core.c 63.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
29
#include <linux/pm_qos.h>
30 31
#include <scsi/sg.h>
#include <asm/unaligned.h>
32 33

#include "nvme.h"
S
Sagi Grimberg 已提交
34
#include "fabrics.h"
35

36 37
#define NVME_MINORS		(1U << MINORBITS)

38 39 40
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41
EXPORT_SYMBOL_GPL(admin_timeout);
42 43 44 45

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46
EXPORT_SYMBOL_GPL(nvme_io_timeout);
47 48 49 50 51

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

52 53
static u8 nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, byte, 0644);
K
Keith Busch 已提交
54
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55

56 57 58
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

59 60 61 62 63
static unsigned long default_ps_max_latency_us = 25000;
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
		 "max power saving latency for new devices; use PM QOS to change per device");

64 65 66 67
static bool force_apst;
module_param(force_apst, bool, 0644);
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");

68
static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
69
static DEFINE_SPINLOCK(dev_list_lock);
70

71 72
static struct class *nvme_class;

73
static int nvme_error_status(struct request *req)
74 75 76 77 78 79 80 81
{
	switch (nvme_req(req)->status & 0x7ff) {
	case NVME_SC_SUCCESS:
		return 0;
	case NVME_SC_CAP_EXCEEDED:
		return -ENOSPC;
	default:
		return -EIO;
82 83 84 85 86 87 88 89 90 91 92 93 94 95

	/*
	 * XXX: these errors are a nasty side-band protocol to
	 * drivers/md/dm-mpath.c:noretry_error() that aren't documented
	 * anywhere..
	 */
	case NVME_SC_CMD_SEQ_ERROR:
		return -EILSEQ;
	case NVME_SC_ONCS_NOT_SUPPORTED:
		return -EOPNOTSUPP;
	case NVME_SC_WRITE_FAULT:
	case NVME_SC_READ_ERROR:
	case NVME_SC_UNWRITTEN_BLOCK:
		return -ENODATA;
96 97 98
	}
}

99
static inline bool nvme_req_needs_retry(struct request *req)
100
{
101 102
	if (blk_noretry_request(req))
		return false;
103
	if (nvme_req(req)->status & NVME_SC_DNR)
104 105 106
		return false;
	if (jiffies - req->start_time >= req->timeout)
		return false;
107
	if (nvme_req(req)->retries >= nvme_max_retries)
108 109
		return false;
	return true;
110 111 112 113
}

void nvme_complete_rq(struct request *req)
{
114 115 116 117
	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
		nvme_req(req)->retries++;
		blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
		return;
118 119
	}

120
	blk_mq_end_request(req, nvme_error_status(req));
121 122 123
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);

124 125 126 127 128 129 130 131 132 133 134 135 136
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
137
	nvme_req(req)->status = status;
138
	blk_mq_complete_request(req);
139

140 141 142
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

143 144 145
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
146
	enum nvme_ctrl_state old_state;
147 148 149
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
150 151

	old_state = ctrl->state;
152 153 154
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
155
		case NVME_CTRL_NEW:
156
		case NVME_CTRL_RESETTING:
157
		case NVME_CTRL_RECONNECTING:
158 159 160 161 162 163 164 165 166
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
167 168 169 170 171 172 173 174 175 176
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RECONNECTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
177 178 179 180 181 182 183 184 185 186 187
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
188
		case NVME_CTRL_RECONNECTING:
189 190 191 192 193 194
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
195 196 197 198 199 200 201 202 203
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
204 205 206 207 208 209 210
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

211 212
	spin_unlock_irq(&ctrl->lock);

213 214 215 216
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

217 218 219 220
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

221 222
	if (ns->ndev)
		nvme_nvm_unregister(ns);
223

224 225 226 227 228
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
229 230

	put_disk(ns->disk);
231 232
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
233 234 235
	kfree(ns);
}

236
static void nvme_put_ns(struct nvme_ns *ns)
237 238 239 240 241 242 243 244 245 246
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
247 248 249 250 251 252
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
253 254 255
	spin_unlock(&dev_list_lock);

	return ns;
256 257 258 259 260 261

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
262 263
}

264
struct request *nvme_alloc_request(struct request_queue *q,
265
		struct nvme_command *cmd, unsigned int flags, int qid)
266
{
267
	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
268 269
	struct request *req;

270
	if (qid == NVME_QID_ANY) {
271
		req = blk_mq_alloc_request(q, op, flags);
272
	} else {
273
		req = blk_mq_alloc_request_hctx(q, op, flags,
274 275
				qid ? qid - 1 : 0);
	}
276
	if (IS_ERR(req))
277
		return req;
278 279

	req->cmd_flags |= REQ_FAILFAST_DRIVER;
280
	nvme_req(req)->cmd = cmd;
281

282 283
	return req;
}
284
EXPORT_SYMBOL_GPL(nvme_alloc_request);
285

M
Ming Lin 已提交
286 287 288 289 290 291 292 293 294 295 296
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
297
	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
M
Ming Lin 已提交
298
	struct nvme_dsm_range *range;
299
	struct bio *bio;
M
Ming Lin 已提交
300

301
	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
M
Ming Lin 已提交
302 303 304
	if (!range)
		return BLK_MQ_RQ_QUEUE_BUSY;

305 306 307 308 309 310 311 312 313 314 315 316 317 318
	__rq_for_each_bio(bio, req) {
		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;

		range[n].cattr = cpu_to_le32(0);
		range[n].nlb = cpu_to_le32(nlb);
		range[n].slba = cpu_to_le64(slba);
		n++;
	}

	if (WARN_ON_ONCE(n != segments)) {
		kfree(range);
		return BLK_MQ_RQ_QUEUE_ERROR;
	}
M
Ming Lin 已提交
319 320 321 322

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
323
	cmnd->dsm.nr = cpu_to_le32(segments - 1);
M
Ming Lin 已提交
324 325
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

326 327
	req->special_vec.bv_page = virt_to_page(range);
	req->special_vec.bv_offset = offset_in_page(range);
328
	req->special_vec.bv_len = sizeof(*range) * segments;
329
	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
M
Ming Lin 已提交
330

331
	return BLK_MQ_RQ_QUEUE_OK;
M
Ming Lin 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmd)
{
378
	int ret = BLK_MQ_RQ_QUEUE_OK;
M
Ming Lin 已提交
379

380
	if (!(req->rq_flags & RQF_DONTPREP)) {
381
		nvme_req(req)->retries = 0;
382
		nvme_req(req)->flags = 0;
383 384 385
		req->rq_flags |= RQF_DONTPREP;
	}

386 387 388
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
389
		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
390 391
		break;
	case REQ_OP_FLUSH:
M
Ming Lin 已提交
392
		nvme_setup_flush(ns, cmd);
393
		break;
394 395
	case REQ_OP_WRITE_ZEROES:
		/* currently only aliased to deallocate for a few ctrls: */
396
	case REQ_OP_DISCARD:
M
Ming Lin 已提交
397
		ret = nvme_setup_discard(ns, req, cmd);
398 399 400
		break;
	case REQ_OP_READ:
	case REQ_OP_WRITE:
M
Ming Lin 已提交
401
		nvme_setup_rw(ns, req, cmd);
402 403 404 405 406
		break;
	default:
		WARN_ON_ONCE(1);
		return BLK_MQ_RQ_QUEUE_ERROR;
	}
M
Ming Lin 已提交
407

408
	cmd->common.command_id = req->tag;
M
Ming Lin 已提交
409 410 411 412
	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

413 414 415 416 417
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
418
		union nvme_result *result, void *buffer, unsigned bufflen,
419
		unsigned timeout, int qid, int at_head, int flags)
420 421 422 423
{
	struct request *req;
	int ret;

424
	req = nvme_alloc_request(q, cmd, flags, qid);
425 426 427 428 429
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

430 431 432 433
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
434 435
	}

436
	blk_execute_rq(req->q, NULL, req, at_head);
437 438
	if (result)
		*result = nvme_req(req)->result;
439 440 441 442
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
443 444 445 446
 out:
	blk_mq_free_request(req);
	return ret;
}
447
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
448 449 450 451

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
452 453
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
454
}
455
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
456

457 458 459 460
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
461
{
462
	bool write = nvme_is_write(cmd);
463 464
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
465
	struct request *req;
466 467
	struct bio *bio = NULL;
	void *meta = NULL;
468 469
	int ret;

470
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
471 472 473 474 475 476
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
477 478 479 480 481 482
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

483 484 485 486 487 488 489 490
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

491
		if (meta_buffer && meta_len) {
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
509 510
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
527 528 529 530
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
531
	if (result)
532
		*result = le32_to_cpu(nvme_req(req)->result.u32);
533 534 535 536 537 538 539 540 541 542 543 544
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
545 546 547 548 549
 out:
	blk_mq_free_request(req);
	return ret;
}

550 551 552 553 554 555 556 557
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

S
Sagi Grimberg 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static void nvme_keep_alive_end_io(struct request *rq, int error)
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

	if (error) {
		dev_err(ctrl->device,
			"failed nvme_keep_alive_end_io error=%d\n", error);
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
		ctrl->ops->reset_ctrl(ctrl);
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

626
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
627 628 629 630 631 632
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
633
	c.identify.cns = NVME_ID_CNS_CTRL;
634 635 636 637 638 639 640 641 642 643 644 645

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

646 647 648 649 650
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
651
	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
652 653 654 655
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

656
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
657 658 659 660 661 662
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
663 664
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
665
	c.identify.cns = NVME_ID_CNS_NS;
666 667 668 669 670 671 672 673 674 675 676 677

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

678
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
679
		      void *buffer, size_t buflen, u32 *result)
680 681
{
	struct nvme_command c;
682
	union nvme_result res;
683
	int ret;
684 685 686 687 688 689

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.fid = cpu_to_le32(fid);

690
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
691
			NVME_QID_ANY, 0, 0);
692
	if (ret >= 0 && result)
693
		*result = le32_to_cpu(res.u32);
694
	return ret;
695 696
}

697
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
698
		      void *buffer, size_t buflen, u32 *result)
699 700
{
	struct nvme_command c;
701
	union nvme_result res;
702
	int ret;
703 704 705 706 707 708

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

709
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
710
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
711
	if (ret >= 0 && result)
712
		*result = le32_to_cpu(res.u32);
713
	return ret;
714 715
}

716
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
737

C
Christoph Hellwig 已提交
738 739 740 741 742 743
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

744
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
745
			&result);
746
	if (status < 0)
C
Christoph Hellwig 已提交
747 748
		return status;

749 750 751 752 753 754 755 756 757 758 759 760 761
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
762 763
	return 0;
}
764
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
765

766 767 768 769 770 771 772 773 774
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
775 776
	if (io.flags)
		return -EINVAL;
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

816
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
817 818 819 820 821 822 823 824 825 826 827
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
828 829
	if (cmd.flags)
		return -EINVAL;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
848
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
873
#ifdef CONFIG_BLK_DEV_NVME_SCSI
874 875 876 877
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
878
#endif
879
	default:
880 881 882 883
#ifdef CONFIG_NVM
		if (ns->ndev)
			return nvme_nvm_ioctl(ns, cmd, arg);
#endif
884
		if (is_sed_ioctl(cmd))
885
			return sed_ioctl(ns->ctrl->opal_dev, cmd,
886
					 (void __user *) arg);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
912 913 914 915
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
916 917 918 919 920 921 922 923 924 925 926 927
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
	struct nvme_ns *ns = disk->private_data;
	u16 old_ms = ns->ms;
	u8 pi_type = 0;

	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/* PI implementation requires metadata equal t10 pi tuple size */
	if (ns->ms == sizeof(struct t10_pi_tuple))
		pi_type = id->dps & NVME_NS_DPS_PI_MASK;

	if (blk_get_integrity(disk) &&
	    (ns->pi_type != pi_type || ns->ms != old_ms ||
	     bs != queue_logical_block_size(disk->queue) ||
	     (ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
}

951 952 953 954
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

955
	memset(&integrity, 0, sizeof(integrity));
956 957 958
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
959 960
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
961 962 963 964
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
965 966
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
967 968 969 970 971 972 973 974 975 976
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
977 978 979 980
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
}
981 982 983 984 985 986 987
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
988
	struct nvme_ctrl *ctrl = ns->ctrl;
989
	u32 logical_block_size = queue_logical_block_size(ns->queue);
990

991 992 993
	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
			NVME_DSM_MAX_RANGES);

994 995
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
996
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
997
	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
998
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
999 1000 1001

	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1002 1003
}

1004
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1005
{
1006
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1007
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1008 1009 1010
		return -ENODEV;
	}

1011 1012 1013
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
1014 1015
	}

1016
	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1017
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1018
	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1019 1020 1021 1022 1023 1024 1025 1026
		memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
1027
	u16 bs;
1028 1029 1030 1031 1032

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
1033
	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1034 1035 1036 1037 1038 1039
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;

	blk_mq_freeze_queue(disk->queue);

1040 1041
	if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
		nvme_prep_integrity(disk, id, bs);
1042
	blk_queue_logical_block_size(ns->queue, bs);
K
Keith Busch 已提交
1043
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1044 1045 1046 1047 1048 1049 1050 1051 1052
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
1053
}
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
1071
	kfree(id);
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1150
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1168
#ifdef CONFIG_BLK_SED_OPAL
1169 1170
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
		bool send)
1171
{
1172
	struct nvme_ctrl *ctrl = data;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	struct nvme_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (send)
		cmd.common.opcode = nvme_admin_security_send;
	else
		cmd.common.opcode = nvme_admin_security_recv;
	cmd.common.nsid = 0;
	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
	cmd.common.cdw10[1] = cpu_to_le32(len);

	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */

1190
static const struct block_device_operations nvme_fops = {
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1201 1202 1203 1204 1205 1206 1207 1208
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
K
Keith Busch 已提交
1209 1210
		if (csts == ~0)
			return -ENODEV;
1211 1212 1213 1214 1215 1216 1217
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1218
			dev_err(ctrl->device,
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1244

1245
	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1246 1247
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1248 1249
	return nvme_wait_ready(ctrl, cap, false);
}
1250
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1263
		dev_err(ctrl->device,
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1282
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1305
			dev_err(ctrl->device,
1306 1307 1308 1309 1310 1311 1312
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1313
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1314

1315 1316 1317
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1318 1319
	bool vwc = false;

1320
	if (ctrl->max_hw_sectors) {
1321 1322 1323
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1324
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1325
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1326
	}
K
Keith Busch 已提交
1327 1328
	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1329
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1330 1331 1332
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342 1343
static void nvme_configure_apst(struct nvme_ctrl *ctrl)
{
	/*
	 * APST (Autonomous Power State Transition) lets us program a
	 * table of power state transitions that the controller will
	 * perform automatically.  We configure it with a simple
	 * heuristic: we are willing to spend at most 2% of the time
	 * transitioning between power states.  Therefore, when running
	 * in any given state, we will enter the next lower-power
A
Andy Lutomirski 已提交
1344
	 * non-operational state after waiting 50 * (enlat + exlat)
1345
	 * microseconds, as long as that state's exit latency is under
1346 1347 1348 1349 1350 1351 1352 1353 1354
	 * the requested maximum latency.
	 *
	 * We will not autonomously enter any non-operational state for
	 * which the total latency exceeds ps_max_latency_us.  Users
	 * can set ps_max_latency_us to zero to turn off APST.
	 */

	unsigned apste;
	struct nvme_feat_auto_pst *table;
1355 1356
	u64 max_lat_us = 0;
	int max_ps = -1;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	int ret;

	/*
	 * If APST isn't supported or if we haven't been initialized yet,
	 * then don't do anything.
	 */
	if (!ctrl->apsta)
		return;

	if (ctrl->npss > 31) {
		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
		return;
	}

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return;

	if (ctrl->ps_max_latency_us == 0) {
		/* Turn off APST. */
		apste = 0;
1378
		dev_dbg(ctrl->device, "APST disabled\n");
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	} else {
		__le64 target = cpu_to_le64(0);
		int state;

		/*
		 * Walk through all states from lowest- to highest-power.
		 * According to the spec, lower-numbered states use more
		 * power.  NPSS, despite the name, is the index of the
		 * lowest-power state, not the number of states.
		 */
		for (state = (int)ctrl->npss; state >= 0; state--) {
1390
			u64 total_latency_us, exit_latency_us, transition_ms;
1391 1392 1393 1394

			if (target)
				table->entries[state] = target;

1395 1396 1397 1398 1399 1400 1401 1402
			/*
			 * Don't allow transitions to the deepest state
			 * if it's quirked off.
			 */
			if (state == ctrl->npss &&
			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
				continue;

1403 1404 1405 1406 1407 1408 1409 1410
			/*
			 * Is this state a useful non-operational state for
			 * higher-power states to autonomously transition to?
			 */
			if (!(ctrl->psd[state].flags &
			      NVME_PS_FLAGS_NON_OP_STATE))
				continue;

1411 1412 1413
			exit_latency_us =
				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
			if (exit_latency_us > ctrl->ps_max_latency_us)
1414 1415
				continue;

1416 1417 1418 1419
			total_latency_us =
				exit_latency_us +
				le32_to_cpu(ctrl->psd[state].entry_lat);

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
			/*
			 * This state is good.  Use it as the APST idle
			 * target for higher power states.
			 */
			transition_ms = total_latency_us + 19;
			do_div(transition_ms, 20);
			if (transition_ms > (1 << 24) - 1)
				transition_ms = (1 << 24) - 1;

			target = cpu_to_le64((state << 3) |
					     (transition_ms << 8));
1431 1432 1433 1434 1435 1436

			if (max_ps == -1)
				max_ps = state;

			if (total_latency_us > max_lat_us)
				max_lat_us = total_latency_us;
1437 1438 1439
		}

		apste = 1;
1440 1441 1442 1443 1444 1445 1446

		if (max_ps == -1) {
			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
		} else {
			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
				max_ps, max_lat_us, (int)sizeof(*table), table);
		}
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	}

	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
				table, sizeof(*table), NULL);
	if (ret)
		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);

	kfree(table);
}

static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	u64 latency;

	switch (val) {
	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
	case PM_QOS_LATENCY_ANY:
		latency = U64_MAX;
		break;

	default:
		latency = val;
	}

	if (ctrl->ps_max_latency_us != latency) {
		ctrl->ps_max_latency_us = latency;
		nvme_configure_apst(ctrl);
	}
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
struct nvme_core_quirk_entry {
	/*
	 * NVMe model and firmware strings are padded with spaces.  For
	 * simplicity, strings in the quirk table are padded with NULLs
	 * instead.
	 */
	u16 vid;
	const char *mn;
	const char *fr;
	unsigned long quirks;
};

static const struct nvme_core_quirk_entry core_quirks[] = {
1491
	{
1492 1493 1494 1495 1496 1497
		/*
		 * This Toshiba device seems to die using any APST states.  See:
		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
		 */
		.vid = 0x1179,
		.mn = "THNSF5256GPUK TOSHIBA",
1498
		.quirks = NVME_QUIRK_NO_APST,
1499
	}
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
};

/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
	size_t matchlen;

	if (!match)
		return true;

	matchlen = strlen(match);
	WARN_ON_ONCE(matchlen > len);

	if (memcmp(idstr, match, matchlen))
		return false;

	for (; matchlen < len; matchlen++)
		if (idstr[matchlen] != ' ')
			return false;

	return true;
}

static bool quirk_matches(const struct nvme_id_ctrl *id,
			  const struct nvme_core_quirk_entry *q)
{
	return q->vid == le16_to_cpu(id->vid) &&
		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
		string_matches(id->fr, q->fr, sizeof(id->fr));
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1541
	u32 max_hw_sectors;
1542
	u8 prev_apsta;
1543

1544 1545
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1546
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1547 1548 1549
		return ret;
	}

1550 1551
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1552
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1553 1554 1555 1556
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1557
	if (ctrl->vs >= NVME_VS(1, 1, 0))
1558 1559
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1560 1561
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1562
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1563 1564 1565
		return -EIO;
	}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	if (!ctrl->identified) {
		/*
		 * Check for quirks.  Quirk can depend on firmware version,
		 * so, in principle, the set of quirks present can change
		 * across a reset.  As a possible future enhancement, we
		 * could re-scan for quirks every time we reinitialize
		 * the device, but we'd have to make sure that the driver
		 * behaves intelligently if the quirks change.
		 */

		int i;

		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
			if (quirk_matches(id, &core_quirks[i]))
				ctrl->quirks |= core_quirks[i].quirks;
		}
	}

1584 1585 1586 1587 1588
	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
		dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
	}

1589
	ctrl->oacs = le16_to_cpu(id->oacs);
1590
	ctrl->vid = le16_to_cpu(id->vid);
1591
	ctrl->oncs = le16_to_cpup(&id->oncs);
1592
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1593
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1594
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1595 1596 1597 1598
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1599
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1600
	else
1601 1602 1603
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1604

1605
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1606
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1607
	ctrl->kas = le16_to_cpu(id->kas);
1608

1609 1610
	ctrl->npss = id->npss;
	prev_apsta = ctrl->apsta;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
		if (force_apst && id->apsta) {
			dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
			ctrl->apsta = 1;
		} else {
			ctrl->apsta = 0;
		}
	} else {
		ctrl->apsta = id->apsta;
	}
1621 1622
	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));

1623
	if (ctrl->ops->flags & NVME_F_FABRICS) {
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1635 1636 1637 1638 1639 1640

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
			dev_err(ctrl->dev,
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1641 1642 1643
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
	}
1644

1645
	kfree(id);
1646

1647 1648 1649 1650 1651 1652 1653
	if (ctrl->apsta && !prev_apsta)
		dev_pm_qos_expose_latency_tolerance(ctrl->device);
	else if (!ctrl->apsta && prev_apsta)
		dev_pm_qos_hide_latency_tolerance(ctrl->device);

	nvme_configure_apst(ctrl);

1654
	ctrl->identified = true;
1655

1656
	return ret;
1657
}
1658
EXPORT_SYMBOL_GPL(nvme_init_identify);
1659

1660
static int nvme_dev_open(struct inode *inode, struct file *file)
1661
{
1662 1663 1664
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1665

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1684 1685
}

1686
static int nvme_dev_release(struct inode *inode, struct file *file)
1687
{
1688 1689 1690 1691
	nvme_put_ctrl(file->private_data);
	return 0;
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1705
		dev_warn(ctrl->device,
1706 1707 1708 1709 1710
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1711
	dev_warn(ctrl->device,
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1735
		return nvme_dev_user_cmd(ctrl, argp);
1736
	case NVME_IOCTL_RESET:
1737
		dev_warn(ctrl->device, "resetting controller\n");
1738 1739 1740
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1741 1742 1743
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1768
}
1769
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1770

K
Keith Busch 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1782 1783 1784
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1785
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1806 1807 1808
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1809
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1810 1811 1812 1813 1814 1815 1816
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1817
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1818 1819 1820 1821 1822 1823 1824
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1825
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1826 1827 1828 1829 1830
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1831
	&dev_attr_wwid.attr,
1832 1833 1834 1835 1836 1837
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1838
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1839 1840 1841
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
1842
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1857
	.is_visible	= nvme_ns_attrs_are_visible,
1858 1859
};

M
Ming Lin 已提交
1860
#define nvme_show_str_function(field)						\
1861 1862 1863 1864 1865 1866 1867 1868
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1882

M
Ming Lin 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
static ssize_t nvme_sysfs_show_state(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	static const char *const state_name[] = {
		[NVME_CTRL_NEW]		= "new",
		[NVME_CTRL_LIVE]	= "live",
		[NVME_CTRL_RESETTING]	= "resetting",
		[NVME_CTRL_RECONNECTING]= "reconnecting",
		[NVME_CTRL_DELETING]	= "deleting",
		[NVME_CTRL_DEAD]	= "dead",
	};

	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
	    state_name[ctrl->state])
		return sprintf(buf, "%s\n", state_name[ctrl->state]);

	return sprintf(buf, "unknown state\n");
}

static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);

M
Ming Lin 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

1949 1950
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
1951
	&dev_attr_rescan_controller.attr,
1952 1953 1954
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1955
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
1956 1957 1958 1959
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
1960
	&dev_attr_state.attr,
1961 1962 1963
	NULL
};

M
Ming Lin 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

1986
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
1987 1988
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
1989 1990 1991 1992 1993 1994 1995
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1996 1997 1998 1999 2000 2001 2002 2003
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

2004
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2005
{
2006
	struct nvme_ns *ns, *ret = NULL;
2007

2008
	mutex_lock(&ctrl->namespaces_mutex);
2009
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2010 2011 2012 2013 2014
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
2015 2016 2017
		if (ns->ns_id > nsid)
			break;
	}
2018 2019
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
2020 2021 2022 2023 2024 2025
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
2026 2027
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
2028 2029 2030 2031 2032 2033
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

2034 2035 2036 2037
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

2038 2039
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
2040
		goto out_release_instance;
2041 2042 2043 2044 2045 2046 2047 2048 2049
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2050
	nvme_set_queue_limits(ctrl, ns->queue);
2051

2052
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2053

2054 2055 2056
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

2057 2058 2059 2060 2061
	if (nvme_nvm_ns_supported(ns, id) &&
				nvme_nvm_register(ns, disk_name, node)) {
		dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
		goto out_free_id;
	}
2062

2063 2064 2065
	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_id;
2066

2067 2068 2069 2070 2071 2072 2073 2074
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
	ns->disk = disk;

	__nvme_revalidate_disk(disk, id);
2075

2076 2077 2078 2079
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

2080
	kref_get(&ctrl->kref);
2081 2082 2083

	kfree(id);

2084
	device_add_disk(ctrl->device, ns->disk);
2085 2086 2087 2088
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
2089 2090 2091
	if (ns->ndev && nvme_nvm_register_sysfs(ns))
		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
			ns->disk->disk_name);
2092
	return;
2093 2094
 out_free_id:
	kfree(id);
2095 2096
 out_free_queue:
	blk_cleanup_queue(ns->queue);
2097 2098
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2099 2100 2101 2102 2103 2104
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
2105 2106
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
2107

2108
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2109 2110
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
2111 2112
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
2113 2114
		if (ns->ndev)
			nvme_nvm_unregister_sysfs(ns);
2115 2116 2117
		del_gendisk(ns->disk);
		blk_cleanup_queue(ns->queue);
	}
2118 2119

	mutex_lock(&ns->ctrl->namespaces_mutex);
2120
	list_del_init(&ns->list);
2121 2122
	mutex_unlock(&ns->ctrl->namespaces_mutex);

2123 2124 2125
	nvme_put_ns(ns);
}

2126 2127 2128 2129
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

2130
	ns = nvme_find_get_ns(ctrl, nsid);
2131
	if (ns) {
2132
		if (ns->disk && revalidate_disk(ns->disk))
2133
			nvme_ns_remove(ns);
2134
		nvme_put_ns(ns);
2135 2136 2137 2138
	} else
		nvme_alloc_ns(ctrl, nsid);
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
2164
			goto free;
2165 2166 2167 2168 2169 2170 2171 2172 2173

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
2174 2175
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
2176
					nvme_ns_remove(ns);
2177 2178
					nvme_put_ns(ns);
				}
2179 2180 2181 2182 2183
			}
		}
		nn -= j;
	}
 out:
2184 2185
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
2186 2187 2188 2189
	kfree(ns_list);
	return ret;
}

2190
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2191 2192 2193
{
	unsigned i;

2194 2195 2196
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

2197
	nvme_remove_invalid_namespaces(ctrl, nn);
2198 2199
}

2200
static void nvme_scan_work(struct work_struct *work)
2201
{
2202 2203
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
2204
	struct nvme_id_ctrl *id;
2205
	unsigned nn;
2206

2207 2208 2209
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

2210 2211
	if (nvme_identify_ctrl(ctrl, &id))
		return;
2212 2213

	nn = le32_to_cpu(id->nn);
2214
	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2215 2216 2217 2218
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
2219
	nvme_scan_ns_sequential(ctrl, nn);
2220
 done:
2221
	mutex_lock(&ctrl->namespaces_mutex);
2222
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2223
	mutex_unlock(&ctrl->namespaces_mutex);
2224 2225
	kfree(id);
}
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
		schedule_work(&ctrl->scan_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
2237

2238 2239 2240 2241 2242
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
2243 2244 2245 2246
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

2247 2248 2249 2250 2251 2252 2253 2254 2255
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

2256 2257 2258
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
2259
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

2277 2278
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
		union nvme_result *res)
2279
{
2280 2281
	u32 result = le32_to_cpu(res->u32);
	bool done = true;
2282

2283 2284 2285 2286 2287
	switch (le16_to_cpu(status) >> 1) {
	case NVME_SC_SUCCESS:
		done = false;
		/*FALLTHRU*/
	case NVME_SC_ABORT_REQ:
2288 2289
		++ctrl->event_limit;
		schedule_work(&ctrl->async_event_work);
2290 2291 2292
		break;
	default:
		break;
2293 2294
	}

2295
	if (done)
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
	schedule_work(&ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

2345
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2346
{
2347
	flush_work(&ctrl->async_event_work);
2348 2349 2350
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

2351
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2352 2353 2354 2355

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
2356
}
2357
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2358 2359 2360 2361

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2362 2363 2364

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
2365
	ida_destroy(&ctrl->ns_ida);
2366 2367 2368 2369 2370 2371 2372 2373

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
2374
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2386 2387
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2388
	INIT_LIST_HEAD(&ctrl->namespaces);
2389
	mutex_init(&ctrl->namespaces_mutex);
2390 2391 2392 2393
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2394
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2395
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2396 2397 2398 2399 2400

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2401
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2402
				MKDEV(nvme_char_major, ctrl->instance),
2403
				ctrl, nvme_dev_attr_groups,
2404
				"nvme%d", ctrl->instance);
2405 2406 2407 2408 2409
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2410
	ida_init(&ctrl->ns_ida);
2411 2412 2413 2414 2415

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

2416 2417 2418 2419 2420 2421 2422 2423
	/*
	 * Initialize latency tolerance controls.  The sysfs files won't
	 * be visible to userspace unless the device actually supports APST.
	 */
	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
		min(default_ps_max_latency_us, (unsigned long)S32_MAX));

2424 2425 2426 2427 2428 2429
	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2430
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2431

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2443
	mutex_lock(&ctrl->namespaces_mutex);
M
Ming Lei 已提交
2444 2445 2446 2447

	/* Forcibly start all queues to avoid having stuck requests */
	blk_mq_start_hw_queues(ctrl->admin_q);

2448
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2449 2450 2451 2452
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2453 2454 2455
		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			continue;
		revalidate_disk(ns->disk);
2456
		blk_set_queue_dying(ns->queue);
2457 2458 2459 2460 2461 2462 2463

		/*
		 * Forcibly start all queues to avoid having stuck requests.
		 * Note that we must ensure the queues are not stopped
		 * when the final removal happens.
		 */
		blk_mq_start_hw_queues(ns->queue);
2464 2465 2466

		/* draining requests in requeue list */
		blk_mq_kick_requeue_list(ns->queue);
2467
	}
2468
	mutex_unlock(&ctrl->namespaces_mutex);
2469
}
2470
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2471

K
Keith Busch 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_unfreeze_queue(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);

void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
		if (timeout <= 0)
			break;
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);

void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_wait(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);

void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
2514
		blk_freeze_queue_start(ns->queue);
K
Keith Busch 已提交
2515 2516 2517 2518
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);

2519
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2520 2521 2522
{
	struct nvme_ns *ns;

2523
	mutex_lock(&ctrl->namespaces_mutex);
2524
	list_for_each_entry(ns, &ctrl->namespaces, list)
2525
		blk_mq_quiesce_queue(ns->queue);
2526
	mutex_unlock(&ctrl->namespaces_mutex);
2527
}
2528
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2529

2530
void nvme_start_queues(struct nvme_ctrl *ctrl)
2531 2532 2533
{
	struct nvme_ns *ns;

2534 2535
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2536 2537 2538
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
2539
	mutex_unlock(&ctrl->namespaces_mutex);
2540
}
2541
EXPORT_SYMBOL_GPL(nvme_start_queues);
2542

2543 2544 2545 2546
int __init nvme_core_init(void)
{
	int result;

2547 2548 2549
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2550
		return result;
2551 2552 2553 2554 2555 2556 2557 2558 2559
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2560
	return 0;
2561 2562 2563 2564

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
	return result;
2565 2566 2567 2568
}

void nvme_core_exit(void)
{
2569 2570
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2571
}
2572 2573 2574 2575 2576

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);