core.c 61.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
29
#include <linux/pm_qos.h>
30 31
#include <scsi/sg.h>
#include <asm/unaligned.h>
32 33

#include "nvme.h"
S
Sagi Grimberg 已提交
34
#include "fabrics.h"
35

36 37
#define NVME_MINORS		(1U << MINORBITS)

38 39 40
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41
EXPORT_SYMBOL_GPL(admin_timeout);
42 43 44 45

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46
EXPORT_SYMBOL_GPL(nvme_io_timeout);
47 48 49 50 51

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

52 53
static u8 nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, byte, 0644);
K
Keith Busch 已提交
54
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55

56 57 58
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

59 60 61 62 63
static unsigned long default_ps_max_latency_us = 25000;
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
		 "max power saving latency for new devices; use PM QOS to change per device");

64
static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
65
static DEFINE_SPINLOCK(dev_list_lock);
66

67 68
static struct class *nvme_class;

69
static int nvme_error_status(struct request *req)
70 71 72 73 74 75 76 77
{
	switch (nvme_req(req)->status & 0x7ff) {
	case NVME_SC_SUCCESS:
		return 0;
	case NVME_SC_CAP_EXCEEDED:
		return -ENOSPC;
	default:
		return -EIO;
78 79 80 81 82 83 84 85 86 87 88 89 90 91

	/*
	 * XXX: these errors are a nasty side-band protocol to
	 * drivers/md/dm-mpath.c:noretry_error() that aren't documented
	 * anywhere..
	 */
	case NVME_SC_CMD_SEQ_ERROR:
		return -EILSEQ;
	case NVME_SC_ONCS_NOT_SUPPORTED:
		return -EOPNOTSUPP;
	case NVME_SC_WRITE_FAULT:
	case NVME_SC_READ_ERROR:
	case NVME_SC_UNWRITTEN_BLOCK:
		return -ENODATA;
92 93 94
	}
}

95
static inline bool nvme_req_needs_retry(struct request *req)
96
{
97 98
	if (blk_noretry_request(req))
		return false;
99
	if (nvme_req(req)->status & NVME_SC_DNR)
100 101 102
		return false;
	if (jiffies - req->start_time >= req->timeout)
		return false;
103
	if (nvme_req(req)->retries >= nvme_max_retries)
104 105
		return false;
	return true;
106 107 108 109
}

void nvme_complete_rq(struct request *req)
{
110 111 112 113
	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
		nvme_req(req)->retries++;
		blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
		return;
114 115
	}

116
	blk_mq_end_request(req, nvme_error_status(req));
117 118 119
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);

120 121 122 123 124 125 126 127 128 129 130 131 132
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
133
	nvme_req(req)->status = status;
134
	blk_mq_complete_request(req);
135

136 137 138
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

139 140 141
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
142
	enum nvme_ctrl_state old_state;
143 144 145
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
146 147

	old_state = ctrl->state;
148 149 150
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
151
		case NVME_CTRL_NEW:
152
		case NVME_CTRL_RESETTING:
153
		case NVME_CTRL_RECONNECTING:
154 155 156 157 158 159 160 161 162
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
163 164 165 166 167 168 169 170 171 172
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RECONNECTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
173 174 175 176 177 178 179 180 181 182 183
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
184
		case NVME_CTRL_RECONNECTING:
185 186 187 188 189 190
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
191 192 193 194 195 196 197 198 199
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
200 201 202 203 204 205 206
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

207 208
	spin_unlock_irq(&ctrl->lock);

209 210 211 212
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

213 214 215 216
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

217 218
	if (ns->ndev)
		nvme_nvm_unregister(ns);
219

220 221 222 223 224
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
225 226

	put_disk(ns->disk);
227 228
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
229 230 231
	kfree(ns);
}

232
static void nvme_put_ns(struct nvme_ns *ns)
233 234 235 236 237 238 239 240 241 242
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
243 244 245 246 247 248
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
249 250 251
	spin_unlock(&dev_list_lock);

	return ns;
252 253 254 255 256 257

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
258 259
}

260
struct request *nvme_alloc_request(struct request_queue *q,
261
		struct nvme_command *cmd, unsigned int flags, int qid)
262
{
263
	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
264 265
	struct request *req;

266
	if (qid == NVME_QID_ANY) {
267
		req = blk_mq_alloc_request(q, op, flags);
268
	} else {
269
		req = blk_mq_alloc_request_hctx(q, op, flags,
270 271
				qid ? qid - 1 : 0);
	}
272
	if (IS_ERR(req))
273
		return req;
274 275

	req->cmd_flags |= REQ_FAILFAST_DRIVER;
276
	nvme_req(req)->cmd = cmd;
277

278 279
	return req;
}
280
EXPORT_SYMBOL_GPL(nvme_alloc_request);
281

M
Ming Lin 已提交
282 283 284 285 286 287 288 289 290 291 292
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
293
	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
M
Ming Lin 已提交
294
	struct nvme_dsm_range *range;
295
	struct bio *bio;
M
Ming Lin 已提交
296

297
	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
M
Ming Lin 已提交
298 299 300
	if (!range)
		return BLK_MQ_RQ_QUEUE_BUSY;

301 302 303 304 305 306 307 308 309 310 311 312 313 314
	__rq_for_each_bio(bio, req) {
		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;

		range[n].cattr = cpu_to_le32(0);
		range[n].nlb = cpu_to_le32(nlb);
		range[n].slba = cpu_to_le64(slba);
		n++;
	}

	if (WARN_ON_ONCE(n != segments)) {
		kfree(range);
		return BLK_MQ_RQ_QUEUE_ERROR;
	}
M
Ming Lin 已提交
315 316 317 318

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
319
	cmnd->dsm.nr = cpu_to_le32(segments - 1);
M
Ming Lin 已提交
320 321
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

322 323
	req->special_vec.bv_page = virt_to_page(range);
	req->special_vec.bv_offset = offset_in_page(range);
324
	req->special_vec.bv_len = sizeof(*range) * segments;
325
	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
M
Ming Lin 已提交
326

327
	return BLK_MQ_RQ_QUEUE_OK;
M
Ming Lin 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmd)
{
374
	int ret = BLK_MQ_RQ_QUEUE_OK;
M
Ming Lin 已提交
375

376
	if (!(req->rq_flags & RQF_DONTPREP)) {
377
		nvme_req(req)->retries = 0;
378
		nvme_req(req)->flags = 0;
379 380 381
		req->rq_flags |= RQF_DONTPREP;
	}

382 383 384
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
385
		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
386 387
		break;
	case REQ_OP_FLUSH:
M
Ming Lin 已提交
388
		nvme_setup_flush(ns, cmd);
389
		break;
390 391
	case REQ_OP_WRITE_ZEROES:
		/* currently only aliased to deallocate for a few ctrls: */
392
	case REQ_OP_DISCARD:
M
Ming Lin 已提交
393
		ret = nvme_setup_discard(ns, req, cmd);
394 395 396
		break;
	case REQ_OP_READ:
	case REQ_OP_WRITE:
M
Ming Lin 已提交
397
		nvme_setup_rw(ns, req, cmd);
398 399 400 401 402
		break;
	default:
		WARN_ON_ONCE(1);
		return BLK_MQ_RQ_QUEUE_ERROR;
	}
M
Ming Lin 已提交
403

404
	cmd->common.command_id = req->tag;
M
Ming Lin 已提交
405 406 407 408
	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

409 410 411 412 413
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
414
		union nvme_result *result, void *buffer, unsigned bufflen,
415
		unsigned timeout, int qid, int at_head, int flags)
416 417 418 419
{
	struct request *req;
	int ret;

420
	req = nvme_alloc_request(q, cmd, flags, qid);
421 422 423 424 425
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

426 427 428 429
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
430 431
	}

432
	blk_execute_rq(req->q, NULL, req, at_head);
433 434
	if (result)
		*result = nvme_req(req)->result;
435 436 437 438
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
439 440 441 442
 out:
	blk_mq_free_request(req);
	return ret;
}
443
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
444 445 446 447

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
448 449
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
450
}
451
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
452

453 454 455 456
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
457
{
458
	bool write = nvme_is_write(cmd);
459 460
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
461
	struct request *req;
462 463
	struct bio *bio = NULL;
	void *meta = NULL;
464 465
	int ret;

466
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
467 468 469 470 471 472
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
473 474 475 476 477 478
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

479 480 481 482 483 484 485 486
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

487
		if (meta_buffer && meta_len) {
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
505 506
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
523 524 525 526
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
527
	if (result)
528
		*result = le32_to_cpu(nvme_req(req)->result.u32);
529 530 531 532 533 534 535 536 537 538 539 540
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
541 542 543 544 545
 out:
	blk_mq_free_request(req);
	return ret;
}

546 547 548 549 550 551 552 553
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

S
Sagi Grimberg 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
static void nvme_keep_alive_end_io(struct request *rq, int error)
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

	if (error) {
		dev_err(ctrl->device,
			"failed nvme_keep_alive_end_io error=%d\n", error);
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
		ctrl->ops->reset_ctrl(ctrl);
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

622
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
623 624 625 626 627 628
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
629
	c.identify.cns = NVME_ID_CNS_CTRL;
630 631 632 633 634 635 636 637 638 639 640 641

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

642 643 644 645 646
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
647
	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
648 649 650 651
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

652
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
653 654 655 656 657 658
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
659 660
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
661
	c.identify.cns = NVME_ID_CNS_NS;
662 663 664 665 666 667 668 669 670 671 672 673

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

674
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
675
		      void *buffer, size_t buflen, u32 *result)
676 677
{
	struct nvme_command c;
678
	union nvme_result res;
679
	int ret;
680 681 682 683 684 685

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.fid = cpu_to_le32(fid);

686
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
687
			NVME_QID_ANY, 0, 0);
688
	if (ret >= 0 && result)
689
		*result = le32_to_cpu(res.u32);
690
	return ret;
691 692
}

693
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
694
		      void *buffer, size_t buflen, u32 *result)
695 696
{
	struct nvme_command c;
697
	union nvme_result res;
698
	int ret;
699 700 701 702 703 704

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

705
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
706
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
707
	if (ret >= 0 && result)
708
		*result = le32_to_cpu(res.u32);
709
	return ret;
710 711
}

712
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
733

C
Christoph Hellwig 已提交
734 735 736 737 738 739
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

740
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
741
			&result);
742
	if (status < 0)
C
Christoph Hellwig 已提交
743 744
		return status;

745 746 747 748 749 750 751 752 753 754 755 756 757
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
758 759
	return 0;
}
760
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
761

762 763 764 765 766 767 768 769 770
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
771 772
	if (io.flags)
		return -EINVAL;
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

812
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
813 814 815 816 817 818 819 820 821 822 823
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
824 825
	if (cmd.flags)
		return -EINVAL;
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
844
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
869
#ifdef CONFIG_BLK_DEV_NVME_SCSI
870 871 872 873
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
874
#endif
875
	default:
876 877 878 879
#ifdef CONFIG_NVM
		if (ns->ndev)
			return nvme_nvm_ioctl(ns, cmd, arg);
#endif
880
		if (is_sed_ioctl(cmd))
881
			return sed_ioctl(ns->ctrl->opal_dev, cmd,
882
					 (void __user *) arg);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
908 909 910 911
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

928
	memset(&integrity, 0, sizeof(integrity));
929 930 931
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
932 933
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
934 935 936 937
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
938 939
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
957
	struct nvme_ctrl *ctrl = ns->ctrl;
958
	u32 logical_block_size = queue_logical_block_size(ns->queue);
959

960 961 962
	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
			NVME_DSM_MAX_RANGES);

963 964
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
965
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
966
	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
967
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
968 969 970

	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
971 972
}

973
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
974
{
975
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
976
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
977 978 979
		return -ENODEV;
	}

980 981 982
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
983 984
	}

985
	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
986
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
987
	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
988 989 990 991 992 993 994 995 996 997 998
		memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
	u8 lbaf, pi_type;
	u16 old_ms;
	unsigned short bs;
999

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	blk_mq_freeze_queue(disk->queue);
	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
				ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

K
Keith Busch 已提交
1027
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1028 1029 1030 1031 1032 1033 1034 1035 1036
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
1037
}
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
1055
	kfree(id);
1056

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1134
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1152
#ifdef CONFIG_BLK_SED_OPAL
1153 1154
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
		bool send)
1155
{
1156
	struct nvme_ctrl *ctrl = data;
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	struct nvme_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (send)
		cmd.common.opcode = nvme_admin_security_send;
	else
		cmd.common.opcode = nvme_admin_security_recv;
	cmd.common.nsid = 0;
	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
	cmd.common.cdw10[1] = cpu_to_le32(len);

	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */

1174
static const struct block_device_operations nvme_fops = {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1185 1186 1187 1188 1189 1190 1191 1192
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
K
Keith Busch 已提交
1193 1194
		if (csts == ~0)
			return -ENODEV;
1195 1196 1197 1198 1199 1200 1201
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1202
			dev_err(ctrl->device,
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1228

1229
	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1230 1231
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1232 1233
	return nvme_wait_ready(ctrl, cap, false);
}
1234
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1247
		dev_err(ctrl->device,
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1266
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1289
			dev_err(ctrl->device,
1290 1291 1292 1293 1294 1295 1296
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1297
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1298

1299 1300 1301
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1302 1303
	bool vwc = false;

1304
	if (ctrl->max_hw_sectors) {
1305 1306 1307
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1308
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1309
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1310
	}
K
Keith Busch 已提交
1311 1312
	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1313
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1314 1315 1316
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1317 1318
}

1319 1320 1321 1322 1323 1324 1325 1326 1327
static void nvme_configure_apst(struct nvme_ctrl *ctrl)
{
	/*
	 * APST (Autonomous Power State Transition) lets us program a
	 * table of power state transitions that the controller will
	 * perform automatically.  We configure it with a simple
	 * heuristic: we are willing to spend at most 2% of the time
	 * transitioning between power states.  Therefore, when running
	 * in any given state, we will enter the next lower-power
A
Andy Lutomirski 已提交
1328
	 * non-operational state after waiting 50 * (enlat + exlat)
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	 * microseconds, as long as that state's total latency is under
	 * the requested maximum latency.
	 *
	 * We will not autonomously enter any non-operational state for
	 * which the total latency exceeds ps_max_latency_us.  Users
	 * can set ps_max_latency_us to zero to turn off APST.
	 */

	unsigned apste;
	struct nvme_feat_auto_pst *table;
	int ret;

	/*
	 * If APST isn't supported or if we haven't been initialized yet,
	 * then don't do anything.
	 */
	if (!ctrl->apsta)
		return;

	if (ctrl->npss > 31) {
		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
		return;
	}

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return;

	if (ctrl->ps_max_latency_us == 0) {
		/* Turn off APST. */
		apste = 0;
	} else {
		__le64 target = cpu_to_le64(0);
		int state;

		/*
		 * Walk through all states from lowest- to highest-power.
		 * According to the spec, lower-numbered states use more
		 * power.  NPSS, despite the name, is the index of the
		 * lowest-power state, not the number of states.
		 */
		for (state = (int)ctrl->npss; state >= 0; state--) {
			u64 total_latency_us, transition_ms;

			if (target)
				table->entries[state] = target;

1376 1377 1378 1379 1380 1381 1382 1383
			/*
			 * Don't allow transitions to the deepest state
			 * if it's quirked off.
			 */
			if (state == ctrl->npss &&
			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
				continue;

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
			/*
			 * Is this state a useful non-operational state for
			 * higher-power states to autonomously transition to?
			 */
			if (!(ctrl->psd[state].flags &
			      NVME_PS_FLAGS_NON_OP_STATE))
				continue;

			total_latency_us =
				(u64)le32_to_cpu(ctrl->psd[state].entry_lat) +
				+ le32_to_cpu(ctrl->psd[state].exit_lat);
			if (total_latency_us > ctrl->ps_max_latency_us)
				continue;

			/*
			 * This state is good.  Use it as the APST idle
			 * target for higher power states.
			 */
			transition_ms = total_latency_us + 19;
			do_div(transition_ms, 20);
			if (transition_ms > (1 << 24) - 1)
				transition_ms = (1 << 24) - 1;

			target = cpu_to_le64((state << 3) |
					     (transition_ms << 8));
		}

		apste = 1;
	}

	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
				table, sizeof(*table), NULL);
	if (ret)
		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);

	kfree(table);
}

static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	u64 latency;

	switch (val) {
	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
	case PM_QOS_LATENCY_ANY:
		latency = U64_MAX;
		break;

	default:
		latency = val;
	}

	if (ctrl->ps_max_latency_us != latency) {
		ctrl->ps_max_latency_us = latency;
		nvme_configure_apst(ctrl);
	}
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
struct nvme_core_quirk_entry {
	/*
	 * NVMe model and firmware strings are padded with spaces.  For
	 * simplicity, strings in the quirk table are padded with NULLs
	 * instead.
	 */
	u16 vid;
	const char *mn;
	const char *fr;
	unsigned long quirks;
};

static const struct nvme_core_quirk_entry core_quirks[] = {
1456
	{
1457 1458 1459 1460 1461 1462
		/*
		 * This Toshiba device seems to die using any APST states.  See:
		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
		 */
		.vid = 0x1179,
		.mn = "THNSF5256GPUK TOSHIBA",
1463
		.quirks = NVME_QUIRK_NO_APST,
1464
	}
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
};

/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
	size_t matchlen;

	if (!match)
		return true;

	matchlen = strlen(match);
	WARN_ON_ONCE(matchlen > len);

	if (memcmp(idstr, match, matchlen))
		return false;

	for (; matchlen < len; matchlen++)
		if (idstr[matchlen] != ' ')
			return false;

	return true;
}

static bool quirk_matches(const struct nvme_id_ctrl *id,
			  const struct nvme_core_quirk_entry *q)
{
	return q->vid == le16_to_cpu(id->vid) &&
		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
		string_matches(id->fr, q->fr, sizeof(id->fr));
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1506
	u32 max_hw_sectors;
1507
	u8 prev_apsta;
1508

1509 1510
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1511
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1512 1513 1514
		return ret;
	}

1515 1516
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1517
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1518 1519 1520 1521
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1522
	if (ctrl->vs >= NVME_VS(1, 1, 0))
1523 1524
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1525 1526
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1527
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1528 1529 1530
		return -EIO;
	}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	if (!ctrl->identified) {
		/*
		 * Check for quirks.  Quirk can depend on firmware version,
		 * so, in principle, the set of quirks present can change
		 * across a reset.  As a possible future enhancement, we
		 * could re-scan for quirks every time we reinitialize
		 * the device, but we'd have to make sure that the driver
		 * behaves intelligently if the quirks change.
		 */

		int i;

		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
			if (quirk_matches(id, &core_quirks[i]))
				ctrl->quirks |= core_quirks[i].quirks;
		}
	}

1549
	ctrl->oacs = le16_to_cpu(id->oacs);
1550
	ctrl->vid = le16_to_cpu(id->vid);
1551
	ctrl->oncs = le16_to_cpup(&id->oncs);
1552
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1553
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1554
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1555 1556 1557 1558
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1559
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1560
	else
1561 1562 1563
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1564

1565
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1566
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1567
	ctrl->kas = le16_to_cpu(id->kas);
1568

1569 1570 1571 1572 1573
	ctrl->npss = id->npss;
	prev_apsta = ctrl->apsta;
	ctrl->apsta = (ctrl->quirks & NVME_QUIRK_NO_APST) ? 0 : id->apsta;
	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	if (ctrl->ops->is_fabrics) {
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1586 1587 1588 1589 1590 1591

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
			dev_err(ctrl->dev,
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1592 1593 1594
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
	}
1595

1596
	kfree(id);
1597

1598 1599 1600 1601 1602 1603 1604
	if (ctrl->apsta && !prev_apsta)
		dev_pm_qos_expose_latency_tolerance(ctrl->device);
	else if (!ctrl->apsta && prev_apsta)
		dev_pm_qos_hide_latency_tolerance(ctrl->device);

	nvme_configure_apst(ctrl);

1605
	ctrl->identified = true;
1606

1607
	return ret;
1608
}
1609
EXPORT_SYMBOL_GPL(nvme_init_identify);
1610

1611
static int nvme_dev_open(struct inode *inode, struct file *file)
1612
{
1613 1614 1615
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1635 1636
}

1637
static int nvme_dev_release(struct inode *inode, struct file *file)
1638
{
1639 1640 1641 1642
	nvme_put_ctrl(file->private_data);
	return 0;
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1656
		dev_warn(ctrl->device,
1657 1658 1659 1660 1661
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1662
	dev_warn(ctrl->device,
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1686
		return nvme_dev_user_cmd(ctrl, argp);
1687
	case NVME_IOCTL_RESET:
1688
		dev_warn(ctrl->device, "resetting controller\n");
1689 1690 1691
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1692 1693 1694
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1719
}
1720
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1721

K
Keith Busch 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1733 1734 1735
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1736
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1757 1758 1759
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1760
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1761 1762 1763 1764 1765 1766 1767
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1768
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1769 1770 1771 1772 1773 1774 1775
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1776
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1777 1778 1779 1780 1781
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1782
	&dev_attr_wwid.attr,
1783 1784 1785 1786 1787 1788
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1789
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1790 1791 1792
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
1793
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1808
	.is_visible	= nvme_ns_attrs_are_visible,
1809 1810
};

M
Ming Lin 已提交
1811
#define nvme_show_str_function(field)						\
1812 1813 1814 1815 1816 1817 1818 1819
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1833

M
Ming Lin 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
static ssize_t nvme_sysfs_show_state(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	static const char *const state_name[] = {
		[NVME_CTRL_NEW]		= "new",
		[NVME_CTRL_LIVE]	= "live",
		[NVME_CTRL_RESETTING]	= "resetting",
		[NVME_CTRL_RECONNECTING]= "reconnecting",
		[NVME_CTRL_DELETING]	= "deleting",
		[NVME_CTRL_DEAD]	= "dead",
	};

	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
	    state_name[ctrl->state])
		return sprintf(buf, "%s\n", state_name[ctrl->state]);

	return sprintf(buf, "unknown state\n");
}

static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);

M
Ming Lin 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

1900 1901
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
1902
	&dev_attr_rescan_controller.attr,
1903 1904 1905
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1906
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
1907 1908 1909 1910
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
1911
	&dev_attr_state.attr,
1912 1913 1914
	NULL
};

M
Ming Lin 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

1937
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
1938 1939
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
1940 1941 1942 1943 1944 1945 1946
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1947 1948 1949 1950 1951 1952 1953 1954
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

1955
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1956
{
1957
	struct nvme_ns *ns, *ret = NULL;
1958

1959
	mutex_lock(&ctrl->namespaces_mutex);
1960
	list_for_each_entry(ns, &ctrl->namespaces, list) {
1961 1962 1963 1964 1965
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
1966 1967 1968
		if (ns->ns_id > nsid)
			break;
	}
1969 1970
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
1971 1972 1973 1974 1975 1976
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
1977 1978
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
1979 1980 1981 1982 1983 1984
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

1985 1986 1987 1988
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

1989 1990
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
1991
		goto out_release_instance;
1992 1993 1994 1995 1996 1997 1998 1999 2000
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2001
	nvme_set_queue_limits(ctrl, ns->queue);
2002

2003
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2004

2005 2006 2007
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

2008 2009 2010 2011 2012
	if (nvme_nvm_ns_supported(ns, id) &&
				nvme_nvm_register(ns, disk_name, node)) {
		dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
		goto out_free_id;
	}
2013

2014 2015 2016
	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_id;
2017

2018 2019 2020 2021 2022 2023 2024 2025
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
	ns->disk = disk;

	__nvme_revalidate_disk(disk, id);
2026

2027 2028 2029 2030
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

2031
	kref_get(&ctrl->kref);
2032 2033 2034

	kfree(id);

2035
	device_add_disk(ctrl->device, ns->disk);
2036 2037 2038 2039
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
2040 2041 2042
	if (ns->ndev && nvme_nvm_register_sysfs(ns))
		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
			ns->disk->disk_name);
2043
	return;
2044 2045
 out_free_id:
	kfree(id);
2046 2047
 out_free_queue:
	blk_cleanup_queue(ns->queue);
2048 2049
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2050 2051 2052 2053 2054 2055
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
2056 2057
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
2058

2059
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2060 2061
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
2062 2063
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
2064 2065
		if (ns->ndev)
			nvme_nvm_unregister_sysfs(ns);
2066 2067 2068 2069
		del_gendisk(ns->disk);
		blk_mq_abort_requeue_list(ns->queue);
		blk_cleanup_queue(ns->queue);
	}
2070 2071

	mutex_lock(&ns->ctrl->namespaces_mutex);
2072
	list_del_init(&ns->list);
2073 2074
	mutex_unlock(&ns->ctrl->namespaces_mutex);

2075 2076 2077
	nvme_put_ns(ns);
}

2078 2079 2080 2081
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

2082
	ns = nvme_find_get_ns(ctrl, nsid);
2083
	if (ns) {
2084
		if (ns->disk && revalidate_disk(ns->disk))
2085
			nvme_ns_remove(ns);
2086
		nvme_put_ns(ns);
2087 2088 2089 2090
	} else
		nvme_alloc_ns(ctrl, nsid);
}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
2116
			goto free;
2117 2118 2119 2120 2121 2122 2123 2124 2125

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
2126 2127
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
2128
					nvme_ns_remove(ns);
2129 2130
					nvme_put_ns(ns);
				}
2131 2132 2133 2134 2135
			}
		}
		nn -= j;
	}
 out:
2136 2137
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
2138 2139 2140 2141
	kfree(ns_list);
	return ret;
}

2142
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2143 2144 2145
{
	unsigned i;

2146 2147 2148
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

2149
	nvme_remove_invalid_namespaces(ctrl, nn);
2150 2151
}

2152
static void nvme_scan_work(struct work_struct *work)
2153
{
2154 2155
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
2156
	struct nvme_id_ctrl *id;
2157
	unsigned nn;
2158

2159 2160 2161
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

2162 2163
	if (nvme_identify_ctrl(ctrl, &id))
		return;
2164 2165

	nn = le32_to_cpu(id->nn);
2166
	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2167 2168 2169 2170
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
2171
	nvme_scan_ns_sequential(ctrl, nn);
2172
 done:
2173
	mutex_lock(&ctrl->namespaces_mutex);
2174
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2175
	mutex_unlock(&ctrl->namespaces_mutex);
2176 2177
	kfree(id);
}
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
		schedule_work(&ctrl->scan_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
2189

2190 2191 2192 2193 2194
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
2195 2196 2197 2198
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

2199 2200 2201 2202 2203 2204 2205 2206 2207
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

2208 2209 2210
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
2211
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2212

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

2229 2230
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
		union nvme_result *res)
2231
{
2232 2233
	u32 result = le32_to_cpu(res->u32);
	bool done = true;
2234

2235 2236 2237 2238 2239
	switch (le16_to_cpu(status) >> 1) {
	case NVME_SC_SUCCESS:
		done = false;
		/*FALLTHRU*/
	case NVME_SC_ABORT_REQ:
2240 2241
		++ctrl->event_limit;
		schedule_work(&ctrl->async_event_work);
2242 2243 2244
		break;
	default:
		break;
2245 2246
	}

2247
	if (done)
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
	schedule_work(&ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

2297
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2298
{
2299
	flush_work(&ctrl->async_event_work);
2300 2301 2302
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

2303
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2304 2305 2306 2307

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
2308
}
2309
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2310 2311 2312 2313

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2314 2315 2316

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
2317
	ida_destroy(&ctrl->ns_ida);
2318 2319 2320 2321 2322 2323 2324 2325

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
2326
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2338 2339
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2340
	INIT_LIST_HEAD(&ctrl->namespaces);
2341
	mutex_init(&ctrl->namespaces_mutex);
2342 2343 2344 2345
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2346
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2347
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2348 2349 2350 2351 2352

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2353
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2354
				MKDEV(nvme_char_major, ctrl->instance),
2355
				ctrl, nvme_dev_attr_groups,
2356
				"nvme%d", ctrl->instance);
2357 2358 2359 2360 2361
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2362
	ida_init(&ctrl->ns_ida);
2363 2364 2365 2366 2367

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

2368 2369 2370 2371 2372 2373 2374 2375
	/*
	 * Initialize latency tolerance controls.  The sysfs files won't
	 * be visible to userspace unless the device actually supports APST.
	 */
	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
		min(default_ps_max_latency_us, (unsigned long)S32_MAX));

2376 2377 2378 2379 2380 2381
	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2382
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2383

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2395 2396
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2397 2398 2399 2400
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2401 2402 2403
		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			continue;
		revalidate_disk(ns->disk);
2404 2405 2406 2407
		blk_set_queue_dying(ns->queue);
		blk_mq_abort_requeue_list(ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
	}
2408
	mutex_unlock(&ctrl->namespaces_mutex);
2409
}
2410
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2411

K
Keith Busch 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_unfreeze_queue(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);

void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
		if (timeout <= 0)
			break;
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);

void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_wait(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);

void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
2454
		blk_freeze_queue_start(ns->queue);
K
Keith Busch 已提交
2455 2456 2457 2458
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);

2459
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2460 2461 2462
{
	struct nvme_ns *ns;

2463
	mutex_lock(&ctrl->namespaces_mutex);
2464
	list_for_each_entry(ns, &ctrl->namespaces, list)
2465
		blk_mq_quiesce_queue(ns->queue);
2466
	mutex_unlock(&ctrl->namespaces_mutex);
2467
}
2468
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2469

2470
void nvme_start_queues(struct nvme_ctrl *ctrl)
2471 2472 2473
{
	struct nvme_ns *ns;

2474 2475
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2476 2477 2478
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
2479
	mutex_unlock(&ctrl->namespaces_mutex);
2480
}
2481
EXPORT_SYMBOL_GPL(nvme_start_queues);
2482

2483 2484 2485 2486
int __init nvme_core_init(void)
{
	int result;

2487 2488 2489
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2490
		return result;
2491 2492 2493 2494 2495 2496 2497 2498 2499
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2500
	return 0;
2501 2502 2503 2504

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
	return result;
2505 2506 2507 2508
}

void nvme_core_exit(void)
{
2509 2510
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2511
}
2512 2513 2514 2515 2516

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);