core.c 60.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
29
#include <linux/pm_qos.h>
30 31
#include <scsi/sg.h>
#include <asm/unaligned.h>
32 33

#include "nvme.h"
S
Sagi Grimberg 已提交
34
#include "fabrics.h"
35

36 37
#define NVME_MINORS		(1U << MINORBITS)

38 39 40
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41
EXPORT_SYMBOL_GPL(admin_timeout);
42 43 44 45

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46
EXPORT_SYMBOL_GPL(nvme_io_timeout);
47 48 49 50 51

unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

K
Keith Busch 已提交
52 53 54 55
unsigned int nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, uint, 0644);
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
EXPORT_SYMBOL_GPL(nvme_max_retries);
56

57 58 59
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

60 61 62 63 64
static unsigned long default_ps_max_latency_us = 25000;
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
		 "max power saving latency for new devices; use PM QOS to change per device");

65
static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
66
static DEFINE_SPINLOCK(dev_list_lock);
67

68 69
static struct class *nvme_class;

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static inline bool nvme_req_needs_retry(struct request *req, u16 status)
{
	return !(status & NVME_SC_DNR || blk_noretry_request(req)) &&
		(jiffies - req->start_time) < req->timeout &&
		req->retries < nvme_max_retries;
}

void nvme_complete_rq(struct request *req)
{
	int error = 0;

	if (unlikely(req->errors)) {
		if (nvme_req_needs_retry(req, req->errors)) {
			req->retries++;
			blk_mq_requeue_request(req,
					!blk_mq_queue_stopped(req->q));
			return;
		}

		if (blk_rq_is_passthrough(req))
			error = req->errors;
		else
			error = nvme_error_status(req->errors);
	}

	blk_mq_end_request(req, error);
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
	blk_mq_complete_request(req, status);
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

116 117 118
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
119
	enum nvme_ctrl_state old_state;
120 121 122
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
123 124

	old_state = ctrl->state;
125 126 127
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
128
		case NVME_CTRL_NEW:
129
		case NVME_CTRL_RESETTING:
130
		case NVME_CTRL_RECONNECTING:
131 132 133 134 135 136 137 138 139
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
140 141 142 143 144 145 146 147 148 149
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RECONNECTING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
150 151 152 153 154 155 156 157 158 159 160
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
161
		case NVME_CTRL_RECONNECTING:
162 163 164 165 166 167
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
168 169 170 171 172 173 174 175 176
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
177 178 179 180 181 182 183
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

184 185
	spin_unlock_irq(&ctrl->lock);

186 187 188 189
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

190 191 192 193
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

194 195
	if (ns->ndev)
		nvme_nvm_unregister(ns);
196

197 198 199 200 201
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
202 203

	put_disk(ns->disk);
204 205
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
206 207 208
	kfree(ns);
}

209
static void nvme_put_ns(struct nvme_ns *ns)
210 211 212 213 214 215 216 217 218 219
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
220 221 222 223 224 225
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
226 227 228
	spin_unlock(&dev_list_lock);

	return ns;
229 230 231 232 233 234

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
235 236
}

237
struct request *nvme_alloc_request(struct request_queue *q,
238
		struct nvme_command *cmd, unsigned int flags, int qid)
239
{
240
	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
241 242
	struct request *req;

243
	if (qid == NVME_QID_ANY) {
244
		req = blk_mq_alloc_request(q, op, flags);
245
	} else {
246
		req = blk_mq_alloc_request_hctx(q, op, flags,
247 248
				qid ? qid - 1 : 0);
	}
249
	if (IS_ERR(req))
250
		return req;
251 252

	req->cmd_flags |= REQ_FAILFAST_DRIVER;
253
	nvme_req(req)->cmd = cmd;
254

255 256
	return req;
}
257
EXPORT_SYMBOL_GPL(nvme_alloc_request);
258

M
Ming Lin 已提交
259 260 261 262 263 264 265 266 267 268 269
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
270
	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
M
Ming Lin 已提交
271
	struct nvme_dsm_range *range;
272
	struct bio *bio;
M
Ming Lin 已提交
273

274
	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
M
Ming Lin 已提交
275 276 277
	if (!range)
		return BLK_MQ_RQ_QUEUE_BUSY;

278 279 280 281 282 283 284 285 286 287 288 289 290 291
	__rq_for_each_bio(bio, req) {
		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;

		range[n].cattr = cpu_to_le32(0);
		range[n].nlb = cpu_to_le32(nlb);
		range[n].slba = cpu_to_le64(slba);
		n++;
	}

	if (WARN_ON_ONCE(n != segments)) {
		kfree(range);
		return BLK_MQ_RQ_QUEUE_ERROR;
	}
M
Ming Lin 已提交
292 293 294 295

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
296
	cmnd->dsm.nr = segments - 1;
M
Ming Lin 已提交
297 298
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

299 300
	req->special_vec.bv_page = virt_to_page(range);
	req->special_vec.bv_offset = offset_in_page(range);
301
	req->special_vec.bv_len = sizeof(*range) * segments;
302
	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
M
Ming Lin 已提交
303

304
	return BLK_MQ_RQ_QUEUE_OK;
M
Ming Lin 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
}

static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmnd)
{
	u16 control = 0;
	u32 dsmgmt = 0;

	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}

int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
		struct nvme_command *cmd)
{
351
	int ret = BLK_MQ_RQ_QUEUE_OK;
M
Ming Lin 已提交
352

353 354 355
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
356
		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
357 358
		break;
	case REQ_OP_FLUSH:
M
Ming Lin 已提交
359
		nvme_setup_flush(ns, cmd);
360 361
		break;
	case REQ_OP_DISCARD:
M
Ming Lin 已提交
362
		ret = nvme_setup_discard(ns, req, cmd);
363 364 365
		break;
	case REQ_OP_READ:
	case REQ_OP_WRITE:
M
Ming Lin 已提交
366
		nvme_setup_rw(ns, req, cmd);
367 368 369 370 371
		break;
	default:
		WARN_ON_ONCE(1);
		return BLK_MQ_RQ_QUEUE_ERROR;
	}
M
Ming Lin 已提交
372

373
	cmd->common.command_id = req->tag;
M
Ming Lin 已提交
374 375 376 377
	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

378 379 380 381 382
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
383
		union nvme_result *result, void *buffer, unsigned bufflen,
384
		unsigned timeout, int qid, int at_head, int flags)
385 386 387 388
{
	struct request *req;
	int ret;

389
	req = nvme_alloc_request(q, cmd, flags, qid);
390 391 392 393 394
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

395 396 397 398
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
399 400
	}

401
	blk_execute_rq(req->q, NULL, req, at_head);
402 403
	if (result)
		*result = nvme_req(req)->result;
404 405 406 407 408
	ret = req->errors;
 out:
	blk_mq_free_request(req);
	return ret;
}
409
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
410 411 412 413

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
414 415
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
416
}
417
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
418

419 420 421 422
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
423
{
424
	bool write = nvme_is_write(cmd);
425 426
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
427
	struct request *req;
428 429
	struct bio *bio = NULL;
	void *meta = NULL;
430 431
	int ret;

432
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
433 434 435 436 437 438
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
439 440 441 442 443 444
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

445 446 447 448 449 450 451 452
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

453
		if (meta_buffer && meta_len) {
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
471 472
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
	ret = req->errors;
490
	if (result)
491
		*result = le32_to_cpu(nvme_req(req)->result.u32);
492 493 494 495 496 497 498 499 500 501 502 503
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
504 505 506 507 508
 out:
	blk_mq_free_request(req);
	return ret;
}

509 510 511 512 513 514 515 516
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

S
Sagi Grimberg 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static void nvme_keep_alive_end_io(struct request *rq, int error)
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

	if (error) {
		dev_err(ctrl->device,
			"failed nvme_keep_alive_end_io error=%d\n", error);
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
		ctrl->ops->reset_ctrl(ctrl);
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

585
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
586 587 588 589 590 591
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
592
	c.identify.cns = NVME_ID_CNS_CTRL;
593 594 595 596 597 598 599 600 601 602 603 604

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

605 606 607 608 609
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
610
	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
611 612 613 614
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

615
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
616 617 618 619 620 621
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
622 623
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
624
	c.identify.cns = NVME_ID_CNS_NS;
625 626 627 628 629 630 631 632 633 634 635 636

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

637
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
638
		      void *buffer, size_t buflen, u32 *result)
639 640
{
	struct nvme_command c;
641
	union nvme_result res;
642
	int ret;
643 644 645 646 647 648

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.fid = cpu_to_le32(fid);

649
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
650
			NVME_QID_ANY, 0, 0);
651
	if (ret >= 0 && result)
652
		*result = le32_to_cpu(res.u32);
653
	return ret;
654 655
}

656
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
657
		      void *buffer, size_t buflen, u32 *result)
658 659
{
	struct nvme_command c;
660
	union nvme_result res;
661
	int ret;
662 663 664 665 666 667

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

668
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
669
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
670
	if (ret >= 0 && result)
671
		*result = le32_to_cpu(res.u32);
672
	return ret;
673 674
}

675
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
696

C
Christoph Hellwig 已提交
697 698 699 700 701 702
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

703
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
704
			&result);
705
	if (status < 0)
C
Christoph Hellwig 已提交
706 707
		return status;

708 709 710 711 712 713 714 715 716 717 718 719 720
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
721 722
	return 0;
}
723
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
724

725 726 727 728 729 730 731 732 733
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
734 735
	if (io.flags)
		return -EINVAL;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

775
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
776 777 778 779 780 781 782 783 784 785 786
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
787 788
	if (cmd.flags)
		return -EINVAL;
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
807
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
832
#ifdef CONFIG_BLK_DEV_NVME_SCSI
833 834 835 836
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
837
#endif
838
	default:
839 840 841 842
#ifdef CONFIG_NVM
		if (ns->ndev)
			return nvme_nvm_ioctl(ns, cmd, arg);
#endif
843
		if (is_sed_ioctl(cmd))
844
			return sed_ioctl(ns->ctrl->opal_dev, cmd,
845
					 (void __user *) arg);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
871 872 873 874
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

891
	memset(&integrity, 0, sizeof(integrity));
892 893 894
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
895 896
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
897 898 899 900
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
901 902
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

static void nvme_config_discard(struct nvme_ns *ns)
{
920
	struct nvme_ctrl *ctrl = ns->ctrl;
921
	u32 logical_block_size = queue_logical_block_size(ns->queue);
922

923 924 925
	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
			NVME_DSM_MAX_RANGES);

926 927 928 929 930
	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
		ns->queue->limits.discard_zeroes_data = 1;
	else
		ns->queue->limits.discard_zeroes_data = 0;

931 932
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
933
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
934
	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
935 936 937
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

938
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
939
{
940
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
941
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
942 943 944
		return -ENODEV;
	}

945 946 947
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
948 949
	}

950
	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
951
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
952
	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
953 954 955 956 957 958 959 960 961 962 963
		memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
	u8 lbaf, pi_type;
	u16 old_ms;
	unsigned short bs;
964

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	blk_mq_freeze_queue(disk->queue);
	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
				ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

K
Keith Busch 已提交
992
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
993 994 995 996 997 998 999 1000 1001
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
1002
}
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
1020
	kfree(id);
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1099
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1117
#ifdef CONFIG_BLK_SED_OPAL
1118 1119
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
		bool send)
1120
{
1121
	struct nvme_ctrl *ctrl = data;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	struct nvme_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (send)
		cmd.common.opcode = nvme_admin_security_send;
	else
		cmd.common.opcode = nvme_admin_security_recv;
	cmd.common.nsid = 0;
	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
	cmd.common.cdw10[1] = cpu_to_le32(len);

	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */

1139
static const struct block_device_operations nvme_fops = {
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1150 1151 1152 1153 1154 1155 1156 1157
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
K
Keith Busch 已提交
1158 1159
		if (csts == ~0)
			return -ENODEV;
1160 1161 1162 1163 1164 1165 1166
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1167
			dev_err(ctrl->device,
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1193

1194
	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1195 1196
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1197 1198
	return nvme_wait_ready(ctrl, cap, false);
}
1199
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1212
		dev_err(ctrl->device,
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1231
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1254
			dev_err(ctrl->device,
1255 1256 1257 1258 1259 1260 1261
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1262
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1263

1264 1265 1266
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1267 1268
	bool vwc = false;

1269
	if (ctrl->max_hw_sectors) {
1270 1271 1272
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1273
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1274
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1275
	}
K
Keith Busch 已提交
1276 1277
	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1278
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1279 1280 1281
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static void nvme_configure_apst(struct nvme_ctrl *ctrl)
{
	/*
	 * APST (Autonomous Power State Transition) lets us program a
	 * table of power state transitions that the controller will
	 * perform automatically.  We configure it with a simple
	 * heuristic: we are willing to spend at most 2% of the time
	 * transitioning between power states.  Therefore, when running
	 * in any given state, we will enter the next lower-power
	 * non-operational state after waiting 100 * (enlat + exlat)
	 * microseconds, as long as that state's total latency is under
	 * the requested maximum latency.
	 *
	 * We will not autonomously enter any non-operational state for
	 * which the total latency exceeds ps_max_latency_us.  Users
	 * can set ps_max_latency_us to zero to turn off APST.
	 */

	unsigned apste;
	struct nvme_feat_auto_pst *table;
	int ret;

	/*
	 * If APST isn't supported or if we haven't been initialized yet,
	 * then don't do anything.
	 */
	if (!ctrl->apsta)
		return;

	if (ctrl->npss > 31) {
		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
		return;
	}

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return;

	if (ctrl->ps_max_latency_us == 0) {
		/* Turn off APST. */
		apste = 0;
	} else {
		__le64 target = cpu_to_le64(0);
		int state;

		/*
		 * Walk through all states from lowest- to highest-power.
		 * According to the spec, lower-numbered states use more
		 * power.  NPSS, despite the name, is the index of the
		 * lowest-power state, not the number of states.
		 */
		for (state = (int)ctrl->npss; state >= 0; state--) {
			u64 total_latency_us, transition_ms;

			if (target)
				table->entries[state] = target;

			/*
			 * Is this state a useful non-operational state for
			 * higher-power states to autonomously transition to?
			 */
			if (!(ctrl->psd[state].flags &
			      NVME_PS_FLAGS_NON_OP_STATE))
				continue;

			total_latency_us =
				(u64)le32_to_cpu(ctrl->psd[state].entry_lat) +
				+ le32_to_cpu(ctrl->psd[state].exit_lat);
			if (total_latency_us > ctrl->ps_max_latency_us)
				continue;

			/*
			 * This state is good.  Use it as the APST idle
			 * target for higher power states.
			 */
			transition_ms = total_latency_us + 19;
			do_div(transition_ms, 20);
			if (transition_ms > (1 << 24) - 1)
				transition_ms = (1 << 24) - 1;

			target = cpu_to_le64((state << 3) |
					     (transition_ms << 8));
		}

		apste = 1;
	}

	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
				table, sizeof(*table), NULL);
	if (ret)
		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);

	kfree(table);
}

static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	u64 latency;

	switch (val) {
	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
	case PM_QOS_LATENCY_ANY:
		latency = U64_MAX;
		break;

	default:
		latency = val;
	}

	if (ctrl->ps_max_latency_us != latency) {
		ctrl->ps_max_latency_us = latency;
		nvme_configure_apst(ctrl);
	}
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
struct nvme_core_quirk_entry {
	/*
	 * NVMe model and firmware strings are padded with spaces.  For
	 * simplicity, strings in the quirk table are padded with NULLs
	 * instead.
	 */
	u16 vid;
	const char *mn;
	const char *fr;
	unsigned long quirks;
};

static const struct nvme_core_quirk_entry core_quirks[] = {
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	/*
	 * Seen on a Samsung "SM951 NVMe SAMSUNG 256GB": using APST causes
	 * the controller to go out to lunch.  It dies when the watchdog
	 * timer reads CSTS and gets 0xffffffff.
	 */
	{
		.vid = 0x144d,
		.fr = "BXW75D0Q",
		.quirks = NVME_QUIRK_NO_APST,
	},
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
};

/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
	size_t matchlen;

	if (!match)
		return true;

	matchlen = strlen(match);
	WARN_ON_ONCE(matchlen > len);

	if (memcmp(idstr, match, matchlen))
		return false;

	for (; matchlen < len; matchlen++)
		if (idstr[matchlen] != ' ')
			return false;

	return true;
}

static bool quirk_matches(const struct nvme_id_ctrl *id,
			  const struct nvme_core_quirk_entry *q)
{
	return q->vid == le16_to_cpu(id->vid) &&
		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
		string_matches(id->fr, q->fr, sizeof(id->fr));
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1464
	u32 max_hw_sectors;
1465
	u8 prev_apsta;
1466

1467 1468
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1469
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1470 1471 1472
		return ret;
	}

1473 1474
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1475
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1476 1477 1478 1479
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1480
	if (ctrl->vs >= NVME_VS(1, 1, 0))
1481 1482
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1483 1484
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1485
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1486 1487 1488
		return -EIO;
	}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	if (!ctrl->identified) {
		/*
		 * Check for quirks.  Quirk can depend on firmware version,
		 * so, in principle, the set of quirks present can change
		 * across a reset.  As a possible future enhancement, we
		 * could re-scan for quirks every time we reinitialize
		 * the device, but we'd have to make sure that the driver
		 * behaves intelligently if the quirks change.
		 */

		int i;

		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
			if (quirk_matches(id, &core_quirks[i]))
				ctrl->quirks |= core_quirks[i].quirks;
		}
	}

1507
	ctrl->oacs = le16_to_cpu(id->oacs);
1508
	ctrl->vid = le16_to_cpu(id->vid);
1509
	ctrl->oncs = le16_to_cpup(&id->oncs);
1510
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1511
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1512
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1513 1514 1515 1516
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1517
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1518
	else
1519 1520 1521
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1522

1523
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1524
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1525
	ctrl->kas = le16_to_cpu(id->kas);
1526

1527 1528 1529 1530 1531
	ctrl->npss = id->npss;
	prev_apsta = ctrl->apsta;
	ctrl->apsta = (ctrl->quirks & NVME_QUIRK_NO_APST) ? 0 : id->apsta;
	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	if (ctrl->ops->is_fabrics) {
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1544 1545 1546 1547 1548 1549

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
			dev_err(ctrl->dev,
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1550 1551 1552
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
	}
1553

1554
	kfree(id);
1555

1556 1557 1558 1559 1560 1561 1562
	if (ctrl->apsta && !prev_apsta)
		dev_pm_qos_expose_latency_tolerance(ctrl->device);
	else if (!ctrl->apsta && prev_apsta)
		dev_pm_qos_hide_latency_tolerance(ctrl->device);

	nvme_configure_apst(ctrl);

1563
	ctrl->identified = true;
1564

1565
	return ret;
1566
}
1567
EXPORT_SYMBOL_GPL(nvme_init_identify);
1568

1569
static int nvme_dev_open(struct inode *inode, struct file *file)
1570
{
1571 1572 1573
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1593 1594
}

1595
static int nvme_dev_release(struct inode *inode, struct file *file)
1596
{
1597 1598 1599 1600
	nvme_put_ctrl(file->private_data);
	return 0;
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1614
		dev_warn(ctrl->device,
1615 1616 1617 1618 1619
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1620
	dev_warn(ctrl->device,
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1644
		return nvme_dev_user_cmd(ctrl, argp);
1645
	case NVME_IOCTL_RESET:
1646
		dev_warn(ctrl->device, "resetting controller\n");
1647 1648 1649
		return ctrl->ops->reset_ctrl(ctrl);
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1650 1651 1652
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

	ret = ctrl->ops->reset_ctrl(ctrl);
	if (ret < 0)
		return ret;
	return count;
1677
}
1678
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1679

K
Keith Busch 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1691 1692 1693
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1694
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
		return sprintf(buf, "eui.%16phN\n", ns->uuid);

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1715 1716 1717
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1718
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1719 1720 1721 1722 1723 1724 1725
	return sprintf(buf, "%pU\n", ns->uuid);
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1726
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1727 1728 1729 1730 1731 1732 1733
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1734
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1735 1736 1737 1738 1739
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1740
	&dev_attr_wwid.attr,
1741 1742 1743 1744 1745 1746
	&dev_attr_uuid.attr,
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1747
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1748 1749 1750
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
1751
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

	if (a == &dev_attr_uuid.attr) {
		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1766
	.is_visible	= nvme_ns_attrs_are_visible,
1767 1768
};

M
Ming Lin 已提交
1769
#define nvme_show_str_function(field)						\
1770 1771 1772 1773 1774 1775 1776 1777
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
1791

M
Ming Lin 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
static ssize_t nvme_sysfs_show_state(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	static const char *const state_name[] = {
		[NVME_CTRL_NEW]		= "new",
		[NVME_CTRL_LIVE]	= "live",
		[NVME_CTRL_RESETTING]	= "resetting",
		[NVME_CTRL_RECONNECTING]= "reconnecting",
		[NVME_CTRL_DELETING]	= "deleting",
		[NVME_CTRL_DEAD]	= "dead",
	};

	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
	    state_name[ctrl->state])
		return sprintf(buf, "%s\n", state_name[ctrl->state]);

	return sprintf(buf, "unknown state\n");
}

static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);

M
Ming Lin 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

1858 1859
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
1860
	&dev_attr_rescan_controller.attr,
1861 1862 1863
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
1864
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
1865 1866 1867 1868
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
1869
	&dev_attr_state.attr,
1870 1871 1872
	NULL
};

M
Ming Lin 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

1895
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
1896 1897
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
1898 1899 1900 1901 1902 1903 1904
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

1905 1906 1907 1908 1909 1910 1911 1912
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

1913
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1914
{
1915
	struct nvme_ns *ns, *ret = NULL;
1916

1917
	mutex_lock(&ctrl->namespaces_mutex);
1918
	list_for_each_entry(ns, &ctrl->namespaces, list) {
1919 1920 1921 1922 1923
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
1924 1925 1926
		if (ns->ns_id > nsid)
			break;
	}
1927 1928
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
1929 1930 1931 1932 1933 1934
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
1935 1936
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
1937 1938 1939 1940 1941 1942
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

1943 1944 1945 1946
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

1947 1948
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
1949
		goto out_release_instance;
1950 1951 1952 1953 1954 1955 1956 1957 1958
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1959
	nvme_set_queue_limits(ctrl, ns->queue);
1960

1961
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1962

1963 1964 1965
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

1966 1967 1968 1969 1970
	if (nvme_nvm_ns_supported(ns, id) &&
				nvme_nvm_register(ns, disk_name, node)) {
		dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
		goto out_free_id;
	}
1971

1972 1973 1974
	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_id;
1975

1976 1977 1978 1979 1980 1981 1982 1983
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
	ns->disk = disk;

	__nvme_revalidate_disk(disk, id);
1984

1985 1986 1987 1988
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

1989
	kref_get(&ctrl->kref);
1990 1991 1992

	kfree(id);

1993
	device_add_disk(ctrl->device, ns->disk);
1994 1995 1996 1997
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
1998 1999 2000
	if (ns->ndev && nvme_nvm_register_sysfs(ns))
		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
			ns->disk->disk_name);
2001
	return;
2002 2003
 out_free_id:
	kfree(id);
2004 2005
 out_free_queue:
	blk_cleanup_queue(ns->queue);
2006 2007
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2008 2009 2010 2011 2012 2013
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
2014 2015
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
2016

2017
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2018 2019
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
2020 2021
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
2022 2023
		if (ns->ndev)
			nvme_nvm_unregister_sysfs(ns);
2024 2025 2026 2027
		del_gendisk(ns->disk);
		blk_mq_abort_requeue_list(ns->queue);
		blk_cleanup_queue(ns->queue);
	}
2028 2029

	mutex_lock(&ns->ctrl->namespaces_mutex);
2030
	list_del_init(&ns->list);
2031 2032
	mutex_unlock(&ns->ctrl->namespaces_mutex);

2033 2034 2035
	nvme_put_ns(ns);
}

2036 2037 2038 2039
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

2040
	ns = nvme_find_get_ns(ctrl, nsid);
2041
	if (ns) {
2042
		if (ns->disk && revalidate_disk(ns->disk))
2043
			nvme_ns_remove(ns);
2044
		nvme_put_ns(ns);
2045 2046 2047 2048
	} else
		nvme_alloc_ns(ctrl, nsid);
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
2074
			goto free;
2075 2076 2077 2078 2079 2080 2081 2082 2083

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
2084 2085
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
2086
					nvme_ns_remove(ns);
2087 2088
					nvme_put_ns(ns);
				}
2089 2090 2091 2092 2093
			}
		}
		nn -= j;
	}
 out:
2094 2095
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
2096 2097 2098 2099
	kfree(ns_list);
	return ret;
}

2100
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2101 2102 2103
{
	unsigned i;

2104 2105 2106
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

2107
	nvme_remove_invalid_namespaces(ctrl, nn);
2108 2109
}

2110
static void nvme_scan_work(struct work_struct *work)
2111
{
2112 2113
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
2114
	struct nvme_id_ctrl *id;
2115
	unsigned nn;
2116

2117 2118 2119
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

2120 2121
	if (nvme_identify_ctrl(ctrl, &id))
		return;
2122 2123

	nn = le32_to_cpu(id->nn);
2124
	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2125 2126 2127 2128
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
2129
	nvme_scan_ns_sequential(ctrl, nn);
2130
 done:
2131
	mutex_lock(&ctrl->namespaces_mutex);
2132
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2133
	mutex_unlock(&ctrl->namespaces_mutex);
2134 2135
	kfree(id);
}
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
		schedule_work(&ctrl->scan_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
2147

2148 2149 2150 2151 2152
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
2153 2154 2155 2156
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

2157 2158 2159 2160 2161 2162 2163 2164 2165
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

2166 2167 2168
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
2169
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2170

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

2187 2188
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
		union nvme_result *res)
2189
{
2190 2191
	u32 result = le32_to_cpu(res->u32);
	bool done = true;
2192

2193 2194 2195 2196 2197
	switch (le16_to_cpu(status) >> 1) {
	case NVME_SC_SUCCESS:
		done = false;
		/*FALLTHRU*/
	case NVME_SC_ABORT_REQ:
2198 2199
		++ctrl->event_limit;
		schedule_work(&ctrl->async_event_work);
2200 2201 2202
		break;
	default:
		break;
2203 2204
	}

2205
	if (done)
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
	schedule_work(&ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

2255
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2256
{
2257
	flush_work(&ctrl->async_event_work);
2258 2259 2260
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

2261
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2262 2263 2264 2265

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
2266
}
2267
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2268 2269 2270 2271

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2272 2273 2274

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
2275
	ida_destroy(&ctrl->ns_ida);
2276 2277 2278 2279 2280 2281 2282 2283

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
2284
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2296 2297
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2298
	INIT_LIST_HEAD(&ctrl->namespaces);
2299
	mutex_init(&ctrl->namespaces_mutex);
2300 2301 2302 2303
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2304
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2305
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2306 2307 2308 2309 2310

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2311
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2312
				MKDEV(nvme_char_major, ctrl->instance),
2313
				ctrl, nvme_dev_attr_groups,
2314
				"nvme%d", ctrl->instance);
2315 2316 2317 2318 2319
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2320
	ida_init(&ctrl->ns_ida);
2321 2322 2323 2324 2325

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * Initialize latency tolerance controls.  The sysfs files won't
	 * be visible to userspace unless the device actually supports APST.
	 */
	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
		min(default_ps_max_latency_us, (unsigned long)S32_MAX));

2334 2335 2336 2337 2338 2339
	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2340
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2353 2354
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2355 2356 2357 2358
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2359 2360 2361
		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			continue;
		revalidate_disk(ns->disk);
2362 2363 2364 2365
		blk_set_queue_dying(ns->queue);
		blk_mq_abort_requeue_list(ns->queue);
		blk_mq_start_stopped_hw_queues(ns->queue, true);
	}
2366
	mutex_unlock(&ctrl->namespaces_mutex);
2367
}
2368
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2369

K
Keith Busch 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_unfreeze_queue(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);

void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
		if (timeout <= 0)
			break;
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);

void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_wait(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);

void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
2412
		blk_freeze_queue_start(ns->queue);
K
Keith Busch 已提交
2413 2414 2415 2416
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);

2417
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2418 2419 2420
{
	struct nvme_ns *ns;

2421
	mutex_lock(&ctrl->namespaces_mutex);
2422
	list_for_each_entry(ns, &ctrl->namespaces, list)
2423
		blk_mq_quiesce_queue(ns->queue);
2424
	mutex_unlock(&ctrl->namespaces_mutex);
2425
}
2426
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2427

2428
void nvme_start_queues(struct nvme_ctrl *ctrl)
2429 2430 2431
{
	struct nvme_ns *ns;

2432 2433
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2434 2435 2436
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
2437
	mutex_unlock(&ctrl->namespaces_mutex);
2438
}
2439
EXPORT_SYMBOL_GPL(nvme_start_queues);
2440

2441 2442 2443 2444
int __init nvme_core_init(void)
{
	int result;

2445 2446 2447
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2448
		return result;
2449 2450 2451 2452 2453 2454 2455 2456 2457
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2458
	return 0;
2459 2460 2461 2462

 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
	return result;
2463 2464 2465 2466
}

void nvme_core_exit(void)
{
2467 2468
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2469
}
2470 2471 2472 2473 2474

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);