrl(ctrl, &id))
		return;
2442 2443

	nn = le32_to_cpu(id->nn);
2444
	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2445 2446 2447 2448
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
2449
	nvme_scan_ns_sequential(ctrl, nn);
2450
 done:
2451
	mutex_lock(&ctrl->namespaces_mutex);
2452
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2453
	mutex_unlock(&ctrl->namespaces_mutex);
2454 2455
	kfree(id);
}
2456 2457 2458 2459 2460 2461 2462 2463

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
2464
		queue_work(nvme_wq, &ctrl->scan_work);
2465 2466
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
2467

2468 2469 2470 2471 2472
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
2473 2474 2475 2476
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

2477 2478 2479 2480 2481 2482 2483 2484 2485
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

2486 2487 2488
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
2489
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

2507 2508
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
		union nvme_result *res)
2509
{
2510 2511
	u32 result = le32_to_cpu(res->u32);
	bool done = true;
2512

2513 2514 2515 2516 2517
	switch (le16_to_cpu(status) >> 1) {
	case NVME_SC_SUCCESS:
		done = false;
		/*FALLTHRU*/
	case NVME_SC_ABORT_REQ:
2518
		++ctrl->event_limit;
2519
		queue_work(nvme_wq, &ctrl->async_event_work);
2520 2521 2522
		break;
	default:
		break;
2523 2524
	}

2525
	if (done)
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
2542
	queue_work(nvme_wq, &ctrl->async_event_work);
2543 2544 2545
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

2575
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2576
{
2577
	flush_work(&ctrl->async_event_work);
2578 2579 2580
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

2581
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2582 2583 2584 2585

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
2586
}
2587
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2588 2589 2590 2591

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2592 2593 2594

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
2595
	ida_destroy(&ctrl->ns_ida);
2596 2597 2598 2599 2600 2601 2602 2603

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
2604
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2616 2617
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2618
	INIT_LIST_HEAD(&ctrl->namespaces);
2619
	mutex_init(&ctrl->namespaces_mutex);
2620 2621 2622 2623
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2624
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2625
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2626 2627 2628 2629 2630

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2631
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2632
				MKDEV(nvme_char_major, ctrl->instance),
2633
				ctrl, nvme_dev_attr_groups,
2634
				"nvme%d", ctrl->instance);
2635 2636 2637 2638 2639
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2640
	ida_init(&ctrl->ns_ida);
2641 2642 2643 2644 2645

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

2646 2647 2648 2649 2650 2651 2652 2653
	/*
	 * Initialize latency tolerance controls.  The sysfs files won't
	 * be visible to userspace unless the device actually supports APST.
	 */
	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
		min(default_ps_max_latency_us, (unsigned long)S32_MAX));

2654 2655 2656 2657 2658 2659
	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2660
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2661

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2673
	mutex_lock(&ctrl->namespaces_mutex);
M
Ming Lei 已提交
2674

2675 2676 2677
	/* Forcibly unquiesce queues to avoid blocking dispatch */
	blk_mq_unquiesce_queue(ctrl->admin_q);

M
Ming Lei 已提交
2678 2679 2680
	/* Forcibly start all queues to avoid having stuck requests */
	blk_mq_start_hw_queues(ctrl->admin_q);

2681
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2682 2683 2684 2685
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2686 2687 2688
		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			continue;
		revalidate_disk(ns->disk);
2689
		blk_set_queue_dying(ns->queue);
2690

2691 2692 2693
		/* Forcibly unquiesce queues to avoid blocking dispatch */
		blk_mq_unquiesce_queue(ns->queue);

2694 2695 2696 2697 2698 2699
		/*
		 * Forcibly start all queues to avoid having stuck requests.
		 * Note that we must ensure the queues are not stopped
		 * when the final removal happens.
		 */
		blk_mq_start_hw_queues(ns->queue);
2700 2701 2702

		/* draining requests in requeue list */
		blk_mq_kick_requeue_list(ns->queue);
2703
	}
2704
	mutex_unlock(&ctrl->namespaces_mutex);
2705
}
2706
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2707

K
Keith Busch 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_unfreeze_queue(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);

void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
		if (timeout <= 0)
			break;
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);

void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_wait(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);

void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
2750
		blk_freeze_queue_start(ns->queue);
K
Keith Busch 已提交
2751 2752 2753 2754
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);

2755
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2756 2757 2758
{
	struct nvme_ns *ns;

2759
	mutex_lock(&ctrl->namespaces_mutex);
2760
	list_for_each_entry(ns, &ctrl->namespaces, list)
2761
		blk_mq_quiesce_queue(ns->queue);
2762
	mutex_unlock(&ctrl->namespaces_mutex);
2763
}
2764
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2765

2766
void nvme_start_queues(struct nvme_ctrl *ctrl)
2767 2768 2769
{
	struct nvme_ns *ns;

2770 2771
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2772
		blk_mq_unquiesce_queue(ns->queue);
2773 2774
		blk_mq_kick_requeue_list(ns->queue);
	}
2775
	mutex_unlock(&ctrl->namespaces_mutex);
2776
}
2777
EXPORT_SYMBOL_GPL(nvme_start_queues);
2778

2779 2780 2781 2782
int __init nvme_core_init(void)
{
	int result;

2783 2784 2785 2786 2787
	nvme_wq = alloc_workqueue("nvme-wq",
			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
	if (!nvme_wq)
		return -ENOMEM;

2788 2789 2790
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2791
		goto destroy_wq;
2792 2793 2794 2795 2796 2797 2798 2799 2800
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2801
	return 0;
2802

2803
unregister_chrdev:
2804
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2805 2806
destroy_wq:
	destroy_workqueue(nvme_wq);
2807
	return result;
2808 2809 2810 2811
}

void nvme_core_exit(void)
{
2812 2813
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2814
	destroy_workqueue(nvme_wq);
2815
}
2816 2817 2818 2819 2820

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);