core.c 52.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28 29 30
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
#include <scsi/sg.h>
#include <asm/unaligned.h>
31 32

#include "nvme.h"
S
Sagi Grimberg 已提交
33
#include "fabrics.h"
34

35 36
#define NVME_MINORS		(1U << MINORBITS)

37 38 39
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40
EXPORT_SYMBOL_GPL(admin_timeout);
41 42 43 44

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45
EXPORT_SYMBOL_GPL(nvme_io_timeout);
46 47 48 49 50

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

K
Keith Busch 已提交
51 52 53 54
unsigned int nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, uint, 0644);
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
EXPORT_SYMBOL_GPL(nvme_max_retries);
55

56 57 58 59
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
60
static DEFINE_SPINLOCK(dev_list_lock);
61

62 63
static struct class *nvme_class;

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
	blk_mq_complete_request(req, status);
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

81 82 83
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
84
	enum nvme_ctrl_state old_state;
85 86 87
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
88 89

	old_state = ctrl->state;
90 91 92
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
93
		case NVME_CTRL_NEW:
94
		case NVME_CTRL_RESETTING:
95
		case NVME_CTRL_RECONNECTING:
96 97 98 99 100 101 102 103 104
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
105 106 107 108 109 110 111 112 113 114
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RECONNECTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
115 116 117 118 119 120 121 122 123 124 125
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
126
		case NVME_CTRL_RECONNECTING:
127 128 129 130 131 132
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
133 134 135 136 137 138 139 140 141
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
142 143 144 145 146 147 148
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

149 150
	spin_unlock_irq(&ctrl->lock);

151 152 153 154
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

155 156 157 158 159 160 161 162 163 164 165 166
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

	if (ns->type == NVME_NS_LIGHTNVM)
		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);

	spin_lock(&dev_list_lock);
	ns->disk->private_data = NULL;
	spin_unlock(&dev_list_lock);

	put_disk(ns->disk);
167 168
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
169 170 171
	kfree(ns);
}

172
static void nvme_put_ns(struct nvme_ns *ns)
173 174 175 176 177 178 179 180 181 182
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
183 184 185 186 187 188
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
189 190 191
	spin_unlock(&dev_list_lock);

	return ns;
192 193 194 195 196 197

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
198 199
}

200 201 202 203 204 205 206 207 208 209
void nvme_requeue_req(struct request *req)
{
	unsigned long flags;

	blk_mq_requeue_request(req);
	spin_lock_irqsave(req->q->queue_lock, flags);
	if (!blk_queue_stopped(req->q))
		blk_mq_kick_requeue_list(req->q);
	spin_unlock_irqrestore(req->q->queue_lock, flags);
}
210
EXPORT_SYMBOL_GPL(nvme_requeue_req);
211

212
struct request *nvme_alloc_request(struct request_queue *q,
213
		struct nvme_command *cmd, unsigned int flags, int qid)
214 215 216
{
	struct request *req;

217 218 219 220 221 222
	if (qid == NVME_QID_ANY) {
		req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
	} else {
		req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
				qid ? qid - 1 : 0);
	}
223
	if (IS_ERR(req))
224
		return req;
225 226 227 228 229 230

	req->cmd_type = REQ_TYPE_DRV_PRIV;
	req->cmd_flags |= REQ_FAILFAST_DRIVER;
	req->cmd = (unsigned char *)cmd;
	req->cmd_len = sizeof(struct nvme_command);

231 232
	return req;
}
233
EXPORT_SYMBOL_GPL(nvme_alloc_request);
234

M
Ming Lin 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	struct nvme_dsm_range *range;
	struct page *page;
	int offset;
	unsigned int nr_bytes = blk_rq_bytes(req);

	range = kmalloc(sizeof(*range), GFP_ATOMIC);
	if (!range)
		return BLK_MQ_RQ_QUEUE_BUSY;

	range->cattr = cpu_to_le32(0);
	range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
	cmnd->dsm.nr = 0;
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

	req->completion_data = range;
	page = virt_to_page(range);
	offset = offset_in_page(range);
	blk_add_request_payload(req, page, offset, sizeof(*range));

	/*
	 * we set __data_len back to the size of the area to be discarded
	 * on disk. This allows us to report completion on the full amount
	 * of blocks described by the request.
	 */
	req->__data_len = nr_bytes;

	return 0;
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.command_id = req->tag;
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmd)
{
	int ret = 0;

	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
		memcpy(cmd, req->cmd, sizeof(*cmd));
329
	else if (req_op(req) == REQ_OP_FLUSH)
M
Ming Lin 已提交
330
		nvme_setup_flush(ns, cmd);
M
Mike Christie 已提交
331
	else if (req_op(req) == REQ_OP_DISCARD)
M
Ming Lin 已提交
332 333 334 335 336 337 338 339
		ret = nvme_setup_discard(ns, req, cmd);
	else
		nvme_setup_rw(ns, req, cmd);

	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

340 341 342 343 344
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
345
		struct nvme_completion *cqe, void *buffer, unsigned bufflen,
346
		unsigned timeout, int qid, int at_head, int flags)
347 348 349 350
{
	struct request *req;
	int ret;

351
	req = nvme_alloc_request(q, cmd, flags, qid);
352 353 354 355
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
356
	req->special = cqe;
357

358 359 360 361
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
362 363
	}

364
	blk_execute_rq(req->q, NULL, req, at_head);
365 366 367 368 369
	ret = req->errors;
 out:
	blk_mq_free_request(req);
	return ret;
}
370
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
371 372 373 374

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
375 376
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
377
}
378
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
379

380 381 382 383
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
384
{
385
	bool write = nvme_is_write(cmd);
386
	struct nvme_completion cqe;
387 388
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
389
	struct request *req;
390 391
	struct bio *bio = NULL;
	void *meta = NULL;
392 393
	int ret;

394
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
395 396 397 398
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
399
	req->special = &cqe;
400 401

	if (ubuffer && bufflen) {
402 403 404 405 406 407
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

408 409 410 411 412 413 414 415
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

416
		if (meta_buffer && meta_len) {
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
434 435
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
	ret = req->errors;
453
	if (result)
454
		*result = le32_to_cpu(cqe.result);
455 456 457 458 459 460 461 462 463 464 465 466
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
467 468 469 470 471
 out:
	blk_mq_free_request(req);
	return ret;
}

472 473 474 475 476 477 478 479
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

S
Sagi Grimberg 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
static void nvme_keep_alive_end_io(struct request *rq, int error)
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

	if (error) {
		dev_err(ctrl->device,
			"failed nvme_keep_alive_end_io error=%d\n", error);
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
		ctrl->ops->reset_ctrl(ctrl);
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

548
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(1);

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

568 569 570 571 572 573 574 575 576 577
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
	c.identify.cns = cpu_to_le32(2);
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

578
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify,
	c.identify.nsid = cpu_to_le32(nsid),

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

599
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
600 601 602
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;
603 604
	struct nvme_completion cqe;
	int ret;
605 606 607 608

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
609
	c.features.dptr.prp1 = cpu_to_le64(dma_addr);
610 611
	c.features.fid = cpu_to_le32(fid);

612 613
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
			NVME_QID_ANY, 0, 0);
614 615 616
	if (ret >= 0)
		*result = le32_to_cpu(cqe.result);
	return ret;
617 618
}

619
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
620 621 622
					dma_addr_t dma_addr, u32 *result)
{
	struct nvme_command c;
623 624
	struct nvme_completion cqe;
	int ret;
625 626 627

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
628
	c.features.dptr.prp1 = cpu_to_le64(dma_addr);
629 630 631
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

632 633
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
			NVME_QID_ANY, 0, 0);
634 635 636
	if (ret >= 0)
		*result = le32_to_cpu(cqe.result);
	return ret;
637 638
}

639
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
660

C
Christoph Hellwig 已提交
661 662 663 664 665 666 667 668
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
			&result);
669
	if (status < 0)
C
Christoph Hellwig 已提交
670 671
		return status;

672 673 674 675 676 677 678 679 680 681 682 683 684
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
685 686
	return 0;
}
687
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
688

689 690 691 692 693 694 695 696 697
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
698 699
	if (io.flags)
		return -EINVAL;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

739
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
740 741 742 743 744 745 746 747 748 749 750
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
751 752
	if (cmd.flags)
		return -EINVAL;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
771
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
796
#ifdef CONFIG_BLK_DEV_NVME_SCSI
797 798 799 800
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
801
#endif
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	default:
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
828 829 830 831
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

848
	memset(&integrity, 0, sizeof(integrity));
849 850 851
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
852 853
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
854 855 856 857
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
858 859
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
877
	struct nvme_ctrl *ctrl = ns->ctrl;
878
	u32 logical_block_size = queue_logical_block_size(ns->queue);
879 880 881 882 883 884

	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
		ns->queue->limits.discard_zeroes_data = 1;
	else
		ns->queue->limits.discard_zeroes_data = 0;

885 886
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
887
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
888 889 890
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

891
static int nvme_revalidate_disk(struct gendisk *disk)
892 893 894 895 896 897 898
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id;
	u8 lbaf, pi_type;
	u16 old_ms;
	unsigned short bs;

899 900 901 902
	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}
903
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
904 905
		dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
				__func__);
906 907 908 909 910 911 912 913 914
		return -ENODEV;
	}
	if (id->ncap == 0) {
		kfree(id);
		return -ENODEV;
	}

	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
915
			dev_warn(disk_to_dev(ns->disk),
916 917 918 919 920 921 922
				"%s: LightNVM init failure\n", __func__);
			kfree(id);
			return -ENODEV;
		}
		ns->type = NVME_NS_LIGHTNVM;
	}

923 924 925 926 927
	if (ns->ctrl->vs >= NVME_VS(1, 1))
		memcpy(ns->eui, id->eui64, sizeof(ns->eui));
	if (ns->ctrl->vs >= NVME_VS(1, 2))
		memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	blk_mq_freeze_queue(disk->queue);
	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
				ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

K
Keith Busch 已提交
955
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);

	kfree(id);
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1044
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1062
static const struct block_device_operations nvme_fops = {
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1088
			dev_err(ctrl->device,
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1114 1115 1116 1117 1118 1119 1120 1121 1122

	/* Checking for ctrl->tagset is a trick to avoid sleeping on module
	 * load, since we only need the quirk on reset_controller. Notice
	 * that the HGST device needs this delay only in firmware activation
	 * procedure; unfortunately we have no (easy) way to verify this.
	 */
	if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1123 1124
	return nvme_wait_ready(ctrl, cap, false);
}
1125
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1138
		dev_err(ctrl->device,
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1157
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1180
			dev_err(ctrl->device,
1181 1182 1183 1184 1185 1186 1187
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1188
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1189

1190 1191 1192
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1193 1194
	bool vwc = false;

1195
	if (ctrl->max_hw_sectors) {
1196 1197 1198
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1199
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1200
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1201 1202 1203 1204
	}
	if (ctrl->stripe_size)
		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1205 1206 1207
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1220
	u32 max_hw_sectors;
1221

1222 1223
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1224
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1225 1226 1227
		return ret;
	}

1228 1229
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1230
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1231 1232 1233 1234
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1235 1236 1237
	if (ctrl->vs >= NVME_VS(1, 1))
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1238 1239
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1240
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1241 1242 1243
		return -EIO;
	}

1244
	ctrl->vid = le16_to_cpu(id->vid);
1245
	ctrl->oncs = le16_to_cpup(&id->oncs);
1246
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1247
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1248
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1249 1250 1251 1252
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1253
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1254
	else
1255 1256 1257
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
		unsigned int max_hw_sectors;

		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
		if (ctrl->max_hw_sectors) {
			ctrl->max_hw_sectors = min(max_hw_sectors,
							ctrl->max_hw_sectors);
		} else {
			ctrl->max_hw_sectors = max_hw_sectors;
		}
	}

1272
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1273
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1274
	ctrl->kas = le16_to_cpu(id->kas);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	if (ctrl->ops->is_fabrics) {
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1288 1289 1290 1291 1292 1293

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
			dev_err(ctrl->dev,
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1294 1295 1296
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
	}
1297

1298
	kfree(id);
1299
	return ret;
1300
}
1301
EXPORT_SYMBOL_GPL(nvme_init_identify);
1302

1303
static int nvme_dev_open(struct inode *inode, struct file *file)
1304
{
1305 1306 1307
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1327 1328
}

1329
static int nvme_dev_release(struct inode *inode, struct file *file)
1330
{
1331 1332 1333 1334
	nvme_put_ctrl(file->private_data);
	return 0;
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1348
		dev_warn(ctrl->device,
1349 1350 1351 1352 1353
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1354
	dev_warn(ctrl->device,
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1378
		return nvme_dev_user_cmd(ctrl, argp);
1379
	case NVME_IOCTL_RESET:
1380
		dev_warn(ctrl->device, "resetting controller\n");
1381 1382 1383
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1384 1385 1386
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1411
}
1412
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1413

K
Keith Busch 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1474
	&dev_attr_wwid.attr,
1475 1476 1477 1478 1479 1480
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1481
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ns *ns = dev_to_disk(dev)->private_data;

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1500
	.is_visible	= nvme_ns_attrs_are_visible,
1501 1502
};

M
Ming Lin 已提交
1503
#define nvme_show_str_function(field)						\
1504 1505 1506 1507 1508 1509 1510 1511
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1525

M
Ming Lin 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

1569 1570
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
1571
	&dev_attr_rescan_controller.attr,
1572 1573 1574
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1575
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
1576 1577 1578 1579
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
1580 1581 1582
	NULL
};

M
Ming Lin 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

1605
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
1606 1607
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
1608 1609 1610 1611 1612 1613 1614
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1615 1616 1617 1618 1619 1620 1621 1622
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

1623
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1624
{
1625
	struct nvme_ns *ns, *ret = NULL;
1626

1627
	mutex_lock(&ctrl->namespaces_mutex);
1628
	list_for_each_entry(ns, &ctrl->namespaces, list) {
1629 1630 1631 1632 1633
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
1634 1635 1636
		if (ns->ns_id > nsid)
			break;
	}
1637 1638
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

1651 1652 1653 1654
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

1655 1656
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
1657
		goto out_release_instance;
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_queue;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->disk = disk;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

1671

1672
	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1673
	nvme_set_queue_limits(ctrl, ns->queue);
1674 1675 1676 1677 1678

	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
1679
	sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1680 1681 1682 1683

	if (nvme_revalidate_disk(ns->disk))
		goto out_free_disk;

1684 1685 1686 1687
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

1688
	kref_get(&ctrl->kref);
1689 1690
	if (ns->type == NVME_NS_LIGHTNVM)
		return;
1691

1692
	device_add_disk(ctrl->device, ns->disk);
1693 1694 1695 1696
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
1697 1698 1699 1700 1701
	return;
 out_free_disk:
	kfree(disk);
 out_free_queue:
	blk_cleanup_queue(ns->queue);
1702 1703
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1704 1705 1706 1707 1708 1709
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
1710 1711
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
1712

1713 1714 1715
	if (ns->disk->flags & GENHD_FL_UP) {
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
1716 1717
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
1718 1719 1720 1721
		del_gendisk(ns->disk);
		blk_mq_abort_requeue_list(ns->queue);
		blk_cleanup_queue(ns->queue);
	}
1722 1723

	mutex_lock(&ns->ctrl->namespaces_mutex);
1724
	list_del_init(&ns->list);
1725 1726
	mutex_unlock(&ns->ctrl->namespaces_mutex);

1727 1728 1729
	nvme_put_ns(ns);
}

1730 1731 1732 1733
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

1734
	ns = nvme_find_get_ns(ctrl, nsid);
1735 1736 1737
	if (ns) {
		if (revalidate_disk(ns->disk))
			nvme_ns_remove(ns);
1738
		nvme_put_ns(ns);
1739 1740 1741 1742
	} else
		nvme_alloc_ns(ctrl, nsid);
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
1768
			goto free;
1769 1770 1771 1772 1773 1774 1775 1776 1777

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
1778 1779
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
1780
					nvme_ns_remove(ns);
1781 1782
					nvme_put_ns(ns);
				}
1783 1784 1785 1786 1787
			}
		}
		nn -= j;
	}
 out:
1788 1789
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
1790 1791 1792 1793
	kfree(ns_list);
	return ret;
}

1794
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1795 1796 1797
{
	unsigned i;

1798 1799 1800
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

1801
	nvme_remove_invalid_namespaces(ctrl, nn);
1802 1803
}

1804
static void nvme_scan_work(struct work_struct *work)
1805
{
1806 1807
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
1808
	struct nvme_id_ctrl *id;
1809
	unsigned nn;
1810

1811 1812 1813
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

1814 1815
	if (nvme_identify_ctrl(ctrl, &id))
		return;
1816 1817 1818 1819 1820 1821 1822

	nn = le32_to_cpu(id->nn);
	if (ctrl->vs >= NVME_VS(1, 1) &&
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
1823
	nvme_scan_ns_sequential(ctrl, nn);
1824
 done:
1825
	mutex_lock(&ctrl->namespaces_mutex);
1826
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1827
	mutex_unlock(&ctrl->namespaces_mutex);
1828
	kfree(id);
1829 1830 1831

	if (ctrl->ops->post_scan)
		ctrl->ops->post_scan(ctrl);
1832
}
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
		schedule_work(&ctrl->scan_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
1844

1845 1846 1847 1848 1849
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
1850 1851 1852 1853
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

1863 1864 1865
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
1866
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1867

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

void nvme_complete_async_event(struct nvme_ctrl *ctrl,
		struct nvme_completion *cqe)
{
	u16 status = le16_to_cpu(cqe->status) >> 1;
	u32 result = le32_to_cpu(cqe->result);

	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
		++ctrl->event_limit;
		schedule_work(&ctrl->async_event_work);
	}

	if (status != NVME_SC_SUCCESS)
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
	schedule_work(&ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

1945
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1946
{
1947
	flush_work(&ctrl->async_event_work);
1948 1949 1950
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

1951
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1952 1953 1954 1955

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
1956
}
1957
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1958 1959 1960 1961

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1962 1963 1964

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
1965
	ida_destroy(&ctrl->ns_ida);
1966 1967 1968 1969 1970 1971 1972 1973

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
1974
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

1986 1987
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
1988
	INIT_LIST_HEAD(&ctrl->namespaces);
1989
	mutex_init(&ctrl->namespaces_mutex);
1990 1991 1992 1993
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
1994
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1995
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1996 1997 1998 1999 2000

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2001
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2002
				MKDEV(nvme_char_major, ctrl->instance),
2003
				ctrl, nvme_dev_attr_groups,
2004
				"nvme%d", ctrl->instance);
2005 2006 2007 2008 2009
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2010
	ida_init(&ctrl->ns_ida);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2022
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2035 2036
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
		if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			revalidate_disk(ns->disk);

		blk_set_queue_dying(ns->queue);
		blk_mq_abort_requeue_list(ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
	}
2048
	mutex_unlock(&ctrl->namespaces_mutex);
2049
}
2050
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2051

2052
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2053 2054 2055
{
	struct nvme_ns *ns;

2056 2057
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2058 2059 2060 2061 2062 2063 2064
		spin_lock_irq(ns->queue->queue_lock);
		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
		spin_unlock_irq(ns->queue->queue_lock);

		blk_mq_cancel_requeue_work(ns->queue);
		blk_mq_stop_hw_queues(ns->queue);
	}
2065
	mutex_unlock(&ctrl->namespaces_mutex);
2066
}
2067
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2068

2069
void nvme_start_queues(struct nvme_ctrl *ctrl)
2070 2071 2072
{
	struct nvme_ns *ns;

2073 2074
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2075 2076 2077 2078
		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
2079
	mutex_unlock(&ctrl->namespaces_mutex);
2080
}
2081
EXPORT_SYMBOL_GPL(nvme_start_queues);
2082

2083 2084 2085 2086
int __init nvme_core_init(void)
{
	int result;

2087 2088 2089
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2090
		return result;
2091 2092 2093 2094 2095 2096 2097 2098 2099
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2100
	return 0;
2101 2102 2103 2104

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
	return result;
2105 2106 2107 2108
}

void nvme_core_exit(void)
{
2109 2110
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2111
}
2112 2113 2114 2115 2116

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);