core.c 70.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
29
#include <linux/pm_qos.h>
30 31
#include <scsi/sg.h>
#include <asm/unaligned.h>
32 33

#include "nvme.h"
S
Sagi Grimberg 已提交
34
#include "fabrics.h"
35

36 37
#define NVME_MINORS		(1U << MINORBITS)

38 39 40
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41
EXPORT_SYMBOL_GPL(admin_timeout);
42 43 44 45

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46
EXPORT_SYMBOL_GPL(nvme_io_timeout);
47

48
static unsigned char shutdown_timeout = 5;
49 50 51
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

52 53
static u8 nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, byte, 0644);
K
Keith Busch 已提交
54
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55

56 57 58
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

59
static unsigned long default_ps_max_latency_us = 100000;
60 61 62 63
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
		 "max power saving latency for new devices; use PM QOS to change per device");

64 65 66 67
static bool force_apst;
module_param(force_apst, bool, 0644);
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");

68 69 70 71
static bool streams;
module_param(streams, bool, 0644);
MODULE_PARM_DESC(streams, "turn on support for Streams write directives");

72 73 74
struct workqueue_struct *nvme_wq;
EXPORT_SYMBOL_GPL(nvme_wq);

75
static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
76
static DEFINE_SPINLOCK(dev_list_lock);
77

78 79
static struct class *nvme_class;

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
		return -EBUSY;
	if (!queue_work(nvme_wq, &ctrl->reset_work))
		return -EBUSY;
	return 0;
}
EXPORT_SYMBOL_GPL(nvme_reset_ctrl);

static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
{
	int ret;

	ret = nvme_reset_ctrl(ctrl);
	if (!ret)
		flush_work(&ctrl->reset_work);
	return ret;
}

100
static blk_status_t nvme_error_status(struct request *req)
101 102 103
{
	switch (nvme_req(req)->status & 0x7ff) {
	case NVME_SC_SUCCESS:
104
		return BLK_STS_OK;
105
	case NVME_SC_CAP_EXCEEDED:
106
		return BLK_STS_NOSPC;
107
	case NVME_SC_ONCS_NOT_SUPPORTED:
108
		return BLK_STS_NOTSUPP;
109 110 111
	case NVME_SC_WRITE_FAULT:
	case NVME_SC_READ_ERROR:
	case NVME_SC_UNWRITTEN_BLOCK:
112 113 114
		return BLK_STS_MEDIUM;
	default:
		return BLK_STS_IOERR;
115 116 117
	}
}

118
static inline bool nvme_req_needs_retry(struct request *req)
119
{
120 121
	if (blk_noretry_request(req))
		return false;
122
	if (nvme_req(req)->status & NVME_SC_DNR)
123 124 125
		return false;
	if (jiffies - req->start_time >= req->timeout)
		return false;
126
	if (nvme_req(req)->retries >= nvme_max_retries)
127 128
		return false;
	return true;
129 130 131 132
}

void nvme_complete_rq(struct request *req)
{
133 134 135 136
	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
		nvme_req(req)->retries++;
		blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
		return;
137 138
	}

139
	blk_mq_end_request(req, nvme_error_status(req));
140 141 142
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);

143 144 145 146 147 148 149 150 151 152 153 154 155
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
156
	nvme_req(req)->status = status;
157
	blk_mq_complete_request(req);
158

159 160 161
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

162 163 164
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
165
	enum nvme_ctrl_state old_state;
166 167 168
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
169 170

	old_state = ctrl->state;
171 172 173
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
174
		case NVME_CTRL_NEW:
175
		case NVME_CTRL_RESETTING:
176
		case NVME_CTRL_RECONNECTING:
177 178 179 180 181 182 183 184 185
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
186 187 188 189 190 191 192 193 194
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
195 196 197 198 199 200 201 202 203 204 205
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
206
		case NVME_CTRL_RECONNECTING:
207 208 209 210 211 212
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
213 214 215 216 217 218 219 220 221
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
222 223 224 225 226 227 228
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

229 230
	spin_unlock_irq(&ctrl->lock);

231 232 233 234
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

235 236 237 238
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

239 240
	if (ns->ndev)
		nvme_nvm_unregister(ns);
241

242 243 244 245 246
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
247 248

	put_disk(ns->disk);
249 250
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
251 252 253
	kfree(ns);
}

254
static void nvme_put_ns(struct nvme_ns *ns)
255 256 257 258 259 260 261 262 263 264
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
265 266 267 268 269 270
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
271 272 273
	spin_unlock(&dev_list_lock);

	return ns;
274 275 276 277 278 279

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
280 281
}

282
struct request *nvme_alloc_request(struct request_queue *q,
283
		struct nvme_command *cmd, unsigned int flags, int qid)
284
{
285
	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
286 287
	struct request *req;

288
	if (qid == NVME_QID_ANY) {
289
		req = blk_mq_alloc_request(q, op, flags);
290
	} else {
291
		req = blk_mq_alloc_request_hctx(q, op, flags,
292 293
				qid ? qid - 1 : 0);
	}
294
	if (IS_ERR(req))
295
		return req;
296 297

	req->cmd_flags |= REQ_FAILFAST_DRIVER;
298
	nvme_req(req)->cmd = cmd;
299

300 301
	return req;
}
302
EXPORT_SYMBOL_GPL(nvme_alloc_request);
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
{
	struct nvme_command c;

	memset(&c, 0, sizeof(c));

	c.directive.opcode = nvme_admin_directive_send;
	c.directive.nsid = cpu_to_le32(0xffffffff);
	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
	c.directive.dtype = NVME_DIR_IDENTIFY;
	c.directive.tdtype = NVME_DIR_STREAMS;
	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;

	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
}

static int nvme_disable_streams(struct nvme_ctrl *ctrl)
{
	return nvme_toggle_streams(ctrl, false);
}

static int nvme_enable_streams(struct nvme_ctrl *ctrl)
{
	return nvme_toggle_streams(ctrl, true);
}

static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
				  struct streams_directive_params *s, u32 nsid)
{
	struct nvme_command c;

	memset(&c, 0, sizeof(c));
	memset(s, 0, sizeof(*s));

	c.directive.opcode = nvme_admin_directive_recv;
	c.directive.nsid = cpu_to_le32(nsid);
	c.directive.numd = sizeof(*s);
	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
	c.directive.dtype = NVME_DIR_STREAMS;

	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
}

static int nvme_configure_directives(struct nvme_ctrl *ctrl)
{
	struct streams_directive_params s;
	int ret;

	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
		return 0;
	if (!streams)
		return 0;

	ret = nvme_enable_streams(ctrl);
	if (ret)
		return ret;

	ret = nvme_get_stream_params(ctrl, &s, 0xffffffff);
	if (ret)
		return ret;

	ctrl->nssa = le16_to_cpu(s.nssa);
	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
		dev_info(ctrl->device, "too few streams (%u) available\n",
					ctrl->nssa);
		nvme_disable_streams(ctrl);
		return 0;
	}

	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
	return 0;
}

/*
 * Check if 'req' has a write hint associated with it. If it does, assign
 * a valid namespace stream to the write.
 */
static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
				     struct request *req, u16 *control,
				     u32 *dsmgmt)
{
	enum rw_hint streamid = req->write_hint;

	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
		streamid = 0;
	else {
		streamid--;
		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
			return;

		*control |= NVME_RW_DTYPE_STREAMS;
		*dsmgmt |= streamid << 16;
	}

	if (streamid < ARRAY_SIZE(req->q->write_hints))
		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
}

M
Ming Lin 已提交
403 404 405 406 407 408 409 410
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

411
static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
412 413
		struct nvme_command *cmnd)
{
414
	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
M
Ming Lin 已提交
415
	struct nvme_dsm_range *range;
416
	struct bio *bio;
M
Ming Lin 已提交
417

418
	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
M
Ming Lin 已提交
419
	if (!range)
420
		return BLK_STS_RESOURCE;
M
Ming Lin 已提交
421

422 423 424 425 426 427 428 429 430 431 432 433
	__rq_for_each_bio(bio, req) {
		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;

		range[n].cattr = cpu_to_le32(0);
		range[n].nlb = cpu_to_le32(nlb);
		range[n].slba = cpu_to_le64(slba);
		n++;
	}

	if (WARN_ON_ONCE(n != segments)) {
		kfree(range);
434
		return BLK_STS_IOERR;
435
	}
M
Ming Lin 已提交
436 437 438 439

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
440
	cmnd->dsm.nr = cpu_to_le32(segments - 1);
M
Ming Lin 已提交
441 442
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

443 444
	req->special_vec.bv_page = virt_to_page(range);
	req->special_vec.bv_offset = offset_in_page(range);
445
	req->special_vec.bv_len = sizeof(*range) * segments;
446
	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
M
Ming Lin 已提交
447

448
	return BLK_STS_OK;
M
Ming Lin 已提交
449 450
}

451 452
static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
		struct request *req, struct nvme_command *cmnd)
M
Ming Lin 已提交
453
{
454
	struct nvme_ctrl *ctrl = ns->ctrl;
M
Ming Lin 已提交
455 456 457
	u16 control = 0;
	u32 dsmgmt = 0;

458 459 460 461 462
	/*
	 * If formated with metadata, require the block layer provide a buffer
	 * unless this namespace is formated such that the metadata can be
	 * stripped/generated by the controller with PRACT=1.
	 */
463 464
	if (ns && ns->ms &&
	    (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
465 466 467
	    !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
		return BLK_STS_NOTSUPP;

M
Ming Lin 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481
	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

482 483 484
	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);

M
Ming Lin 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
504
	return 0;
M
Ming Lin 已提交
505 506
}

507
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
508 509
		struct nvme_command *cmd)
{
510
	blk_status_t ret = BLK_STS_OK;
M
Ming Lin 已提交
511

512
	if (!(req->rq_flags & RQF_DONTPREP)) {
513
		nvme_req(req)->retries = 0;
514
		nvme_req(req)->flags = 0;
515 516 517
		req->rq_flags |= RQF_DONTPREP;
	}

518 519 520
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
521
		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
522 523
		break;
	case REQ_OP_FLUSH:
M
Ming Lin 已提交
524
		nvme_setup_flush(ns, cmd);
525
		break;
526 527
	case REQ_OP_WRITE_ZEROES:
		/* currently only aliased to deallocate for a few ctrls: */
528
	case REQ_OP_DISCARD:
M
Ming Lin 已提交
529
		ret = nvme_setup_discard(ns, req, cmd);
530 531 532
		break;
	case REQ_OP_READ:
	case REQ_OP_WRITE:
533
		ret = nvme_setup_rw(ns, req, cmd);
534 535 536
		break;
	default:
		WARN_ON_ONCE(1);
537
		return BLK_STS_IOERR;
538
	}
M
Ming Lin 已提交
539

540
	cmd->common.command_id = req->tag;
M
Ming Lin 已提交
541 542 543 544
	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

545 546 547 548 549
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
550
		union nvme_result *result, void *buffer, unsigned bufflen,
551
		unsigned timeout, int qid, int at_head, int flags)
552 553 554 555
{
	struct request *req;
	int ret;

556
	req = nvme_alloc_request(q, cmd, flags, qid);
557 558 559 560 561
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

562 563 564 565
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
566 567
	}

568
	blk_execute_rq(req->q, NULL, req, at_head);
569 570
	if (result)
		*result = nvme_req(req)->result;
571 572 573 574
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
575 576 577 578
 out:
	blk_mq_free_request(req);
	return ret;
}
579
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
580 581 582 583

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
584 585
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
586
}
587
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
588

589 590 591 592
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
593
{
594
	bool write = nvme_is_write(cmd);
595 596
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
597
	struct request *req;
598 599
	struct bio *bio = NULL;
	void *meta = NULL;
600 601
	int ret;

602
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
603 604 605 606 607 608
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
609 610 611 612 613 614
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

615 616 617 618 619 620 621 622
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

623
		if (meta_buffer && meta_len) {
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
641 642
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
659 660 661 662
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
663
	if (result)
664
		*result = le32_to_cpu(nvme_req(req)->result.u32);
665 666 667 668 669 670 671 672 673 674 675 676
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
677 678 679 680 681
 out:
	blk_mq_free_request(req);
	return ret;
}

682 683 684 685 686 687 688 689
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

690
static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
S
Sagi Grimberg 已提交
691 692 693 694 695
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

696
	if (status) {
S
Sagi Grimberg 已提交
697
		dev_err(ctrl->device,
698 699
			"failed nvme_keep_alive_end_io error=%d\n",
				status);
S
Sagi Grimberg 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
735
		nvme_reset_ctrl(ctrl);
S
Sagi Grimberg 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

759
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
760 761 762 763 764 765
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
766
	c.identify.cns = NVME_ID_CNS_CTRL;
767 768 769 770 771 772 773 774 775 776 777 778

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid)
{
	struct nvme_command c = { };
	int status;
	void *data;
	int pos;
	int len;

	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;

	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data,
				      NVME_IDENTIFY_DATA_SIZE);
	if (status)
		goto free_data;

	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
		struct nvme_ns_id_desc *cur = data + pos;

		if (cur->nidl == 0)
			break;

		switch (cur->nidt) {
		case NVME_NIDT_EUI64:
			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_EUI64_LEN;
			memcpy(ns->eui, data + pos + sizeof(*cur), len);
			break;
		case NVME_NIDT_NGUID:
			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_NGUID_LEN;
			memcpy(ns->nguid, data + pos + sizeof(*cur), len);
			break;
		case NVME_NIDT_UUID:
			if (cur->nidl != NVME_NIDT_UUID_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_UUID_LEN;
			uuid_copy(&ns->uuid, data + pos + sizeof(*cur));
			break;
		default:
			/* Skip unnkown types */
			len = cur->nidl;
			break;
		}

		len += sizeof(*cur);
	}
free_data:
	kfree(data);
	return status;
}

850 851 852 853 854
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
855
	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
856 857 858 859
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

860
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
861 862 863 864 865 866
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
867 868
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
869
	c.identify.cns = NVME_ID_CNS_NS;
870 871 872 873 874 875 876 877 878 879 880 881

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

882
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
883
		      void *buffer, size_t buflen, u32 *result)
884 885
{
	struct nvme_command c;
886
	union nvme_result res;
887
	int ret;
888 889 890 891 892 893

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.fid = cpu_to_le32(fid);

894
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
895
			NVME_QID_ANY, 0, 0);
896
	if (ret >= 0 && result)
897
		*result = le32_to_cpu(res.u32);
898
	return ret;
899 900
}

901
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
902
		      void *buffer, size_t buflen, u32 *result)
903 904
{
	struct nvme_command c;
905
	union nvme_result res;
906
	int ret;
907 908 909 910 911 912

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

913
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
914
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
915
	if (ret >= 0 && result)
916
		*result = le32_to_cpu(res.u32);
917
	return ret;
918 919
}

920
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
941

C
Christoph Hellwig 已提交
942 943 944 945 946 947
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

948
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
949
			&result);
950
	if (status < 0)
C
Christoph Hellwig 已提交
951 952
		return status;

953 954 955 956 957 958
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
959
		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
960 961 962 963 964 965
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
966 967
	return 0;
}
968
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
969

970 971 972 973 974 975 976 977 978
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
979 980
	if (io.flags)
		return -EINVAL;
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

1020
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
1032 1033
	if (cmd.flags)
		return -EINVAL;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1052
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
1077
#ifdef CONFIG_BLK_DEV_NVME_SCSI
1078 1079 1080 1081
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
1082
#endif
1083
	default:
1084 1085 1086 1087
#ifdef CONFIG_NVM
		if (ns->ndev)
			return nvme_nvm_ioctl(ns, cmd, arg);
#endif
1088
		if (is_sed_ioctl(cmd))
1089
			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1090
					 (void __user *) arg);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
1116 1117 1118 1119
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
	struct nvme_ns *ns = disk->private_data;
	u16 old_ms = ns->ms;
	u8 pi_type = 0;

	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/* PI implementation requires metadata equal t10 pi tuple size */
	if (ns->ms == sizeof(struct t10_pi_tuple))
		pi_type = id->dps & NVME_NS_DPS_PI_MASK;

	if (blk_get_integrity(disk) &&
	    (ns->pi_type != pi_type || ns->ms != old_ms ||
	     bs != queue_logical_block_size(disk->queue) ||
	     (ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
}

1155 1156 1157 1158
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

1159
	memset(&integrity, 0, sizeof(integrity));
1160 1161 1162
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
1163 1164
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1165 1166 1167 1168
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
1169 1170
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
1181 1182 1183 1184
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
}
1185 1186 1187 1188 1189
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

1190 1191 1192 1193 1194 1195
static void nvme_set_chunk_size(struct nvme_ns *ns)
{
	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
}

1196 1197
static void nvme_config_discard(struct nvme_ns *ns)
{
1198
	struct nvme_ctrl *ctrl = ns->ctrl;
1199
	u32 logical_block_size = queue_logical_block_size(ns->queue);
1200

1201 1202 1203
	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
			NVME_DSM_MAX_RANGES);

1204 1205 1206 1207 1208 1209 1210 1211 1212
	if (ctrl->nr_streams && ns->sws && ns->sgs) {
		unsigned int sz = logical_block_size * ns->sws * ns->sgs;

		ns->queue->limits.discard_alignment = sz;
		ns->queue->limits.discard_granularity = sz;
	} else {
		ns->queue->limits.discard_alignment = logical_block_size;
		ns->queue->limits.discard_granularity = logical_block_size;
	}
1213
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1214
	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1215
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1216 1217 1218

	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1219 1220
}

1221
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1222
{
1223
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1224
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1225 1226 1227
		return -ENODEV;
	}

1228 1229 1230
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
1231 1232
	}

1233
	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1234
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1235
	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1236
		memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid));
1237 1238 1239 1240 1241 1242 1243 1244
	if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) {
		 /* Don't treat error as fatal we potentially
		  * already have a NGUID or EUI-64
		  */
		if (nvme_identify_ns_descs(ns, ns->ns_id))
			dev_warn(ns->ctrl->device,
				 "%s: Identify Descriptors failed\n", __func__);
	}
1245 1246 1247 1248 1249 1250 1251

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
1252
	struct nvme_ctrl *ctrl = ns->ctrl;
1253
	u16 bs;
1254 1255 1256 1257 1258

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
1259
	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1260 1261 1262
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
1263
	ns->noiob = le16_to_cpu(id->noiob);
1264 1265 1266

	blk_mq_freeze_queue(disk->queue);

1267
	if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1268
		nvme_prep_integrity(disk, id, bs);
1269
	blk_queue_logical_block_size(ns->queue, bs);
1270 1271
	if (ns->noiob)
		nvme_set_chunk_size(ns);
K
Keith Busch 已提交
1272
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1273 1274 1275 1276 1277 1278
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

1279
	if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1280 1281
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
1282
}
1283

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
1300
	kfree(id);
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1379
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1397
#ifdef CONFIG_BLK_SED_OPAL
1398 1399
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
		bool send)
1400
{
1401
	struct nvme_ctrl *ctrl = data;
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	struct nvme_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (send)
		cmd.common.opcode = nvme_admin_security_send;
	else
		cmd.common.opcode = nvme_admin_security_recv;
	cmd.common.nsid = 0;
	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
	cmd.common.cdw10[1] = cpu_to_le32(len);

	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */

1419
static const struct block_device_operations nvme_fops = {
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1430 1431 1432 1433 1434 1435 1436 1437
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
K
Keith Busch 已提交
1438 1439
		if (csts == ~0)
			return -ENODEV;
1440 1441 1442 1443 1444 1445 1446
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1447
			dev_err(ctrl->device,
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1473

1474
	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1475 1476
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1477 1478
	return nvme_wait_ready(ctrl, cap, false);
}
1479
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1492
		dev_err(ctrl->device,
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1511
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1512 1513 1514

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
1515
	unsigned long timeout = jiffies + (shutdown_timeout * HZ);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1534
			dev_err(ctrl->device,
1535 1536 1537 1538 1539 1540 1541
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1542
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1543

1544 1545 1546
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1547 1548
	bool vwc = false;

1549
	if (ctrl->max_hw_sectors) {
1550 1551 1552
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1553
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1554
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1555
	}
K
Keith Busch 已提交
1556 1557
	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1558
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1559 1560 1561
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1562 1563
}

1564 1565 1566 1567 1568 1569 1570 1571 1572
static void nvme_configure_apst(struct nvme_ctrl *ctrl)
{
	/*
	 * APST (Autonomous Power State Transition) lets us program a
	 * table of power state transitions that the controller will
	 * perform automatically.  We configure it with a simple
	 * heuristic: we are willing to spend at most 2% of the time
	 * transitioning between power states.  Therefore, when running
	 * in any given state, we will enter the next lower-power
A
Andy Lutomirski 已提交
1573
	 * non-operational state after waiting 50 * (enlat + exlat)
1574
	 * microseconds, as long as that state's exit latency is under
1575 1576 1577 1578 1579 1580 1581 1582 1583
	 * the requested maximum latency.
	 *
	 * We will not autonomously enter any non-operational state for
	 * which the total latency exceeds ps_max_latency_us.  Users
	 * can set ps_max_latency_us to zero to turn off APST.
	 */

	unsigned apste;
	struct nvme_feat_auto_pst *table;
1584 1585
	u64 max_lat_us = 0;
	int max_ps = -1;
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	int ret;

	/*
	 * If APST isn't supported or if we haven't been initialized yet,
	 * then don't do anything.
	 */
	if (!ctrl->apsta)
		return;

	if (ctrl->npss > 31) {
		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
		return;
	}

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return;

	if (ctrl->ps_max_latency_us == 0) {
		/* Turn off APST. */
		apste = 0;
1607
		dev_dbg(ctrl->device, "APST disabled\n");
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	} else {
		__le64 target = cpu_to_le64(0);
		int state;

		/*
		 * Walk through all states from lowest- to highest-power.
		 * According to the spec, lower-numbered states use more
		 * power.  NPSS, despite the name, is the index of the
		 * lowest-power state, not the number of states.
		 */
		for (state = (int)ctrl->npss; state >= 0; state--) {
1619
			u64 total_latency_us, exit_latency_us, transition_ms;
1620 1621 1622 1623

			if (target)
				table->entries[state] = target;

1624 1625 1626 1627 1628 1629 1630 1631
			/*
			 * Don't allow transitions to the deepest state
			 * if it's quirked off.
			 */
			if (state == ctrl->npss &&
			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
				continue;

1632 1633 1634 1635 1636 1637 1638 1639
			/*
			 * Is this state a useful non-operational state for
			 * higher-power states to autonomously transition to?
			 */
			if (!(ctrl->psd[state].flags &
			      NVME_PS_FLAGS_NON_OP_STATE))
				continue;

1640 1641 1642
			exit_latency_us =
				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
			if (exit_latency_us > ctrl->ps_max_latency_us)
1643 1644
				continue;

1645 1646 1647 1648
			total_latency_us =
				exit_latency_us +
				le32_to_cpu(ctrl->psd[state].entry_lat);

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
			/*
			 * This state is good.  Use it as the APST idle
			 * target for higher power states.
			 */
			transition_ms = total_latency_us + 19;
			do_div(transition_ms, 20);
			if (transition_ms > (1 << 24) - 1)
				transition_ms = (1 << 24) - 1;

			target = cpu_to_le64((state << 3) |
					     (transition_ms << 8));
1660 1661 1662 1663 1664 1665

			if (max_ps == -1)
				max_ps = state;

			if (total_latency_us > max_lat_us)
				max_lat_us = total_latency_us;
1666 1667 1668
		}

		apste = 1;
1669 1670 1671 1672 1673 1674 1675

		if (max_ps == -1) {
			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
		} else {
			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
				max_ps, max_lat_us, (int)sizeof(*table), table);
		}
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	}

	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
				table, sizeof(*table), NULL);
	if (ret)
		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);

	kfree(table);
}

static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	u64 latency;

	switch (val) {
	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
	case PM_QOS_LATENCY_ANY:
		latency = U64_MAX;
		break;

	default:
		latency = val;
	}

	if (ctrl->ps_max_latency_us != latency) {
		ctrl->ps_max_latency_us = latency;
		nvme_configure_apst(ctrl);
	}
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
struct nvme_core_quirk_entry {
	/*
	 * NVMe model and firmware strings are padded with spaces.  For
	 * simplicity, strings in the quirk table are padded with NULLs
	 * instead.
	 */
	u16 vid;
	const char *mn;
	const char *fr;
	unsigned long quirks;
};

static const struct nvme_core_quirk_entry core_quirks[] = {
1720
	{
1721 1722 1723 1724 1725 1726
		/*
		 * This Toshiba device seems to die using any APST states.  See:
		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
		 */
		.vid = 0x1179,
		.mn = "THNSF5256GPUK TOSHIBA",
1727
		.quirks = NVME_QUIRK_NO_APST,
1728
	}
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
};

/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
	size_t matchlen;

	if (!match)
		return true;

	matchlen = strlen(match);
	WARN_ON_ONCE(matchlen > len);

	if (memcmp(idstr, match, matchlen))
		return false;

	for (; matchlen < len; matchlen++)
		if (idstr[matchlen] != ' ')
			return false;

	return true;
}

static bool quirk_matches(const struct nvme_id_ctrl *id,
			  const struct nvme_core_quirk_entry *q)
{
	return q->vid == le16_to_cpu(id->vid) &&
		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
		string_matches(id->fr, q->fr, sizeof(id->fr));
}

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1770
	u32 max_hw_sectors;
1771
	u8 prev_apsta;
1772

1773 1774
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1775
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1776 1777 1778
		return ret;
	}

1779 1780
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1781
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1782 1783 1784 1785
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1786
	if (ctrl->vs >= NVME_VS(1, 1, 0))
1787 1788
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1789 1790
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1791
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1792 1793 1794
		return -EIO;
	}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	if (!ctrl->identified) {
		/*
		 * Check for quirks.  Quirk can depend on firmware version,
		 * so, in principle, the set of quirks present can change
		 * across a reset.  As a possible future enhancement, we
		 * could re-scan for quirks every time we reinitialize
		 * the device, but we'd have to make sure that the driver
		 * behaves intelligently if the quirks change.
		 */

		int i;

		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
			if (quirk_matches(id, &core_quirks[i]))
				ctrl->quirks |= core_quirks[i].quirks;
		}
	}

1813
	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1814
		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1815 1816 1817
		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
	}

1818
	ctrl->oacs = le16_to_cpu(id->oacs);
1819
	ctrl->vid = le16_to_cpu(id->vid);
1820
	ctrl->oncs = le16_to_cpup(&id->oncs);
1821
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1822
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1823
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1824 1825 1826 1827
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1828
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1829
	else
1830 1831 1832
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1833

1834
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1835
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1836
	ctrl->kas = le16_to_cpu(id->kas);
1837

1838 1839
	ctrl->npss = id->npss;
	prev_apsta = ctrl->apsta;
1840 1841
	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
		if (force_apst && id->apsta) {
1842
			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1843 1844 1845 1846 1847 1848 1849
			ctrl->apsta = 1;
		} else {
			ctrl->apsta = 0;
		}
	} else {
		ctrl->apsta = id->apsta;
	}
1850 1851
	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));

1852
	if (ctrl->ops->flags & NVME_F_FABRICS) {
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1864 1865

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1866
			dev_err(ctrl->device,
S
Sagi Grimberg 已提交
1867 1868 1869
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1870 1871
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
1872 1873
		ctrl->hmpre = le32_to_cpu(id->hmpre);
		ctrl->hmmin = le32_to_cpu(id->hmmin);
1874
	}
1875

1876
	kfree(id);
1877

1878 1879 1880 1881 1882 1883
	if (ctrl->apsta && !prev_apsta)
		dev_pm_qos_expose_latency_tolerance(ctrl->device);
	else if (!ctrl->apsta && prev_apsta)
		dev_pm_qos_hide_latency_tolerance(ctrl->device);

	nvme_configure_apst(ctrl);
1884
	nvme_configure_directives(ctrl);
1885

1886
	ctrl->identified = true;
1887

1888
	return ret;
1889
}
1890
EXPORT_SYMBOL_GPL(nvme_init_identify);
1891

1892
static int nvme_dev_open(struct inode *inode, struct file *file)
1893
{
1894 1895 1896
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1916 1917
}

1918
static int nvme_dev_release(struct inode *inode, struct file *file)
1919
{
1920 1921 1922 1923
	nvme_put_ctrl(file->private_data);
	return 0;
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1937
		dev_warn(ctrl->device,
1938 1939 1940 1941 1942
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1943
	dev_warn(ctrl->device,
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1967
		return nvme_dev_user_cmd(ctrl, argp);
1968
	case NVME_IOCTL_RESET:
1969
		dev_warn(ctrl->device, "resetting controller\n");
1970
		return nvme_reset_ctrl_sync(ctrl);
1971 1972
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1973 1974 1975
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

1996
	ret = nvme_reset_ctrl_sync(ctrl);
1997 1998 1999
	if (ret < 0)
		return ret;
	return count;
2000
}
2001
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2002

K
Keith Busch 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

2014 2015 2016
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
2017
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2018 2019 2020 2021
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

2022 2023
	if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
		return sprintf(buf, "eui.%16phN\n", ns->nguid);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

2038 2039 2040 2041 2042 2043 2044 2045
static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
	return sprintf(buf, "%pU\n", ns->nguid);
}
static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);

2046 2047 2048
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
2049
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

	/* For backward compatibility expose the NGUID to userspace if
	 * we have no UUID set
	 */
	if (uuid_is_null(&ns->uuid)) {
		printk_ratelimited(KERN_WARNING
				   "No UUID available providing old NGUID\n");
		return sprintf(buf, "%pU\n", ns->nguid);
	}
	return sprintf(buf, "%pU\n", &ns->uuid);
2060 2061 2062 2063 2064 2065
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
2066
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2067 2068 2069 2070 2071 2072 2073
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
2074
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2075 2076 2077 2078 2079
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
2080
	&dev_attr_wwid.attr,
2081
	&dev_attr_uuid.attr,
2082
	&dev_attr_nguid.attr,
2083 2084 2085 2086 2087
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
2088
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2089 2090 2091
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
2092
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2093 2094

	if (a == &dev_attr_uuid.attr) {
2095 2096 2097 2098 2099
		if (uuid_is_null(&ns->uuid) ||
		    !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
			return 0;
	}
	if (a == &dev_attr_nguid.attr) {
2100
		if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
2112
	.is_visible	= nvme_ns_attrs_are_visible,
2113 2114
};

M
Ming Lin 已提交
2115
#define nvme_show_str_function(field)						\
2116 2117 2118 2119 2120 2121 2122 2123
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
2137

M
Ming Lin 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
static ssize_t nvme_sysfs_show_state(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	static const char *const state_name[] = {
		[NVME_CTRL_NEW]		= "new",
		[NVME_CTRL_LIVE]	= "live",
		[NVME_CTRL_RESETTING]	= "resetting",
		[NVME_CTRL_RECONNECTING]= "reconnecting",
		[NVME_CTRL_DELETING]	= "deleting",
		[NVME_CTRL_DEAD]	= "dead",
	};

	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
	    state_name[ctrl->state])
		return sprintf(buf, "%s\n", state_name[ctrl->state]);

	return sprintf(buf, "unknown state\n");
}

static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);

M
Ming Lin 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

2204 2205
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
2206
	&dev_attr_rescan_controller.attr,
2207 2208 2209
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
2210
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
2211 2212 2213 2214
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
2215
	&dev_attr_state.attr,
2216 2217 2218
	NULL
};

M
Ming Lin 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

2241
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
2242 2243
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
2244 2245 2246 2247 2248 2249 2250
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

2251 2252 2253 2254 2255 2256 2257 2258
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

2259
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2260
{
2261
	struct nvme_ns *ns, *ret = NULL;
2262

2263
	mutex_lock(&ctrl->namespaces_mutex);
2264
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2265 2266 2267 2268 2269
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
2270 2271 2272
		if (ns->ns_id > nsid)
			break;
	}
2273 2274
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
2275 2276
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
{
	struct streams_directive_params s;
	int ret;

	if (!ctrl->nr_streams)
		return 0;

	ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
	if (ret)
		return ret;

	ns->sws = le32_to_cpu(s.sws);
	ns->sgs = le16_to_cpu(s.sgs);

	if (ns->sws) {
		unsigned int bs = 1 << ns->lba_shift;

		blk_queue_io_min(ns->queue, bs * ns->sws);
		if (ns->sgs)
			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
	}

	return 0;
}

2303 2304 2305 2306
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
2307 2308
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
2309 2310 2311 2312 2313 2314
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

2315 2316 2317 2318
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

2319 2320
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
2321
		goto out_release_instance;
2322 2323 2324 2325 2326 2327 2328 2329 2330
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2331
	nvme_set_queue_limits(ctrl, ns->queue);
2332
	nvme_setup_streams_ns(ctrl, ns);
2333

2334
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2335

2336 2337 2338
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

2339 2340
	if (nvme_nvm_ns_supported(ns, id) &&
				nvme_nvm_register(ns, disk_name, node)) {
2341
		dev_warn(ctrl->device, "%s: LightNVM init failure\n", __func__);
2342 2343
		goto out_free_id;
	}
2344

2345 2346 2347
	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_id;
2348

2349 2350 2351 2352 2353 2354 2355 2356
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
	ns->disk = disk;

	__nvme_revalidate_disk(disk, id);
2357

2358 2359 2360 2361
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

2362
	kref_get(&ctrl->kref);
2363 2364 2365

	kfree(id);

2366
	device_add_disk(ctrl->device, ns->disk);
2367 2368 2369 2370
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
2371 2372 2373
	if (ns->ndev && nvme_nvm_register_sysfs(ns))
		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
			ns->disk->disk_name);
2374
	return;
2375 2376
 out_free_id:
	kfree(id);
2377 2378
 out_free_queue:
	blk_cleanup_queue(ns->queue);
2379 2380
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2381 2382 2383 2384 2385 2386
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
2387 2388
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
2389

2390
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2391 2392
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
2393 2394
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
2395 2396
		if (ns->ndev)
			nvme_nvm_unregister_sysfs(ns);
2397 2398 2399
		del_gendisk(ns->disk);
		blk_cleanup_queue(ns->queue);
	}
2400 2401

	mutex_lock(&ns->ctrl->namespaces_mutex);
2402
	list_del_init(&ns->list);
2403 2404
	mutex_unlock(&ns->ctrl->namespaces_mutex);

2405 2406 2407
	nvme_put_ns(ns);
}

2408 2409 2410 2411
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

2412
	ns = nvme_find_get_ns(ctrl, nsid);
2413
	if (ns) {
2414
		if (ns->disk && revalidate_disk(ns->disk))
2415
			nvme_ns_remove(ns);
2416
		nvme_put_ns(ns);
2417 2418 2419 2420
	} else
		nvme_alloc_ns(ctrl, nsid);
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
2446
			goto free;
2447 2448 2449 2450 2451 2452 2453 2454 2455

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
2456 2457
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
2458
					nvme_ns_remove(ns);
2459 2460
					nvme_put_ns(ns);
				}
2461 2462 2463 2464 2465
			}
		}
		nn -= j;
	}
 out:
2466 2467
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
2468 2469 2470 2471
	kfree(ns_list);
	return ret;
}

2472
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2473 2474 2475
{
	unsigned i;

2476 2477 2478
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

2479
	nvme_remove_invalid_namespaces(ctrl, nn);
2480 2481
}

2482
static void nvme_scan_work(struct work_struct *work)
2483
{
2484 2485
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
2486
	struct nvme_id_ctrl *id;
2487
	unsigned nn;
2488

2489 2490 2491
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

2492 2493
	if (nvme_identify_ctrl(ctrl, &id))
		return;
2494 2495

	nn = le32_to_cpu(id->nn);
2496
	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2497 2498 2499 2500
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
2501
	nvme_scan_ns_sequential(ctrl, nn);
2502
 done:
2503
	mutex_lock(&ctrl->namespaces_mutex);
2504
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2505
	mutex_unlock(&ctrl->namespaces_mutex);
2506 2507
	kfree(id);
}
2508 2509 2510 2511 2512 2513 2514 2515

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
2516
		queue_work(nvme_wq, &ctrl->scan_work);
2517 2518
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
2519

2520 2521 2522 2523 2524
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
2525 2526 2527 2528
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

2529 2530 2531 2532 2533 2534 2535 2536 2537
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

2538 2539 2540
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
2541
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2542

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

2559 2560
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
		union nvme_result *res)
2561
{
2562 2563
	u32 result = le32_to_cpu(res->u32);
	bool done = true;
2564

2565 2566 2567 2568 2569
	switch (le16_to_cpu(status) >> 1) {
	case NVME_SC_SUCCESS:
		done = false;
		/*FALLTHRU*/
	case NVME_SC_ABORT_REQ:
2570
		++ctrl->event_limit;
2571
		queue_work(nvme_wq, &ctrl->async_event_work);
2572 2573 2574
		break;
	default:
		break;
2575 2576
	}

2577
	if (done)
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
2594
	queue_work(nvme_wq, &ctrl->async_event_work);
2595 2596 2597
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

2627
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2628
{
2629
	flush_work(&ctrl->async_event_work);
2630 2631 2632
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

2633
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2634 2635 2636 2637

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
2638
}
2639
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2640 2641 2642 2643

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2644 2645 2646

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
2647
	ida_destroy(&ctrl->ns_ida);
2648 2649 2650 2651 2652 2653 2654 2655

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
2656
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2668 2669
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2670
	INIT_LIST_HEAD(&ctrl->namespaces);
2671
	mutex_init(&ctrl->namespaces_mutex);
2672 2673 2674 2675
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2676
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2677
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2678 2679 2680 2681 2682

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2683
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2684
				MKDEV(nvme_char_major, ctrl->instance),
2685
				ctrl, nvme_dev_attr_groups,
2686
				"nvme%d", ctrl->instance);
2687 2688 2689 2690 2691
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2692
	ida_init(&ctrl->ns_ida);
2693 2694 2695 2696 2697

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

2698 2699 2700 2701 2702 2703 2704 2705
	/*
	 * Initialize latency tolerance controls.  The sysfs files won't
	 * be visible to userspace unless the device actually supports APST.
	 */
	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
		min(default_ps_max_latency_us, (unsigned long)S32_MAX));

2706 2707 2708 2709 2710 2711
	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2712
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2713

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2725
	mutex_lock(&ctrl->namespaces_mutex);
M
Ming Lei 已提交
2726

2727 2728 2729
	/* Forcibly unquiesce queues to avoid blocking dispatch */
	blk_mq_unquiesce_queue(ctrl->admin_q);

M
Ming Lei 已提交
2730 2731 2732
	/* Forcibly start all queues to avoid having stuck requests */
	blk_mq_start_hw_queues(ctrl->admin_q);

2733
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2734 2735 2736 2737
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2738 2739 2740
		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			continue;
		revalidate_disk(ns->disk);
2741
		blk_set_queue_dying(ns->queue);
2742

2743 2744 2745
		/* Forcibly unquiesce queues to avoid blocking dispatch */
		blk_mq_unquiesce_queue(ns->queue);

2746 2747 2748 2749 2750 2751
		/*
		 * Forcibly start all queues to avoid having stuck requests.
		 * Note that we must ensure the queues are not stopped
		 * when the final removal happens.
		 */
		blk_mq_start_hw_queues(ns->queue);
2752 2753 2754

		/* draining requests in requeue list */
		blk_mq_kick_requeue_list(ns->queue);
2755
	}
2756
	mutex_unlock(&ctrl->namespaces_mutex);
2757
}
2758
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2759

K
Keith Busch 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_unfreeze_queue(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);

void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
		if (timeout <= 0)
			break;
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);

void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_wait(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);

void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
2802
		blk_freeze_queue_start(ns->queue);
K
Keith Busch 已提交
2803 2804 2805 2806
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);

2807
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2808 2809 2810
{
	struct nvme_ns *ns;

2811
	mutex_lock(&ctrl->namespaces_mutex);
2812
	list_for_each_entry(ns, &ctrl->namespaces, list)
2813
		blk_mq_quiesce_queue(ns->queue);
2814
	mutex_unlock(&ctrl->namespaces_mutex);
2815
}
2816
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2817

2818
void nvme_start_queues(struct nvme_ctrl *ctrl)
2819 2820 2821
{
	struct nvme_ns *ns;

2822 2823
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2824
		blk_mq_unquiesce_queue(ns->queue);
2825 2826
		blk_mq_kick_requeue_list(ns->queue);
	}
2827
	mutex_unlock(&ctrl->namespaces_mutex);
2828
}
2829
EXPORT_SYMBOL_GPL(nvme_start_queues);
2830

2831 2832 2833 2834
int __init nvme_core_init(void)
{
	int result;

2835 2836 2837 2838 2839
	nvme_wq = alloc_workqueue("nvme-wq",
			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
	if (!nvme_wq)
		return -ENOMEM;

2840 2841 2842
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2843
		goto destroy_wq;
2844 2845 2846 2847 2848 2849 2850 2851 2852
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2853
	return 0;
2854

2855
unregister_chrdev:
2856
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2857 2858
destroy_wq:
	destroy_workqueue(nvme_wq);
2859
	return result;
2860 2861 2862 2863
}

void nvme_core_exit(void)
{
2864 2865
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2866
	destroy_workqueue(nvme_wq);
2867
}
2868 2869 2870 2871 2872

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);