core.c 52.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28 29 30
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
#include <scsi/sg.h>
#include <asm/unaligned.h>
31 32

#include "nvme.h"
S
Sagi Grimberg 已提交
33
#include "fabrics.h"
34

35 36
#define NVME_MINORS		(1U << MINORBITS)

37 38 39
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40
EXPORT_SYMBOL_GPL(admin_timeout);
41 42 43 44

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45
EXPORT_SYMBOL_GPL(nvme_io_timeout);
46 47 48 49 50

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

K
Keith Busch 已提交
51 52 53 54
unsigned int nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, uint, 0644);
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
EXPORT_SYMBOL_GPL(nvme_max_retries);
55

56 57 58 59
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
60
static DEFINE_SPINLOCK(dev_list_lock);
61

62 63
static struct class *nvme_class;

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
	blk_mq_complete_request(req, status);
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

81 82 83
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
84
	enum nvme_ctrl_state old_state;
85 86 87
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
88 89

	old_state = ctrl->state;
90 91 92
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
93
		case NVME_CTRL_NEW:
94
		case NVME_CTRL_RESETTING:
95
		case NVME_CTRL_RECONNECTING:
96 97 98 99 100 101 102 103 104
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
105 106 107 108 109 110 111 112 113 114
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RECONNECTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
115 116 117 118 119 120 121 122 123 124 125
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
126
		case NVME_CTRL_RECONNECTING:
127 128 129 130 131 132
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
133 134 135 136 137 138 139 140 141
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
142 143 144 145 146 147 148
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

149 150
	spin_unlock_irq(&ctrl->lock);

151 152 153 154
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

155 156 157 158
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

159 160
	if (ns->ndev)
		nvme_nvm_unregister(ns);
161

162 163 164 165 166
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
167 168

	put_disk(ns->disk);
169 170
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
171 172 173
	kfree(ns);
}

174
static void nvme_put_ns(struct nvme_ns *ns)
175 176 177 178 179 180 181 182 183 184
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
185 186 187 188 189 190
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
191 192 193
	spin_unlock(&dev_list_lock);

	return ns;
194 195 196 197 198 199

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
200 201
}

202 203
void nvme_requeue_req(struct request *req)
{
204
	blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
205
}
206
EXPORT_SYMBOL_GPL(nvme_requeue_req);
207

208
struct request *nvme_alloc_request(struct request_queue *q,
209
		struct nvme_command *cmd, unsigned int flags, int qid)
210 211 212
{
	struct request *req;

213 214 215 216 217 218
	if (qid == NVME_QID_ANY) {
		req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
	} else {
		req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
				qid ? qid - 1 : 0);
	}
219
	if (IS_ERR(req))
220
		return req;
221 222 223 224 225 226

	req->cmd_type = REQ_TYPE_DRV_PRIV;
	req->cmd_flags |= REQ_FAILFAST_DRIVER;
	req->cmd = (unsigned char *)cmd;
	req->cmd_len = sizeof(struct nvme_command);

227 228
	return req;
}
229
EXPORT_SYMBOL_GPL(nvme_alloc_request);
230

M
Ming Lin 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	struct nvme_dsm_range *range;
	struct page *page;
	int offset;
	unsigned int nr_bytes = blk_rq_bytes(req);

	range = kmalloc(sizeof(*range), GFP_ATOMIC);
	if (!range)
		return BLK_MQ_RQ_QUEUE_BUSY;

	range->cattr = cpu_to_le32(0);
	range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
	cmnd->dsm.nr = 0;
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

	req->completion_data = range;
	page = virt_to_page(range);
	offset = offset_in_page(range);
	blk_add_request_payload(req, page, offset, sizeof(*range));

	/*
	 * we set __data_len back to the size of the area to be discarded
	 * on disk. This allows us to report completion on the full amount
	 * of blocks described by the request.
	 */
	req->__data_len = nr_bytes;

	return 0;
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.command_id = req->tag;
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmd)
{
	int ret = 0;

	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
		memcpy(cmd, req->cmd, sizeof(*cmd));
325
	else if (req_op(req) == REQ_OP_FLUSH)
M
Ming Lin 已提交
326
		nvme_setup_flush(ns, cmd);
M
Mike Christie 已提交
327
	else if (req_op(req) == REQ_OP_DISCARD)
M
Ming Lin 已提交
328 329 330 331 332 333 334 335
		ret = nvme_setup_discard(ns, req, cmd);
	else
		nvme_setup_rw(ns, req, cmd);

	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

336 337 338 339 340
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
341
		struct nvme_completion *cqe, void *buffer, unsigned bufflen,
342
		unsigned timeout, int qid, int at_head, int flags)
343 344 345 346
{
	struct request *req;
	int ret;

347
	req = nvme_alloc_request(q, cmd, flags, qid);
348 349 350 351
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
352
	req->special = cqe;
353

354 355 356 357
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
358 359
	}

360
	blk_execute_rq(req->q, NULL, req, at_head);
361 362 363 364 365
	ret = req->errors;
 out:
	blk_mq_free_request(req);
	return ret;
}
366
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
367 368 369 370

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
371 372
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
373
}
374
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
375

376 377 378 379
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
380
{
381
	bool write = nvme_is_write(cmd);
382
	struct nvme_completion cqe;
383 384
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
385
	struct request *req;
386 387
	struct bio *bio = NULL;
	void *meta = NULL;
388 389
	int ret;

390
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
391 392 393 394
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
395
	req->special = &cqe;
396 397

	if (ubuffer && bufflen) {
398 399 400 401 402 403
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

404 405 406 407 408 409 410 411
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

412
		if (meta_buffer && meta_len) {
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
430 431
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
	ret = req->errors;
449
	if (result)
450
		*result = le32_to_cpu(cqe.result);
451 452 453 454 455 456 457 458 459 460 461 462
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
463 464 465 466 467
 out:
	blk_mq_free_request(req);
	return ret;
}

468 469 470 471 472 473 474 475
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

S
Sagi Grimberg 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static void nvme_keep_alive_end_io(struct request *rq, int error)
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

	if (error) {
		dev_err(ctrl->device,
			"failed nvme_keep_alive_end_io error=%d\n", error);
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
		ctrl->ops->reset_ctrl(ctrl);
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

544
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(1);

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

564 565 566 567 568 569 570 571 572 573
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(2);
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

574
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify,
	c.identify.nsid = cpu_to_le32(nsid),

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

595
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
596
		      void *buffer, size_t buflen, u32 *result)
597 598
{
	struct nvme_command c;
599 600
	struct nvme_completion cqe;
	int ret;
601 602 603 604 605 606

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.fid = cpu_to_le32(fid);

607
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, buffer, buflen, 0,
608
			NVME_QID_ANY, 0, 0);
609
	if (ret >= 0 && result)
610 611
		*result = le32_to_cpu(cqe.result);
	return ret;
612 613
}

614
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
615
		      void *buffer, size_t buflen, u32 *result)
616 617
{
	struct nvme_command c;
618 619
	struct nvme_completion cqe;
	int ret;
620 621 622 623 624 625

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

626 627
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe,
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
628
	if (ret >= 0 && result)
629 630
		*result = le32_to_cpu(cqe.result);
	return ret;
631 632
}

633
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
654

C
Christoph Hellwig 已提交
655 656 657 658 659 660
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

661
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
662
			&result);
663
	if (status < 0)
C
Christoph Hellwig 已提交
664 665
		return status;

666 667 668 669 670 671 672 673 674 675 676 677 678
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
679 680
	return 0;
}
681
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
682

683 684 685 686 687 688 689 690 691
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
692 693
	if (io.flags)
		return -EINVAL;
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

733
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
734 735 736 737 738 739 740 741 742 743 744
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
745 746
	if (cmd.flags)
		return -EINVAL;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
765
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
790
#ifdef CONFIG_BLK_DEV_NVME_SCSI
791 792 793 794
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
795
#endif
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	default:
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
822 823 824 825
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

842
	memset(&integrity, 0, sizeof(integrity));
843 844 845
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
846 847
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
848 849 850 851
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
852 853
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
871
	struct nvme_ctrl *ctrl = ns->ctrl;
872
	u32 logical_block_size = queue_logical_block_size(ns->queue);
873 874 875 876 877 878

	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
		ns->queue->limits.discard_zeroes_data = 1;
	else
		ns->queue->limits.discard_zeroes_data = 0;

879 880
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
881
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
882 883 884
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

885
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
886
{
887
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
888
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
889 890 891
		return -ENODEV;
	}

892 893 894
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
895 896
	}

897
	if (ns->ctrl->vs >= NVME_VS(1, 1))
898
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
899
	if (ns->ctrl->vs >= NVME_VS(1, 2))
900 901 902 903 904 905 906 907 908 909 910
		memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
	u8 lbaf, pi_type;
	u16 old_ms;
	unsigned short bs;
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	blk_mq_freeze_queue(disk->queue);
	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
				ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

K
Keith Busch 已提交
939
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
940 941 942 943 944 945 946 947 948
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
949
}
950

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
967
	kfree(id);
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1046
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1064
static const struct block_device_operations nvme_fops = {
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1090
			dev_err(ctrl->device,
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1116 1117 1118 1119 1120 1121 1122 1123 1124

	/* Checking for ctrl->tagset is a trick to avoid sleeping on module
	 * load, since we only need the quirk on reset_controller. Notice
	 * that the HGST device needs this delay only in firmware activation
	 * procedure; unfortunately we have no (easy) way to verify this.
	 */
	if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1125 1126
	return nvme_wait_ready(ctrl, cap, false);
}
1127
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1140
		dev_err(ctrl->device,
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1159
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1182
			dev_err(ctrl->device,
1183 1184 1185 1186 1187 1188 1189
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1190
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1191

1192 1193 1194
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1195 1196
	bool vwc = false;

1197
	if (ctrl->max_hw_sectors) {
1198 1199 1200
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1201
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1202
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1203 1204 1205 1206
	}
	if (ctrl->stripe_size)
		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1207 1208 1209
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1222
	u32 max_hw_sectors;
1223

1224 1225
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1226
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1227 1228 1229
		return ret;
	}

1230 1231
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1232
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1233 1234 1235 1236
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1237 1238 1239
	if (ctrl->vs >= NVME_VS(1, 1))
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1240 1241
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1242
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1243 1244 1245
		return -EIO;
	}

1246
	ctrl->vid = le16_to_cpu(id->vid);
1247
	ctrl->oncs = le16_to_cpup(&id->oncs);
1248
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1249
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1250
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1251 1252 1253 1254
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1255
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1256
	else
1257 1258 1259
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
		unsigned int max_hw_sectors;

		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
		if (ctrl->max_hw_sectors) {
			ctrl->max_hw_sectors = min(max_hw_sectors,
							ctrl->max_hw_sectors);
		} else {
			ctrl->max_hw_sectors = max_hw_sectors;
		}
	}

1274
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1275
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1276
	ctrl->kas = le16_to_cpu(id->kas);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	if (ctrl->ops->is_fabrics) {
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1290 1291 1292 1293 1294 1295

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
			dev_err(ctrl->dev,
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1296 1297 1298
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
	}
1299

1300
	kfree(id);
1301
	return ret;
1302
}
1303
EXPORT_SYMBOL_GPL(nvme_init_identify);
1304

1305
static int nvme_dev_open(struct inode *inode, struct file *file)
1306
{
1307 1308 1309
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1329 1330
}

1331
static int nvme_dev_release(struct inode *inode, struct file *file)
1332
{
1333 1334 1335 1336
	nvme_put_ctrl(file->private_data);
	return 0;
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1350
		dev_warn(ctrl->device,
1351 1352 1353 1354 1355
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1356
	dev_warn(ctrl->device,
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1380
		return nvme_dev_user_cmd(ctrl, argp);
1381
	case NVME_IOCTL_RESET:
1382
		dev_warn(ctrl->device, "resetting controller\n");
1383 1384 1385
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1386 1387 1388
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1413
}
1414
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1415

K
Keith Busch 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1427 1428 1429
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1430
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1451 1452 1453
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1454
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1455 1456 1457 1458 1459 1460 1461
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1462
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1463 1464 1465 1466 1467 1468 1469
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1470
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1471 1472 1473 1474 1475
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1476
	&dev_attr_wwid.attr,
1477 1478 1479 1480 1481 1482
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1483
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1484 1485 1486
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
1487
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1502
	.is_visible	= nvme_ns_attrs_are_visible,
1503 1504
};

M
Ming Lin 已提交
1505
#define nvme_show_str_function(field)						\
1506 1507 1508 1509 1510 1511 1512 1513
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1527

M
Ming Lin 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

1571 1572
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
1573
	&dev_attr_rescan_controller.attr,
1574 1575 1576
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1577
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
1578 1579 1580 1581
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
1582 1583 1584
	NULL
};

M
Ming Lin 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

1607
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
1608 1609
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
1610 1611 1612 1613 1614 1615 1616
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1617 1618 1619 1620 1621 1622 1623 1624
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

1625
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1626
{
1627
	struct nvme_ns *ns, *ret = NULL;
1628

1629
	mutex_lock(&ctrl->namespaces_mutex);
1630
	list_for_each_entry(ns, &ctrl->namespaces, list) {
1631 1632 1633 1634 1635
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
1636 1637 1638
		if (ns->ns_id > nsid)
			break;
	}
1639 1640
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
1641 1642 1643 1644 1645 1646
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
1647 1648
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
1649 1650 1651 1652 1653 1654
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

1655 1656 1657 1658
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

1659 1660
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
1661
		goto out_release_instance;
1662 1663 1664 1665 1666 1667 1668 1669 1670
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1671
	nvme_set_queue_limits(ctrl, ns->queue);
1672

1673
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1674

1675 1676 1677 1678
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

	if (nvme_nvm_ns_supported(ns, id)) {
1679 1680
		if (nvme_nvm_register(ns, disk_name, node,
							&nvme_ns_attr_group)) {
1681 1682
			dev_warn(ctrl->dev, "%s: LightNVM init failure\n",
								__func__);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
			goto out_free_id;
		}
	} else {
		disk = alloc_disk_node(0, node);
		if (!disk)
			goto out_free_id;

		disk->fops = &nvme_fops;
		disk->private_data = ns;
		disk->queue = ns->queue;
		disk->flags = GENHD_FL_EXT_DEVT;
		memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
		ns->disk = disk;

		__nvme_revalidate_disk(disk, id);
	}
1699

1700 1701 1702 1703
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

1704
	kref_get(&ctrl->kref);
1705 1706 1707

	kfree(id);

1708
	if (ns->ndev)
1709
		return;
1710

1711
	device_add_disk(ctrl->device, ns->disk);
1712 1713 1714 1715
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
1716
	return;
1717 1718
 out_free_id:
	kfree(id);
1719 1720
 out_free_queue:
	blk_cleanup_queue(ns->queue);
1721 1722
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1723 1724 1725 1726 1727 1728
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
1729 1730
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
1731

1732
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1733 1734
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
1735 1736
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
1737 1738 1739 1740
		del_gendisk(ns->disk);
		blk_mq_abort_requeue_list(ns->queue);
		blk_cleanup_queue(ns->queue);
	}
1741 1742

	mutex_lock(&ns->ctrl->namespaces_mutex);
1743
	list_del_init(&ns->list);
1744 1745
	mutex_unlock(&ns->ctrl->namespaces_mutex);

1746 1747 1748
	nvme_put_ns(ns);
}

1749 1750 1751 1752
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

1753
	ns = nvme_find_get_ns(ctrl, nsid);
1754
	if (ns) {
1755
		if (ns->disk && revalidate_disk(ns->disk))
1756
			nvme_ns_remove(ns);
1757
		nvme_put_ns(ns);
1758 1759 1760 1761
	} else
		nvme_alloc_ns(ctrl, nsid);
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
1787
			goto free;
1788 1789 1790 1791 1792 1793 1794 1795 1796

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
1797 1798
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
1799
					nvme_ns_remove(ns);
1800 1801
					nvme_put_ns(ns);
				}
1802 1803 1804 1805 1806
			}
		}
		nn -= j;
	}
 out:
1807 1808
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
1809 1810 1811 1812
	kfree(ns_list);
	return ret;
}

1813
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1814 1815 1816
{
	unsigned i;

1817 1818 1819
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

1820
	nvme_remove_invalid_namespaces(ctrl, nn);
1821 1822
}

1823
static void nvme_scan_work(struct work_struct *work)
1824
{
1825 1826
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
1827
	struct nvme_id_ctrl *id;
1828
	unsigned nn;
1829

1830 1831 1832
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

1833 1834
	if (nvme_identify_ctrl(ctrl, &id))
		return;
1835 1836 1837 1838 1839 1840 1841

	nn = le32_to_cpu(id->nn);
	if (ctrl->vs >= NVME_VS(1, 1) &&
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
1842
	nvme_scan_ns_sequential(ctrl, nn);
1843
 done:
1844
	mutex_lock(&ctrl->namespaces_mutex);
1845
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1846
	mutex_unlock(&ctrl->namespaces_mutex);
1847 1848
	kfree(id);
}
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
		schedule_work(&ctrl->scan_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
1860

1861 1862 1863 1864 1865
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
1866 1867 1868 1869
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

1870 1871 1872 1873 1874 1875 1876 1877 1878
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

1879 1880 1881
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
1882
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1883

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

void nvme_complete_async_event(struct nvme_ctrl *ctrl,
		struct nvme_completion *cqe)
{
	u16 status = le16_to_cpu(cqe->status) >> 1;
	u32 result = le32_to_cpu(cqe->result);

	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
		++ctrl->event_limit;
		schedule_work(&ctrl->async_event_work);
	}

	if (status != NVME_SC_SUCCESS)
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
	schedule_work(&ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

1961
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1962
{
1963
	flush_work(&ctrl->async_event_work);
1964 1965 1966
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

1967
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1968 1969 1970 1971

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
1972
}
1973
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1974 1975 1976 1977

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1978 1979 1980

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
1981
	ida_destroy(&ctrl->ns_ida);
1982 1983 1984 1985 1986 1987 1988 1989

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
1990
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2002 2003
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2004
	INIT_LIST_HEAD(&ctrl->namespaces);
2005
	mutex_init(&ctrl->namespaces_mutex);
2006 2007 2008 2009
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2010
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2011
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2012 2013 2014 2015 2016

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2017
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2018
				MKDEV(nvme_char_major, ctrl->instance),
2019
				ctrl, nvme_dev_attr_groups,
2020
				"nvme%d", ctrl->instance);
2021 2022 2023 2024 2025
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2026
	ida_init(&ctrl->ns_ida);
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2038
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2039

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2051 2052
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2053 2054 2055 2056
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2057
		if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2058 2059 2060 2061 2062 2063
			revalidate_disk(ns->disk);

		blk_set_queue_dying(ns->queue);
		blk_mq_abort_requeue_list(ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
	}
2064
	mutex_unlock(&ctrl->namespaces_mutex);
2065
}
2066
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2067

2068
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2069 2070 2071
{
	struct nvme_ns *ns;

2072
	mutex_lock(&ctrl->namespaces_mutex);
2073
	list_for_each_entry(ns, &ctrl->namespaces, list)
2074
		blk_mq_quiesce_queue(ns->queue);
2075
	mutex_unlock(&ctrl->namespaces_mutex);
2076
}
2077
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2078

2079
void nvme_start_queues(struct nvme_ctrl *ctrl)
2080 2081 2082
{
	struct nvme_ns *ns;

2083 2084
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2085 2086 2087
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
2088
	mutex_unlock(&ctrl->namespaces_mutex);
2089
}
2090
EXPORT_SYMBOL_GPL(nvme_start_queues);
2091

2092 2093 2094 2095
int __init nvme_core_init(void)
{
	int result;

2096 2097 2098
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2099
		return result;
2100 2101 2102 2103 2104 2105 2106 2107 2108
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2109
	return 0;
2110 2111 2112 2113

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
	return result;
2114 2115 2116 2117
}

void nvme_core_exit(void)
{
2118 2119
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2120
}
2121 2122 2123 2124 2125

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);