core.c 66.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
29
#include <linux/pm_qos.h>
30 31
#include <scsi/sg.h>
#include <asm/unaligned.h>
32 33

#include "nvme.h"
S
Sagi Grimberg 已提交
34
#include "fabrics.h"
35

36 37
#define NVME_MINORS		(1U << MINORBITS)

38 39 40
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41
EXPORT_SYMBOL_GPL(admin_timeout);
42 43 44 45

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46
EXPORT_SYMBOL_GPL(nvme_io_timeout);
47 48 49 50 51

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

52 53
static u8 nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, byte, 0644);
K
Keith Busch 已提交
54
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55

56 57 58
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

59
static unsigned long default_ps_max_latency_us = 100000;
60 61 62 63
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
		 "max power saving latency for new devices; use PM QOS to change per device");

64 65 66 67
static bool force_apst;
module_param(force_apst, bool, 0644);
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");

68 69 70
struct workqueue_struct *nvme_wq;
EXPORT_SYMBOL_GPL(nvme_wq);

71
static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
72
static DEFINE_SPINLOCK(dev_list_lock);
73

74 75
static struct class *nvme_class;

76
static blk_status_t nvme_error_status(struct request *req)
77 78 79
{
	switch (nvme_req(req)->status & 0x7ff) {
	case NVME_SC_SUCCESS:
80
		return BLK_STS_OK;
81
	case NVME_SC_CAP_EXCEEDED:
82
		return BLK_STS_NOSPC;
83
	case NVME_SC_ONCS_NOT_SUPPORTED:
84
		return BLK_STS_NOTSUPP;
85 86 87
	case NVME_SC_WRITE_FAULT:
	case NVME_SC_READ_ERROR:
	case NVME_SC_UNWRITTEN_BLOCK:
88 89 90
		return BLK_STS_MEDIUM;
	default:
		return BLK_STS_IOERR;
91 92 93
	}
}

94
static inline bool nvme_req_needs_retry(struct request *req)
95
{
96 97
	if (blk_noretry_request(req))
		return false;
98
	if (nvme_req(req)->status & NVME_SC_DNR)
99 100 101
		return false;
	if (jiffies - req->start_time >= req->timeout)
		return false;
102
	if (nvme_req(req)->retries >= nvme_max_retries)
103 104
		return false;
	return true;
105 106 107 108
}

void nvme_complete_rq(struct request *req)
{
109 110 111 112
	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
		nvme_req(req)->retries++;
		blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
		return;
113 114
	}

115
	blk_mq_end_request(req, nvme_error_status(req));
116 117 118
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);

119 120 121 122 123 124 125 126 127 128 129 130 131
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
132
	nvme_req(req)->status = status;
133
	blk_mq_complete_request(req);
134

135 136 137
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

138 139 140
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
141
	enum nvme_ctrl_state old_state;
142 143 144
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
145 146

	old_state = ctrl->state;
147 148 149
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
150
		case NVME_CTRL_NEW:
151
		case NVME_CTRL_RESETTING:
152
		case NVME_CTRL_RECONNECTING:
153 154 155 156 157 158 159 160 161
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
162 163 164 165 166 167 168 169 170
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
171 172 173 174 175 176 177 178 179 180 181
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
182
		case NVME_CTRL_RECONNECTING:
183 184 185 186 187 188
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
189 190 191 192 193 194 195 196 197
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
198 199 200 201 202 203 204
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

205 206
	spin_unlock_irq(&ctrl->lock);

207 208 209 210
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

211 212 213 214
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

215 216
	if (ns->ndev)
		nvme_nvm_unregister(ns);
217

218 219 220 221 222
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
223 224

	put_disk(ns->disk);
225 226
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
227 228 229
	kfree(ns);
}

230
static void nvme_put_ns(struct nvme_ns *ns)
231 232 233 234 235 236 237 238 239 240
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
241 242 243 244 245 246
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
247 248 249
	spin_unlock(&dev_list_lock);

	return ns;
250 251 252 253 254 255

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
256 257
}

258
struct request *nvme_alloc_request(struct request_queue *q,
259
		struct nvme_command *cmd, unsigned int flags, int qid)
260
{
261
	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
262 263
	struct request *req;

264
	if (qid == NVME_QID_ANY) {
265
		req = blk_mq_alloc_request(q, op, flags);
266
	} else {
267
		req = blk_mq_alloc_request_hctx(q, op, flags,
268 269
				qid ? qid - 1 : 0);
	}
270
	if (IS_ERR(req))
271
		return req;
272 273

	req->cmd_flags |= REQ_FAILFAST_DRIVER;
274
	nvme_req(req)->cmd = cmd;
275

276 277
	return req;
}
278
EXPORT_SYMBOL_GPL(nvme_alloc_request);
279

M
Ming Lin 已提交
280 281 282 283 284 285 286 287
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

288
static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
289 290
		struct nvme_command *cmnd)
{
291
	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
M
Ming Lin 已提交
292
	struct nvme_dsm_range *range;
293
	struct bio *bio;
M
Ming Lin 已提交
294

295
	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
M
Ming Lin 已提交
296
	if (!range)
297
		return BLK_STS_RESOURCE;
M
Ming Lin 已提交
298

299 300 301 302 303 304 305 306 307 308 309 310
	__rq_for_each_bio(bio, req) {
		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;

		range[n].cattr = cpu_to_le32(0);
		range[n].nlb = cpu_to_le32(nlb);
		range[n].slba = cpu_to_le64(slba);
		n++;
	}

	if (WARN_ON_ONCE(n != segments)) {
		kfree(range);
311
		return BLK_STS_IOERR;
312
	}
M
Ming Lin 已提交
313 314 315 316

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
317
	cmnd->dsm.nr = cpu_to_le32(segments - 1);
M
Ming Lin 已提交
318 319
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

320 321
	req->special_vec.bv_page = virt_to_page(range);
	req->special_vec.bv_offset = offset_in_page(range);
322
	req->special_vec.bv_len = sizeof(*range) * segments;
323
	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
M
Ming Lin 已提交
324

325
	return BLK_STS_OK;
M
Ming Lin 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

369
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
370 371
		struct nvme_command *cmd)
{
372
	blk_status_t ret = BLK_STS_OK;
M
Ming Lin 已提交
373

374
	if (!(req->rq_flags & RQF_DONTPREP)) {
375
		nvme_req(req)->retries = 0;
376
		nvme_req(req)->flags = 0;
377 378 379
		req->rq_flags |= RQF_DONTPREP;
	}

380 381 382
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
383
		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
384 385
		break;
	case REQ_OP_FLUSH:
M
Ming Lin 已提交
386
		nvme_setup_flush(ns, cmd);
387
		break;
388 389
	case REQ_OP_WRITE_ZEROES:
		/* currently only aliased to deallocate for a few ctrls: */
390
	case REQ_OP_DISCARD:
M
Ming Lin 已提交
391
		ret = nvme_setup_discard(ns, req, cmd);
392 393 394
		break;
	case REQ_OP_READ:
	case REQ_OP_WRITE:
M
Ming Lin 已提交
395
		nvme_setup_rw(ns, req, cmd);
396 397 398
		break;
	default:
		WARN_ON_ONCE(1);
399
		return BLK_STS_IOERR;
400
	}
M
Ming Lin 已提交
401

402
	cmd->common.command_id = req->tag;
M
Ming Lin 已提交
403 404 405 406
	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

407 408 409 410 411
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
412
		union nvme_result *result, void *buffer, unsigned bufflen,
413
		unsigned timeout, int qid, int at_head, int flags)
414 415 416 417
{
	struct request *req;
	int ret;

418
	req = nvme_alloc_request(q, cmd, flags, qid);
419 420 421 422 423
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

424 425 426 427
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
428 429
	}

430
	blk_execute_rq(req->q, NULL, req, at_head);
431 432
	if (result)
		*result = nvme_req(req)->result;
433 434 435 436
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
437 438 439 440
 out:
	blk_mq_free_request(req);
	return ret;
}
441
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
442 443 444 445

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
446 447
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
448
}
449
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
450

451 452 453 454
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
455
{
456
	bool write = nvme_is_write(cmd);
457 458
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
459
	struct request *req;
460 461
	struct bio *bio = NULL;
	void *meta = NULL;
462 463
	int ret;

464
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
465 466 467 468 469 470
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
471 472 473 474 475 476
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

477 478 479 480 481 482 483 484
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

485
		if (meta_buffer && meta_len) {
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
503 504
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
521 522 523 524
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
525
	if (result)
526
		*result = le32_to_cpu(nvme_req(req)->result.u32);
527 528 529 530 531 532 533 534 535 536 537 538
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
539 540 541 542 543
 out:
	blk_mq_free_request(req);
	return ret;
}

544 545 546 547 548 549 550 551
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

552
static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
S
Sagi Grimberg 已提交
553 554 555 556 557
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

558
	if (status) {
S
Sagi Grimberg 已提交
559
		dev_err(ctrl->device,
560 561
			"failed nvme_keep_alive_end_io error=%d\n",
				status);
S
Sagi Grimberg 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
		ctrl->ops->reset_ctrl(ctrl);
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

621
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
622 623 624 625 626 627
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
628
	c.identify.cns = NVME_ID_CNS_CTRL;
629 630 631 632 633 634 635 636 637 638 639 640

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid)
{
	struct nvme_command c = { };
	int status;
	void *data;
	int pos;
	int len;

	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;

	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data,
				      NVME_IDENTIFY_DATA_SIZE);
	if (status)
		goto free_data;

	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
		struct nvme_ns_id_desc *cur = data + pos;

		if (cur->nidl == 0)
			break;

		switch (cur->nidt) {
		case NVME_NIDT_EUI64:
			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_EUI64_LEN;
			memcpy(ns->eui, data + pos + sizeof(*cur), len);
			break;
		case NVME_NIDT_NGUID:
			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_NGUID_LEN;
			memcpy(ns->nguid, data + pos + sizeof(*cur), len);
			break;
		case NVME_NIDT_UUID:
			if (cur->nidl != NVME_NIDT_UUID_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_UUID_LEN;
			uuid_copy(&ns->uuid, data + pos + sizeof(*cur));
			break;
		default:
			/* Skip unnkown types */
			len = cur->nidl;
			break;
		}

		len += sizeof(*cur);
	}
free_data:
	kfree(data);
	return status;
}

712 713 714 715 716
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
717
	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
718 719 720 721
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

722
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
723 724 725 726 727 728
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
729 730
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
731
	c.identify.cns = NVME_ID_CNS_NS;
732 733 734 735 736 737 738 739 740 741 742 743

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

744
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
745
		      void *buffer, size_t buflen, u32 *result)
746 747
{
	struct nvme_command c;
748
	union nvme_result res;
749
	int ret;
750 751 752 753 754 755

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.fid = cpu_to_le32(fid);

756
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
757
			NVME_QID_ANY, 0, 0);
758
	if (ret >= 0 && result)
759
		*result = le32_to_cpu(res.u32);
760
	return ret;
761 762
}

763
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
764
		      void *buffer, size_t buflen, u32 *result)
765 766
{
	struct nvme_command c;
767
	union nvme_result res;
768
	int ret;
769 770 771 772 773 774

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

775
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
776
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
777
	if (ret >= 0 && result)
778
		*result = le32_to_cpu(res.u32);
779
	return ret;
780 781
}

782
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
803

C
Christoph Hellwig 已提交
804 805 806 807 808 809
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

810
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
811
			&result);
812
	if (status < 0)
C
Christoph Hellwig 已提交
813 814
		return status;

815 816 817 818 819 820 821 822 823 824 825 826 827
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
828 829
	return 0;
}
830
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
831

832 833 834 835 836 837 838 839 840
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
841 842
	if (io.flags)
		return -EINVAL;
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

882
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
883 884 885 886 887 888 889 890 891 892 893
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
894 895
	if (cmd.flags)
		return -EINVAL;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
914
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
939
#ifdef CONFIG_BLK_DEV_NVME_SCSI
940 941 942 943
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
944
#endif
945
	default:
946 947 948 949
#ifdef CONFIG_NVM
		if (ns->ndev)
			return nvme_nvm_ioctl(ns, cmd, arg);
#endif
950
		if (is_sed_ioctl(cmd))
951
			return sed_ioctl(ns->ctrl->opal_dev, cmd,
952
					 (void __user *) arg);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
978 979 980 981
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
982 983 984 985 986 987 988 989 990 991 992 993
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
	struct nvme_ns *ns = disk->private_data;
	u16 old_ms = ns->ms;
	u8 pi_type = 0;

	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/* PI implementation requires metadata equal t10 pi tuple size */
	if (ns->ms == sizeof(struct t10_pi_tuple))
		pi_type = id->dps & NVME_NS_DPS_PI_MASK;

	if (blk_get_integrity(disk) &&
	    (ns->pi_type != pi_type || ns->ms != old_ms ||
	     bs != queue_logical_block_size(disk->queue) ||
	     (ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
}

1017 1018 1019 1020
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

1021
	memset(&integrity, 0, sizeof(integrity));
1022 1023 1024
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
1025 1026
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1027 1028 1029 1030
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
1031 1032
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
1043 1044 1045 1046
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
}
1047 1048 1049 1050 1051 1052 1053
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
1054
	struct nvme_ctrl *ctrl = ns->ctrl;
1055
	u32 logical_block_size = queue_logical_block_size(ns->queue);
1056

1057 1058 1059
	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
			NVME_DSM_MAX_RANGES);

1060 1061
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
1062
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1063
	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1064
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1065 1066 1067

	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1068 1069
}

1070
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1071
{
1072
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1073
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1074 1075 1076
		return -ENODEV;
	}

1077 1078 1079
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
1080 1081
	}

1082
	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1083
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1084
	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1085
		memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid));
1086 1087 1088 1089 1090 1091 1092 1093
	if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) {
		 /* Don't treat error as fatal we potentially
		  * already have a NGUID or EUI-64
		  */
		if (nvme_identify_ns_descs(ns, ns->ns_id))
			dev_warn(ns->ctrl->device,
				 "%s: Identify Descriptors failed\n", __func__);
	}
1094 1095 1096 1097 1098 1099 1100

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
1101
	u16 bs;
1102 1103 1104 1105 1106

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
1107
	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1108 1109 1110 1111 1112 1113
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;

	blk_mq_freeze_queue(disk->queue);

1114 1115
	if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
		nvme_prep_integrity(disk, id, bs);
1116
	blk_queue_logical_block_size(ns->queue, bs);
K
Keith Busch 已提交
1117
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1118 1119 1120 1121 1122 1123 1124 1125 1126
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
1127
}
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
1145
	kfree(id);
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1224
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1242
#ifdef CONFIG_BLK_SED_OPAL
1243 1244
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
		bool send)
1245
{
1246
	struct nvme_ctrl *ctrl = data;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	struct nvme_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (send)
		cmd.common.opcode = nvme_admin_security_send;
	else
		cmd.common.opcode = nvme_admin_security_recv;
	cmd.common.nsid = 0;
	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
	cmd.common.cdw10[1] = cpu_to_le32(len);

	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */

1264
static const struct block_device_operations nvme_fops = {
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1275 1276 1277 1278 1279 1280 1281 1282
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
K
Keith Busch 已提交
1283 1284
		if (csts == ~0)
			return -ENODEV;
1285 1286 1287 1288 1289 1290 1291
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1292
			dev_err(ctrl->device,
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1318

1319
	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1320 1321
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1322 1323
	return nvme_wait_ready(ctrl, cap, false);
}
1324
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1337
		dev_err(ctrl->device,
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1356
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1379
			dev_err(ctrl->device,
1380 1381 1382 1383 1384 1385 1386
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1387
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1388

1389 1390 1391
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1392 1393
	bool vwc = false;

1394
	if (ctrl->max_hw_sectors) {
1395 1396 1397
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1398
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1399
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1400
	}
K
Keith Busch 已提交
1401 1402
	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1403
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1404 1405 1406
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1407 1408
}

1409 1410 1411 1412 1413 1414 1415 1416 1417
static void nvme_configure_apst(struct nvme_ctrl *ctrl)
{
	/*
	 * APST (Autonomous Power State Transition) lets us program a
	 * table of power state transitions that the controller will
	 * perform automatically.  We configure it with a simple
	 * heuristic: we are willing to spend at most 2% of the time
	 * transitioning between power states.  Therefore, when running
	 * in any given state, we will enter the next lower-power
A
Andy Lutomirski 已提交
1418
	 * non-operational state after waiting 50 * (enlat + exlat)
1419
	 * microseconds, as long as that state's exit latency is under
1420 1421 1422 1423 1424 1425 1426 1427 1428
	 * the requested maximum latency.
	 *
	 * We will not autonomously enter any non-operational state for
	 * which the total latency exceeds ps_max_latency_us.  Users
	 * can set ps_max_latency_us to zero to turn off APST.
	 */

	unsigned apste;
	struct nvme_feat_auto_pst *table;
1429 1430
	u64 max_lat_us = 0;
	int max_ps = -1;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	int ret;

	/*
	 * If APST isn't supported or if we haven't been initialized yet,
	 * then don't do anything.
	 */
	if (!ctrl->apsta)
		return;

	if (ctrl->npss > 31) {
		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
		return;
	}

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return;

	if (ctrl->ps_max_latency_us == 0) {
		/* Turn off APST. */
		apste = 0;
1452
		dev_dbg(ctrl->device, "APST disabled\n");
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	} else {
		__le64 target = cpu_to_le64(0);
		int state;

		/*
		 * Walk through all states from lowest- to highest-power.
		 * According to the spec, lower-numbered states use more
		 * power.  NPSS, despite the name, is the index of the
		 * lowest-power state, not the number of states.
		 */
		for (state = (int)ctrl->npss; state >= 0; state--) {
1464
			u64 total_latency_us, exit_latency_us, transition_ms;
1465 1466 1467 1468

			if (target)
				table->entries[state] = target;

1469 1470 1471 1472 1473 1474 1475 1476
			/*
			 * Don't allow transitions to the deepest state
			 * if it's quirked off.
			 */
			if (state == ctrl->npss &&
			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
				continue;

1477 1478 1479 1480 1481 1482 1483 1484
			/*
			 * Is this state a useful non-operational state for
			 * higher-power states to autonomously transition to?
			 */
			if (!(ctrl->psd[state].flags &
			      NVME_PS_FLAGS_NON_OP_STATE))
				continue;

1485 1486 1487
			exit_latency_us =
				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
			if (exit_latency_us > ctrl->ps_max_latency_us)
1488 1489
				continue;

1490 1491 1492 1493
			total_latency_us =
				exit_latency_us +
				le32_to_cpu(ctrl->psd[state].entry_lat);

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
			/*
			 * This state is good.  Use it as the APST idle
			 * target for higher power states.
			 */
			transition_ms = total_latency_us + 19;
			do_div(transition_ms, 20);
			if (transition_ms > (1 << 24) - 1)
				transition_ms = (1 << 24) - 1;

			target = cpu_to_le64((state << 3) |
					     (transition_ms << 8));
1505 1506 1507 1508 1509 1510

			if (max_ps == -1)
				max_ps = state;

			if (total_latency_us > max_lat_us)
				max_lat_us = total_latency_us;
1511 1512 1513
		}

		apste = 1;
1514 1515 1516 1517 1518 1519 1520

		if (max_ps == -1) {
			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
		} else {
			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
				max_ps, max_lat_us, (int)sizeof(*table), table);
		}
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	}

	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
				table, sizeof(*table), NULL);
	if (ret)
		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);

	kfree(table);
}

static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	u64 latency;

	switch (val) {
	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
	case PM_QOS_LATENCY_ANY:
		latency = U64_MAX;
		break;

	default:
		latency = val;
	}

	if (ctrl->ps_max_latency_us != latency) {
		ctrl->ps_max_latency_us = latency;
		nvme_configure_apst(ctrl);
	}
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
struct nvme_core_quirk_entry {
	/*
	 * NVMe model and firmware strings are padded with spaces.  For
	 * simplicity, strings in the quirk table are padded with NULLs
	 * instead.
	 */
	u16 vid;
	const char *mn;
	const char *fr;
	unsigned long quirks;
};

static const struct nvme_core_quirk_entry core_quirks[] = {
1565
	{
1566 1567 1568 1569 1570 1571
		/*
		 * This Toshiba device seems to die using any APST states.  See:
		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
		 */
		.vid = 0x1179,
		.mn = "THNSF5256GPUK TOSHIBA",
1572
		.quirks = NVME_QUIRK_NO_APST,
1573
	}
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
};

/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
	size_t matchlen;

	if (!match)
		return true;

	matchlen = strlen(match);
	WARN_ON_ONCE(matchlen > len);

	if (memcmp(idstr, match, matchlen))
		return false;

	for (; matchlen < len; matchlen++)
		if (idstr[matchlen] != ' ')
			return false;

	return true;
}

static bool quirk_matches(const struct nvme_id_ctrl *id,
			  const struct nvme_core_quirk_entry *q)
{
	return q->vid == le16_to_cpu(id->vid) &&
		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
		string_matches(id->fr, q->fr, sizeof(id->fr));
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1615
	u32 max_hw_sectors;
1616
	u8 prev_apsta;
1617

1618 1619
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1620
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1621 1622 1623
		return ret;
	}

1624 1625
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1626
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1627 1628 1629 1630
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1631
	if (ctrl->vs >= NVME_VS(1, 1, 0))
1632 1633
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1634 1635
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1636
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1637 1638 1639
		return -EIO;
	}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	if (!ctrl->identified) {
		/*
		 * Check for quirks.  Quirk can depend on firmware version,
		 * so, in principle, the set of quirks present can change
		 * across a reset.  As a possible future enhancement, we
		 * could re-scan for quirks every time we reinitialize
		 * the device, but we'd have to make sure that the driver
		 * behaves intelligently if the quirks change.
		 */

		int i;

		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
			if (quirk_matches(id, &core_quirks[i]))
				ctrl->quirks |= core_quirks[i].quirks;
		}
	}

1658 1659 1660 1661 1662
	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
		dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
	}

1663
	ctrl->oacs = le16_to_cpu(id->oacs);
1664
	ctrl->vid = le16_to_cpu(id->vid);
1665
	ctrl->oncs = le16_to_cpup(&id->oncs);
1666
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1667
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1668
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1669 1670 1671 1672
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1673
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1674
	else
1675 1676 1677
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1678

1679
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1680
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1681
	ctrl->kas = le16_to_cpu(id->kas);
1682

1683 1684
	ctrl->npss = id->npss;
	prev_apsta = ctrl->apsta;
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
		if (force_apst && id->apsta) {
			dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
			ctrl->apsta = 1;
		} else {
			ctrl->apsta = 0;
		}
	} else {
		ctrl->apsta = id->apsta;
	}
1695 1696
	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));

1697
	if (ctrl->ops->flags & NVME_F_FABRICS) {
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1709 1710 1711 1712 1713 1714

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
			dev_err(ctrl->dev,
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1715 1716
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
1717 1718
		ctrl->hmpre = le32_to_cpu(id->hmpre);
		ctrl->hmmin = le32_to_cpu(id->hmmin);
1719
	}
1720

1721
	kfree(id);
1722

1723 1724 1725 1726 1727 1728 1729
	if (ctrl->apsta && !prev_apsta)
		dev_pm_qos_expose_latency_tolerance(ctrl->device);
	else if (!ctrl->apsta && prev_apsta)
		dev_pm_qos_hide_latency_tolerance(ctrl->device);

	nvme_configure_apst(ctrl);

1730
	ctrl->identified = true;
1731

1732
	return ret;
1733
}
1734
EXPORT_SYMBOL_GPL(nvme_init_identify);
1735

1736
static int nvme_dev_open(struct inode *inode, struct file *file)
1737
{
1738 1739 1740
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1741

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1760 1761
}

1762
static int nvme_dev_release(struct inode *inode, struct file *file)
1763
{
1764 1765 1766 1767
	nvme_put_ctrl(file->private_data);
	return 0;
}

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1781
		dev_warn(ctrl->device,
1782 1783 1784 1785 1786
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1787
	dev_warn(ctrl->device,
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1811
		return nvme_dev_user_cmd(ctrl, argp);
1812
	case NVME_IOCTL_RESET:
1813
		dev_warn(ctrl->device, "resetting controller\n");
1814 1815 1816
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1817 1818 1819
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1844
}
1845
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1846

K
Keith Busch 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1858 1859 1860
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1861
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1862 1863 1864 1865
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

1866 1867
	if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
		return sprintf(buf, "eui.%16phN\n", ns->nguid);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1882 1883 1884 1885 1886 1887 1888 1889
static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
	return sprintf(buf, "%pU\n", ns->nguid);
}
static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);

1890 1891 1892
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1893
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

	/* For backward compatibility expose the NGUID to userspace if
	 * we have no UUID set
	 */
	if (uuid_is_null(&ns->uuid)) {
		printk_ratelimited(KERN_WARNING
				   "No UUID available providing old NGUID\n");
		return sprintf(buf, "%pU\n", ns->nguid);
	}
	return sprintf(buf, "%pU\n", &ns->uuid);
1904 1905 1906 1907 1908 1909
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1910
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1911 1912 1913 1914 1915 1916 1917
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1918
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1919 1920 1921 1922 1923
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1924
	&dev_attr_wwid.attr,
1925
	&dev_attr_uuid.attr,
1926
	&dev_attr_nguid.attr,
1927 1928 1929 1930 1931
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1932
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1933 1934 1935
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
1936
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1937 1938

	if (a == &dev_attr_uuid.attr) {
1939 1940 1941 1942 1943
		if (uuid_is_null(&ns->uuid) ||
		    !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
			return 0;
	}
	if (a == &dev_attr_nguid.attr) {
1944
		if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1956
	.is_visible	= nvme_ns_attrs_are_visible,
1957 1958
};

M
Ming Lin 已提交
1959
#define nvme_show_str_function(field)						\
1960 1961 1962 1963 1964 1965 1966 1967
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1981

M
Ming Lin 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
static ssize_t nvme_sysfs_show_state(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	static const char *const state_name[] = {
		[NVME_CTRL_NEW]		= "new",
		[NVME_CTRL_LIVE]	= "live",
		[NVME_CTRL_RESETTING]	= "resetting",
		[NVME_CTRL_RECONNECTING]= "reconnecting",
		[NVME_CTRL_DELETING]	= "deleting",
		[NVME_CTRL_DEAD]	= "dead",
	};

	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
	    state_name[ctrl->state])
		return sprintf(buf, "%s\n", state_name[ctrl->state]);

	return sprintf(buf, "unknown state\n");
}

static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);

M
Ming Lin 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

2048 2049
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
2050
	&dev_attr_rescan_controller.attr,
2051 2052 2053
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
2054
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
2055 2056 2057 2058
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
2059
	&dev_attr_state.attr,
2060 2061 2062
	NULL
};

M
Ming Lin 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

2085
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
2086 2087
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
2088 2089 2090 2091 2092 2093 2094
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

2095 2096 2097 2098 2099 2100 2101 2102
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

2103
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2104
{
2105
	struct nvme_ns *ns, *ret = NULL;
2106

2107
	mutex_lock(&ctrl->namespaces_mutex);
2108
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2109 2110 2111 2112 2113
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
2114 2115 2116
		if (ns->ns_id > nsid)
			break;
	}
2117 2118
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
2119 2120 2121 2122 2123 2124
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
2125 2126
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
2127 2128 2129 2130 2131 2132
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

2133 2134 2135 2136
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

2137 2138
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
2139
		goto out_release_instance;
2140 2141 2142 2143 2144 2145 2146 2147 2148
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2149
	nvme_set_queue_limits(ctrl, ns->queue);
2150

2151
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2152

2153 2154 2155
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

2156 2157 2158 2159 2160
	if (nvme_nvm_ns_supported(ns, id) &&
				nvme_nvm_register(ns, disk_name, node)) {
		dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
		goto out_free_id;
	}
2161

2162 2163 2164
	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_id;
2165

2166 2167 2168 2169 2170 2171 2172 2173
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
	ns->disk = disk;

	__nvme_revalidate_disk(disk, id);
2174

2175 2176 2177 2178
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

2179
	kref_get(&ctrl->kref);
2180 2181 2182

	kfree(id);

2183
	device_add_disk(ctrl->device, ns->disk);
2184 2185 2186 2187
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
2188 2189 2190
	if (ns->ndev && nvme_nvm_register_sysfs(ns))
		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
			ns->disk->disk_name);
2191
	return;
2192 2193
 out_free_id:
	kfree(id);
2194 2195
 out_free_queue:
	blk_cleanup_queue(ns->queue);
2196 2197
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2198 2199 2200 2201 2202 2203
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
2204 2205
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
2206

2207
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2208 2209
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
2210 2211
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
2212 2213
		if (ns->ndev)
			nvme_nvm_unregister_sysfs(ns);
2214 2215 2216
		del_gendisk(ns->disk);
		blk_cleanup_queue(ns->queue);
	}
2217 2218

	mutex_lock(&ns->ctrl->namespaces_mutex);
2219
	list_del_init(&ns->list);
2220 2221
	mutex_unlock(&ns->ctrl->namespaces_mutex);

2222 2223 2224
	nvme_put_ns(ns);
}

2225 2226 2227 2228
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

2229
	ns = nvme_find_get_ns(ctrl, nsid);
2230
	if (ns) {
2231
		if (ns->disk && revalidate_disk(ns->disk))
2232
			nvme_ns_remove(ns);
2233
		nvme_put_ns(ns);
2234 2235 2236 2237
	} else
		nvme_alloc_ns(ctrl, nsid);
}

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
2263
			goto free;
2264 2265 2266 2267 2268 2269 2270 2271 2272

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
2273 2274
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
2275
					nvme_ns_remove(ns);
2276 2277
					nvme_put_ns(ns);
				}
2278 2279 2280 2281 2282
			}
		}
		nn -= j;
	}
 out:
2283 2284
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
2285 2286 2287 2288
	kfree(ns_list);
	return ret;
}

2289
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2290 2291 2292
{
	unsigned i;

2293 2294 2295
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

2296
	nvme_remove_invalid_namespaces(ctrl, nn);
2297 2298
}

2299
static void nvme_scan_work(struct work_struct *work)
2300
{
2301 2302
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
2303
	struct nvme_id_ctrl *id;
2304
	unsigned nn;
2305

2306 2307 2308
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

2309 2310
	if (nvme_identify_ctrl(ctrl, &id))
		return;
2311 2312

	nn = le32_to_cpu(id->nn);
2313
	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2314 2315 2316 2317
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
2318
	nvme_scan_ns_sequential(ctrl, nn);
2319
 done:
2320
	mutex_lock(&ctrl->namespaces_mutex);
2321
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2322
	mutex_unlock(&ctrl->namespaces_mutex);
2323 2324
	kfree(id);
}
2325 2326 2327 2328 2329 2330 2331 2332

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
2333
		queue_work(nvme_wq, &ctrl->scan_work);
2334 2335
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
2336

2337 2338 2339 2340 2341
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
2342 2343 2344 2345
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

2346 2347 2348 2349 2350 2351 2352 2353 2354
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

2355 2356 2357
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
2358
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2359

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

2376 2377
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
		union nvme_result *res)
2378
{
2379 2380
	u32 result = le32_to_cpu(res->u32);
	bool done = true;
2381

2382 2383 2384 2385 2386
	switch (le16_to_cpu(status) >> 1) {
	case NVME_SC_SUCCESS:
		done = false;
		/*FALLTHRU*/
	case NVME_SC_ABORT_REQ:
2387
		++ctrl->event_limit;
2388
		queue_work(nvme_wq, &ctrl->async_event_work);
2389 2390 2391
		break;
	default:
		break;
2392 2393
	}

2394
	if (done)
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
2411
	queue_work(nvme_wq, &ctrl->async_event_work);
2412 2413 2414
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

2444
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2445
{
2446
	flush_work(&ctrl->async_event_work);
2447 2448 2449
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

2450
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2451 2452 2453 2454

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
2455
}
2456
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2457 2458 2459 2460

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2461 2462 2463

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
2464
	ida_destroy(&ctrl->ns_ida);
2465 2466 2467 2468 2469 2470 2471 2472

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
2473
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2485 2486
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2487
	INIT_LIST_HEAD(&ctrl->namespaces);
2488
	mutex_init(&ctrl->namespaces_mutex);
2489 2490 2491 2492
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2493
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2494
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2495 2496 2497 2498 2499

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2500
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2501
				MKDEV(nvme_char_major, ctrl->instance),
2502
				ctrl, nvme_dev_attr_groups,
2503
				"nvme%d", ctrl->instance);
2504 2505 2506 2507 2508
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2509
	ida_init(&ctrl->ns_ida);
2510 2511 2512 2513 2514

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

2515 2516 2517 2518 2519 2520 2521 2522
	/*
	 * Initialize latency tolerance controls.  The sysfs files won't
	 * be visible to userspace unless the device actually supports APST.
	 */
	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
		min(default_ps_max_latency_us, (unsigned long)S32_MAX));

2523 2524 2525 2526 2527 2528
	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2529
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2530

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2542
	mutex_lock(&ctrl->namespaces_mutex);
M
Ming Lei 已提交
2543 2544 2545 2546

	/* Forcibly start all queues to avoid having stuck requests */
	blk_mq_start_hw_queues(ctrl->admin_q);

2547
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2548 2549 2550 2551
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2552 2553 2554
		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			continue;
		revalidate_disk(ns->disk);
2555
		blk_set_queue_dying(ns->queue);
2556 2557 2558 2559 2560 2561 2562

		/*
		 * Forcibly start all queues to avoid having stuck requests.
		 * Note that we must ensure the queues are not stopped
		 * when the final removal happens.
		 */
		blk_mq_start_hw_queues(ns->queue);
2563 2564 2565

		/* draining requests in requeue list */
		blk_mq_kick_requeue_list(ns->queue);
2566
	}
2567
	mutex_unlock(&ctrl->namespaces_mutex);
2568
}
2569
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2570

K
Keith Busch 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_unfreeze_queue(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);

void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
		if (timeout <= 0)
			break;
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);

void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_wait(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);

void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
2613
		blk_freeze_queue_start(ns->queue);
K
Keith Busch 已提交
2614 2615 2616 2617
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);

2618
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2619 2620 2621
{
	struct nvme_ns *ns;

2622
	mutex_lock(&ctrl->namespaces_mutex);
2623
	list_for_each_entry(ns, &ctrl->namespaces, list)
2624
		blk_mq_quiesce_queue(ns->queue);
2625
	mutex_unlock(&ctrl->namespaces_mutex);
2626
}
2627
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2628

2629
void nvme_start_queues(struct nvme_ctrl *ctrl)
2630 2631 2632
{
	struct nvme_ns *ns;

2633 2634
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2635 2636 2637
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
2638
	mutex_unlock(&ctrl->namespaces_mutex);
2639
}
2640
EXPORT_SYMBOL_GPL(nvme_start_queues);
2641

2642 2643 2644 2645
int __init nvme_core_init(void)
{
	int result;

2646 2647 2648 2649 2650
	nvme_wq = alloc_workqueue("nvme-wq",
			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
	if (!nvme_wq)
		return -ENOMEM;

2651 2652 2653
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2654
		goto destroy_wq;
2655 2656 2657 2658 2659 2660 2661 2662 2663
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2664
	return 0;
2665

2666
unregister_chrdev:
2667
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2668 2669
destroy_wq:
	destroy_workqueue(nvme_wq);
2670
	return result;
2671 2672 2673 2674
}

void nvme_core_exit(void)
{
2675 2676
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2677
	destroy_workqueue(nvme_wq);
2678
}
2679 2680 2681 2682 2683

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);