chip.c 92.5 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21 22 23
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
24
#include <linux/jiffies.h>
25
#include <linux/list.h>
26
#include <linux/mdio.h>
27
#include <linux/module.h>
28
#include <linux/of_device.h>
29
#include <linux/of_irq.h>
30
#include <linux/of_mdio.h>
31
#include <linux/netdevice.h>
32
#include <linux/gpio/consumer.h>
33
#include <linux/phy.h>
34
#include <net/dsa.h>
35
#include <net/switchdev.h>
36

37
#include "mv88e6xxx.h"
38
#include "global1.h"
39
#include "global2.h"
40
#include "port.h"
41

42
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
43
{
44 45
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
46 47 48 49
		dump_stack();
	}
}

50 51 52 53 54 55 56 57 58 59
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
60
 */
61

62
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
63 64
			      int addr, int reg, u16 *val)
{
65
	if (!chip->smi_ops)
66 67
		return -EOPNOTSUPP;

68
	return chip->smi_ops->read(chip, addr, reg, val);
69 70
}

71
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
72 73
			       int addr, int reg, u16 val)
{
74
	if (!chip->smi_ops)
75 76
		return -EOPNOTSUPP;

77
	return chip->smi_ops->write(chip, addr, reg, val);
78 79
}

80
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
81 82 83 84
					  int addr, int reg, u16 *val)
{
	int ret;

85
	ret = mdiobus_read_nested(chip->bus, addr, reg);
86 87 88 89 90 91 92 93
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

94
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
95 96 97 98
					   int addr, int reg, u16 val)
{
	int ret;

99
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
100 101 102 103 104 105
	if (ret < 0)
		return ret;

	return 0;
}

106
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_single_chip_ops = {
107 108 109 110
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

111
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
112 113 114 115 116
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
117
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
118 119 120
		if (ret < 0)
			return ret;

121
		if ((ret & SMI_CMD_BUSY) == 0)
122 123 124 125 126 127
			return 0;
	}

	return -ETIMEDOUT;
}

128
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
129
					 int addr, int reg, u16 *val)
130 131 132
{
	int ret;

133
	/* Wait for the bus to become free. */
134
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
135 136 137
	if (ret < 0)
		return ret;

138
	/* Transmit the read command. */
139
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
140
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
141 142 143
	if (ret < 0)
		return ret;

144
	/* Wait for the read command to complete. */
145
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
146 147 148
	if (ret < 0)
		return ret;

149
	/* Read the data. */
150
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
151 152 153
	if (ret < 0)
		return ret;

154
	*val = ret & 0xffff;
155

156
	return 0;
157 158
}

159
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
160
					  int addr, int reg, u16 val)
161 162 163
{
	int ret;

164
	/* Wait for the bus to become free. */
165
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
166 167 168
	if (ret < 0)
		return ret;

169
	/* Transmit the data to write. */
170
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
171 172 173
	if (ret < 0)
		return ret;

174
	/* Transmit the write command. */
175
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
176
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
177 178 179
	if (ret < 0)
		return ret;

180
	/* Wait for the write command to complete. */
181
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
182 183 184 185 186 187
	if (ret < 0)
		return ret;

	return 0;
}

188
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_multi_chip_ops = {
189 190 191 192
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

193
int mv88e6xxx_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val)
194 195 196
{
	int err;

197
	assert_reg_lock(chip);
198

199
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
200 201 202
	if (err)
		return err;

203
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
204 205 206 207 208
		addr, reg, *val);

	return 0;
}

209
int mv88e6xxx_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val)
210
{
211 212
	int err;

213
	assert_reg_lock(chip);
214

215
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
216 217 218
	if (err)
		return err;

219
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
220 221
		addr, reg, val);

222 223 224
	return 0;
}

225 226 227 228 229
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

230
	if (!chip->info->ops->phy_read)
231 232
		return -EOPNOTSUPP;

233
	return chip->info->ops->phy_read(chip, addr, reg, val);
234 235 236 237 238 239 240
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

241
	if (!chip->info->ops->phy_write)
242 243
		return -EOPNOTSUPP;

244
	return chip->info->ops->phy_write(chip, addr, reg, val);
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void mv88e6xxx_g1_irq_mask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked |= (1 << n);
}

static void mv88e6xxx_g1_irq_unmask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked &= ~(1 << n);
}

static irqreturn_t mv88e6xxx_g1_irq_thread_fn(int irq, void *dev_id)
{
	struct mv88e6xxx_chip *chip = dev_id;
	unsigned int nhandled = 0;
	unsigned int sub_irq;
	unsigned int n;
	u16 reg;
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	mutex_unlock(&chip->reg_lock);

	if (err)
		goto out;

	for (n = 0; n < chip->g1_irq.nirqs; ++n) {
		if (reg & (1 << n)) {
			sub_irq = irq_find_mapping(chip->g1_irq.domain, n);
			handle_nested_irq(sub_irq);
			++nhandled;
		}
	}
out:
	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
}

static void mv88e6xxx_g1_irq_bus_lock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);

	mutex_lock(&chip->reg_lock);
}

static void mv88e6xxx_g1_irq_bus_sync_unlock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	u16 mask = GENMASK(chip->g1_irq.nirqs, 0);
	u16 reg;
	int err;

	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err)
		goto out;

	reg &= ~mask;
	reg |= (~chip->g1_irq.masked & mask);

	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
	if (err)
		goto out;

out:
	mutex_unlock(&chip->reg_lock);
}

static struct irq_chip mv88e6xxx_g1_irq_chip = {
	.name			= "mv88e6xxx-g1",
	.irq_mask		= mv88e6xxx_g1_irq_mask,
	.irq_unmask		= mv88e6xxx_g1_irq_unmask,
	.irq_bus_lock		= mv88e6xxx_g1_irq_bus_lock,
	.irq_bus_sync_unlock	= mv88e6xxx_g1_irq_bus_sync_unlock,
};

static int mv88e6xxx_g1_irq_domain_map(struct irq_domain *d,
				       unsigned int irq,
				       irq_hw_number_t hwirq)
{
	struct mv88e6xxx_chip *chip = d->host_data;

	irq_set_chip_data(irq, d->host_data);
	irq_set_chip_and_handler(irq, &chip->g1_irq.chip, handle_level_irq);
	irq_set_noprobe(irq);

	return 0;
}

static const struct irq_domain_ops mv88e6xxx_g1_irq_domain_ops = {
	.map	= mv88e6xxx_g1_irq_domain_map,
	.xlate	= irq_domain_xlate_twocell,
};

static void mv88e6xxx_g1_irq_free(struct mv88e6xxx_chip *chip)
{
	int irq, virq;

	for (irq = 0; irq < 16; irq++) {
		virq = irq_find_mapping(chip->g2_irq.domain, irq);
		irq_dispose_mapping(virq);
	}

	irq_domain_remove(chip->g2_irq.domain);
}

static int mv88e6xxx_g1_irq_setup(struct mv88e6xxx_chip *chip)
{
	int err, irq;
	u16 reg;

	chip->g1_irq.nirqs = chip->info->g1_irqs;
	chip->g1_irq.domain = irq_domain_add_simple(
		NULL, chip->g1_irq.nirqs, 0,
		&mv88e6xxx_g1_irq_domain_ops, chip);
	if (!chip->g1_irq.domain)
		return -ENOMEM;

	for (irq = 0; irq < chip->g1_irq.nirqs; irq++)
		irq_create_mapping(chip->g1_irq.domain, irq);

	chip->g1_irq.chip = mv88e6xxx_g1_irq_chip;
	chip->g1_irq.masked = ~0;

	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err)
		goto out;

	reg &= ~GENMASK(chip->g1_irq.nirqs, 0);

	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
	if (err)
		goto out;

	/* Reading the interrupt status clears (most of) them */
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	if (err)
		goto out;

	err = request_threaded_irq(chip->irq, NULL,
				   mv88e6xxx_g1_irq_thread_fn,
				   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
				   dev_name(chip->dev), chip);
	if (err)
		goto out;

	return 0;

out:
	mv88e6xxx_g1_irq_free(chip);

	return err;
}

473
int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg, u16 mask)
474
{
475
	int i;
476

477
	for (i = 0; i < 16; i++) {
478 479 480 481 482 483 484 485 486 487 488 489 490
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

491
	dev_err(chip->dev, "Timeout while waiting for switch\n");
492 493 494
	return -ETIMEDOUT;
}

495
/* Indirect write to single pointer-data register with an Update bit */
496
int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg, u16 update)
497 498
{
	u16 val;
499
	int err;
500 501

	/* Wait until the previous operation is completed */
502 503 504
	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
	if (err)
		return err;
505 506 507 508 509 510 511

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

512
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
513 514
{
	u16 val;
515
	int i, err;
516

517
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
518 519 520
	if (err)
		return err;

521 522 523 524
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val & ~GLOBAL_CONTROL_PPU_ENABLE);
	if (err)
		return err;
525

526
	for (i = 0; i < 16; i++) {
527 528 529
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
530

531
		usleep_range(1000, 2000);
532
		if ((val & GLOBAL_STATUS_PPU_MASK) != GLOBAL_STATUS_PPU_POLLING)
533
			return 0;
534 535 536 537 538
	}

	return -ETIMEDOUT;
}

539
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
540
{
541 542
	u16 val;
	int i, err;
543

544 545 546
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
	if (err)
		return err;
547

548 549
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val | GLOBAL_CONTROL_PPU_ENABLE);
550 551
	if (err)
		return err;
552

553
	for (i = 0; i < 16; i++) {
554 555 556
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
557

558
		usleep_range(1000, 2000);
559
		if ((val & GLOBAL_STATUS_PPU_MASK) == GLOBAL_STATUS_PPU_POLLING)
560
			return 0;
561 562 563 564 565 566 567
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
568
	struct mv88e6xxx_chip *chip;
569

570
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
571

572
	mutex_lock(&chip->reg_lock);
573

574 575 576 577
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
578
	}
579

580
	mutex_unlock(&chip->reg_lock);
581 582 583 584
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
585
	struct mv88e6xxx_chip *chip = (void *)_ps;
586

587
	schedule_work(&chip->ppu_work);
588 589
}

590
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
591 592 593
{
	int ret;

594
	mutex_lock(&chip->ppu_mutex);
595

596
	/* If the PHY polling unit is enabled, disable it so that
597 598 599 600
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
601 602
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
603
		if (ret < 0) {
604
			mutex_unlock(&chip->ppu_mutex);
605 606
			return ret;
		}
607
		chip->ppu_disabled = 1;
608
	} else {
609
		del_timer(&chip->ppu_timer);
610
		ret = 0;
611 612 613 614 615
	}

	return ret;
}

616
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
617
{
618
	/* Schedule a timer to re-enable the PHY polling unit. */
619 620
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
621 622
}

623
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
624
{
625 626
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
627 628
	setup_timer(&chip->ppu_timer, mv88e6xxx_ppu_reenable_timer,
		    (unsigned long)chip);
629 630
}

631 632 633 634 635
static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
{
	del_timer_sync(&chip->ppu_timer);
}

636 637
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
638
{
639
	int err;
640

641 642 643
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
644
		mv88e6xxx_ppu_access_put(chip);
645 646
	}

647
	return err;
648 649
}

650 651
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
652
{
653
	int err;
654

655 656 657
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
658
		mv88e6xxx_ppu_access_put(chip);
659 660
	}

661
	return err;
662 663
}

664
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
665
{
666
	return chip->info->family == MV88E6XXX_FAMILY_6065;
667 668
}

669
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
670
{
671
	return chip->info->family == MV88E6XXX_FAMILY_6095;
672 673
}

674
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
675
{
676
	return chip->info->family == MV88E6XXX_FAMILY_6097;
677 678
}

679
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
680
{
681
	return chip->info->family == MV88E6XXX_FAMILY_6165;
682 683
}

684
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
685
{
686
	return chip->info->family == MV88E6XXX_FAMILY_6185;
687 688
}

689
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
690
{
691
	return chip->info->family == MV88E6XXX_FAMILY_6320;
692 693
}

694
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
695
{
696
	return chip->info->family == MV88E6XXX_FAMILY_6351;
697 698
}

699
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
700
{
701
	return chip->info->family == MV88E6XXX_FAMILY_6352;
702 703
}

704 705 706 707
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
708 709
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
710
{
V
Vivien Didelot 已提交
711
	struct mv88e6xxx_chip *chip = ds->priv;
712 713
	u16 reg;
	int err;
714 715 716 717

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

718
	mutex_lock(&chip->reg_lock);
719

720 721
	err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
	if (err)
722 723
		goto out;

724 725 726 727 728
	reg &= ~(PORT_PCS_CTRL_LINK_UP |
		 PORT_PCS_CTRL_FORCE_LINK |
		 PORT_PCS_CTRL_DUPLEX_FULL |
		 PORT_PCS_CTRL_FORCE_DUPLEX |
		 PORT_PCS_CTRL_UNFORCED);
729 730 731

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
732
		reg |= PORT_PCS_CTRL_LINK_UP;
733

734
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

756
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
757
	    (port >= mv88e6xxx_num_ports(chip) - 2)) {
758 759 760 761 762 763 764 765
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
766
	mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
767 768

out:
769
	mutex_unlock(&chip->reg_lock);
770 771
}

772
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
773
{
774 775
	u16 val;
	int i, err;
776 777

	for (i = 0; i < 10; i++) {
778 779
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_OP, &val);
		if ((val & GLOBAL_STATS_OP_BUSY) == 0)
780 781 782 783 784 785
			return 0;
	}

	return -ETIMEDOUT;
}

786
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
787
{
788
	int err;
789

790
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
791 792
		port = (port + 1) << 5;

793
	/* Snapshot the hardware statistics counters for this port. */
794 795 796 797 798
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_CAPTURE_PORT |
				 GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (err)
		return err;
799

800
	/* Wait for the snapshotting to complete. */
801
	return _mv88e6xxx_stats_wait(chip);
802 803
}

804
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
805
				  int stat, u32 *val)
806
{
807 808 809
	u32 value;
	u16 reg;
	int err;
810 811 812

	*val = 0;

813 814 815 816
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_READ_CAPTURED |
				 GLOBAL_STATS_OP_HIST_RX_TX | stat);
	if (err)
817 818
		return;

819 820
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
821 822
		return;

823 824
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_32, &reg);
	if (err)
825 826
		return;

827
	value = reg << 16;
828

829 830
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_01, &reg);
	if (err)
831 832
		return;

833
	*val = value | reg;
834 835
}

836
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
896 897
};

898
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
899
			       struct mv88e6xxx_hw_stat *stat)
900
{
901 902
	switch (stat->type) {
	case BANK0:
903
		return true;
904
	case BANK1:
905
		return mv88e6xxx_6320_family(chip);
906
	case PORT:
907 908 909 910 911 912
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
913
	}
914
	return false;
915 916
}

917
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
918
					    struct mv88e6xxx_hw_stat *s,
919 920 921 922
					    int port)
{
	u32 low;
	u32 high = 0;
923 924
	int err;
	u16 reg;
925 926
	u64 value;

927 928
	switch (s->type) {
	case PORT:
929 930
		err = mv88e6xxx_port_read(chip, port, s->reg, &reg);
		if (err)
931 932
			return UINT64_MAX;

933
		low = reg;
934
		if (s->sizeof_stat == 4) {
935 936
			err = mv88e6xxx_port_read(chip, port, s->reg + 1, &reg);
			if (err)
937
				return UINT64_MAX;
938
			high = reg;
939
		}
940 941 942
		break;
	case BANK0:
	case BANK1:
943
		_mv88e6xxx_stats_read(chip, s->reg, &low);
944
		if (s->sizeof_stat == 8)
945
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
946 947 948 949 950
	}
	value = (((u64)high) << 16) | low;
	return value;
}

951 952
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
953
{
V
Vivien Didelot 已提交
954
	struct mv88e6xxx_chip *chip = ds->priv;
955 956
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
957

958 959
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
960
		if (mv88e6xxx_has_stat(chip, stat)) {
961 962 963 964
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
965
	}
966 967
}

968
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
969
{
V
Vivien Didelot 已提交
970
	struct mv88e6xxx_chip *chip = ds->priv;
971 972 973 974 975
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
976
		if (mv88e6xxx_has_stat(chip, stat))
977 978 979
			j++;
	}
	return j;
980 981
}

982 983
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
984
{
V
Vivien Didelot 已提交
985
	struct mv88e6xxx_chip *chip = ds->priv;
986 987 988 989
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

990
	mutex_lock(&chip->reg_lock);
991

992
	ret = _mv88e6xxx_stats_snapshot(chip, port);
993
	if (ret < 0) {
994
		mutex_unlock(&chip->reg_lock);
995 996 997 998
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
999 1000
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
1001 1002 1003 1004
			j++;
		}
	}

1005
	mutex_unlock(&chip->reg_lock);
1006 1007
}

1008
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
1009 1010 1011 1012
{
	return 32 * sizeof(u16);
}

1013 1014
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
1015
{
V
Vivien Didelot 已提交
1016
	struct mv88e6xxx_chip *chip = ds->priv;
1017 1018
	int err;
	u16 reg;
1019 1020 1021 1022 1023 1024 1025
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

1026
	mutex_lock(&chip->reg_lock);
1027

1028 1029
	for (i = 0; i < 32; i++) {

1030 1031 1032
		err = mv88e6xxx_port_read(chip, port, i, &reg);
		if (!err)
			p[i] = reg;
1033
	}
1034

1035
	mutex_unlock(&chip->reg_lock);
1036 1037
}

1038
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
1039
{
1040
	return mv88e6xxx_g1_wait(chip, GLOBAL_ATU_OP, GLOBAL_ATU_OP_BUSY);
1041 1042
}

1043 1044
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
1045
{
V
Vivien Didelot 已提交
1046
	struct mv88e6xxx_chip *chip = ds->priv;
1047 1048
	u16 reg;
	int err;
1049

1050
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1051 1052
		return -EOPNOTSUPP;

1053
	mutex_lock(&chip->reg_lock);
1054

1055 1056
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1057
		goto out;
1058 1059 1060 1061

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

1062
	err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
1063
	if (err)
1064
		goto out;
1065

1066
	e->eee_active = !!(reg & PORT_STATUS_EEE);
1067
out:
1068
	mutex_unlock(&chip->reg_lock);
1069 1070

	return err;
1071 1072
}

1073 1074
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
1075
{
V
Vivien Didelot 已提交
1076
	struct mv88e6xxx_chip *chip = ds->priv;
1077 1078
	u16 reg;
	int err;
1079

1080
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1081 1082
		return -EOPNOTSUPP;

1083
	mutex_lock(&chip->reg_lock);
1084

1085 1086
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1087 1088
		goto out;

1089
	reg &= ~0x0300;
1090 1091 1092 1093 1094
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

1095
	err = mv88e6xxx_phy_write(chip, port, 16, reg);
1096
out:
1097
	mutex_unlock(&chip->reg_lock);
1098

1099
	return err;
1100 1101
}

1102
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
1103
{
1104 1105
	u16 val;
	int err;
1106

1107
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_ATU_FID)) {
1108 1109 1110
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_FID, fid);
		if (err)
			return err;
1111
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1112
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
1113 1114 1115
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
		if (err)
			return err;
1116

1117 1118 1119 1120
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
					 (val & 0xfff) | ((fid << 8) & 0xf000));
		if (err)
			return err;
1121 1122 1123

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1124 1125
	}

1126 1127 1128
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_OP, cmd);
	if (err)
		return err;
1129

1130
	return _mv88e6xxx_atu_wait(chip);
1131 1132
}

1133
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1153
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_DATA, data);
1154 1155
}

1156
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1157 1158
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1159
{
1160 1161
	int op;
	int err;
1162

1163
	err = _mv88e6xxx_atu_wait(chip);
1164 1165
	if (err)
		return err;
1166

1167
	err = _mv88e6xxx_atu_data_write(chip, entry);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1179
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1180 1181
}

1182
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1183
				u16 fid, bool static_too)
1184 1185 1186 1187 1188
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1189

1190
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1191 1192
}

1193
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1194
			       int from_port, int to_port, bool static_too)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1208
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1209 1210
}

1211
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1212
				 int port, bool static_too)
1213 1214
{
	/* Destination port 0xF means remove the entries */
1215
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1216 1217
}

1218
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1219
{
1220 1221
	struct net_device *bridge = chip->ports[port].bridge_dev;
	struct dsa_switch *ds = chip->ds;
1222 1223 1224 1225 1226
	u16 output_ports = 0;
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1227
		output_ports = ~0;
1228
	} else {
1229
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1230
			/* allow sending frames to every group member */
1231
			if (bridge && chip->ports[i].bridge_dev == bridge)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1242

1243
	return mv88e6xxx_port_set_vlan_map(chip, port, output_ports);
1244 1245
}

1246 1247
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1248
{
V
Vivien Didelot 已提交
1249
	struct mv88e6xxx_chip *chip = ds->priv;
1250
	int stp_state;
1251
	int err;
1252 1253 1254

	switch (state) {
	case BR_STATE_DISABLED:
1255
		stp_state = PORT_CONTROL_STATE_DISABLED;
1256 1257 1258
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1259
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1260 1261
		break;
	case BR_STATE_LEARNING:
1262
		stp_state = PORT_CONTROL_STATE_LEARNING;
1263 1264 1265
		break;
	case BR_STATE_FORWARDING:
	default:
1266
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1267 1268 1269
		break;
	}

1270
	mutex_lock(&chip->reg_lock);
1271
	err = mv88e6xxx_port_set_state(chip, port, stp_state);
1272
	mutex_unlock(&chip->reg_lock);
1273 1274

	if (err)
1275
		netdev_err(ds->ports[port].netdev, "failed to update state\n");
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static void mv88e6xxx_port_fast_age(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_chip *chip = ds->priv;
	int err;

	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_atu_remove(chip, 0, port, false);
	mutex_unlock(&chip->reg_lock);

	if (err)
		netdev_err(ds->ports[port].netdev, "failed to flush ATU\n");
}

1291
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1292
{
1293
	return mv88e6xxx_g1_wait(chip, GLOBAL_VTU_OP, GLOBAL_VTU_OP_BUSY);
1294 1295
}

1296
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1297
{
1298
	int err;
1299

1300 1301 1302
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_OP, op);
	if (err)
		return err;
1303

1304
	return _mv88e6xxx_vtu_wait(chip);
1305 1306
}

1307
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1308 1309 1310
{
	int ret;

1311
	ret = _mv88e6xxx_vtu_wait(chip);
1312 1313 1314
	if (ret < 0)
		return ret;

1315
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1316 1317
}

1318
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1319
					struct mv88e6xxx_vtu_entry *entry,
1320 1321 1322
					unsigned int nibble_offset)
{
	u16 regs[3];
1323
	int i, err;
1324 1325

	for (i = 0; i < 3; ++i) {
1326
		u16 *reg = &regs[i];
1327

1328 1329 1330
		err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1331 1332
	}

1333
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1334 1335 1336 1337 1338 1339 1340 1341 1342
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1343
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1344
				   struct mv88e6xxx_vtu_entry *entry)
1345
{
1346
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1347 1348
}

1349
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1350
				   struct mv88e6xxx_vtu_entry *entry)
1351
{
1352
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1353 1354
}

1355
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1356
					 struct mv88e6xxx_vtu_entry *entry,
1357 1358 1359
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
1360
	int i, err;
1361

1362
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1363 1364 1365 1366 1367 1368 1369
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1370 1371 1372 1373 1374
		u16 reg = regs[i];

		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1375 1376 1377 1378 1379
	}

	return 0;
}

1380
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1381
				    struct mv88e6xxx_vtu_entry *entry)
1382
{
1383
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1384 1385
}

1386
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1387
				    struct mv88e6xxx_vtu_entry *entry)
1388
{
1389
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1390 1391
}

1392
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1393
{
1394 1395
	return mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID,
				  vid & GLOBAL_VTU_VID_MASK);
1396 1397
}

1398
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1399
				  struct mv88e6xxx_vtu_entry *entry)
1400
{
1401
	struct mv88e6xxx_vtu_entry next = { 0 };
1402 1403
	u16 val;
	int err;
1404

1405 1406 1407
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1408

1409 1410 1411
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (err)
		return err;
1412

1413 1414 1415
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1416

1417 1418
	next.vid = val & GLOBAL_VTU_VID_MASK;
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1419 1420

	if (next.valid) {
1421 1422 1423
		err = mv88e6xxx_vtu_data_read(chip, &next);
		if (err)
			return err;
1424

1425
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1426 1427 1428
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_FID, &val);
			if (err)
				return err;
1429

1430
			next.fid = val & GLOBAL_VTU_FID_MASK;
1431
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1432 1433 1434
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1435 1436 1437
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_OP, &val);
			if (err)
				return err;
1438

1439 1440
			next.fid = (val & 0xf00) >> 4;
			next.fid |= val & 0xf;
1441
		}
1442

1443
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1444 1445 1446
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
			if (err)
				return err;
1447

1448
			next.sid = val & GLOBAL_VTU_SID_MASK;
1449 1450 1451 1452 1453 1454 1455
		}
	}

	*entry = next;
	return 0;
}

1456 1457 1458
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1459
{
V
Vivien Didelot 已提交
1460
	struct mv88e6xxx_chip *chip = ds->priv;
1461
	struct mv88e6xxx_vtu_entry next;
1462 1463 1464
	u16 pvid;
	int err;

1465
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1466 1467
		return -EOPNOTSUPP;

1468
	mutex_lock(&chip->reg_lock);
1469

1470
	err = mv88e6xxx_port_get_pvid(chip, port, &pvid);
1471 1472 1473
	if (err)
		goto unlock;

1474
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1475 1476 1477 1478
	if (err)
		goto unlock;

	do {
1479
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1490 1491
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1506
	mutex_unlock(&chip->reg_lock);
1507 1508 1509 1510

	return err;
}

1511
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1512
				    struct mv88e6xxx_vtu_entry *entry)
1513
{
1514
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1515
	u16 reg = 0;
1516
	int err;
1517

1518 1519 1520
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1521 1522 1523 1524 1525

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1526 1527 1528
	err = mv88e6xxx_vtu_data_write(chip, entry);
	if (err)
		return err;
1529

1530
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1531
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1532 1533 1534
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
		if (err)
			return err;
1535
	}
1536

1537
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1538
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1539 1540 1541
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_FID, reg);
		if (err)
			return err;
1542
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1543 1544 1545 1546 1547
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1548 1549 1550 1551 1552
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1553 1554 1555
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1556

1557
	return _mv88e6xxx_vtu_cmd(chip, op);
1558 1559
}

1560
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1561
				  struct mv88e6xxx_vtu_entry *entry)
1562
{
1563
	struct mv88e6xxx_vtu_entry next = { 0 };
1564 1565
	u16 val;
	int err;
1566

1567 1568 1569
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1570

1571 1572 1573 1574
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID,
				 sid & GLOBAL_VTU_SID_MASK);
	if (err)
		return err;
1575

1576 1577 1578
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (err)
		return err;
1579

1580 1581 1582
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
	if (err)
		return err;
1583

1584
	next.sid = val & GLOBAL_VTU_SID_MASK;
1585

1586 1587 1588
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1589

1590
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1591 1592

	if (next.valid) {
1593 1594 1595
		err = mv88e6xxx_stu_data_read(chip, &next);
		if (err)
			return err;
1596 1597 1598 1599 1600 1601
	}

	*entry = next;
	return 0;
}

1602
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1603
				    struct mv88e6xxx_vtu_entry *entry)
1604 1605
{
	u16 reg = 0;
1606
	int err;
1607

1608 1609 1610
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1611 1612 1613 1614 1615

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1616 1617 1618
	err = mv88e6xxx_stu_data_write(chip, entry);
	if (err)
		return err;
1619 1620 1621

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1622 1623 1624
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1625 1626

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1627 1628 1629
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
	if (err)
		return err;
1630

1631
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1632 1633
}

1634
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1635 1636
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1637
	struct mv88e6xxx_vtu_entry vlan;
1638
	int i, err;
1639 1640 1641

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1642
	/* Set every FID bit used by the (un)bridged ports */
1643
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1644
		err = mv88e6xxx_port_get_fid(chip, i, fid);
1645 1646 1647 1648 1649 1650
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1651
	/* Set every FID bit used by the VLAN entries */
1652
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1653 1654 1655 1656
	if (err)
		return err;

	do {
1657
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1671
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1672 1673 1674
		return -ENOSPC;

	/* Clear the database */
1675
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1676 1677
}

1678
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1679
			      struct mv88e6xxx_vtu_entry *entry)
1680
{
1681
	struct dsa_switch *ds = chip->ds;
1682
	struct mv88e6xxx_vtu_entry vlan = {
1683 1684 1685
		.valid = true,
		.vid = vid,
	};
1686 1687
	int i, err;

1688
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1689 1690
	if (err)
		return err;
1691

1692
	/* exclude all ports except the CPU and DSA ports */
1693
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
1694 1695 1696
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1697

1698 1699
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1700
		struct mv88e6xxx_vtu_entry vstp;
1701 1702 1703 1704 1705 1706

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1707
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1708 1709 1710 1711 1712 1713 1714 1715
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1716
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1717 1718 1719 1720 1721 1722 1723 1724 1725
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1726
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1727
			      struct mv88e6xxx_vtu_entry *entry, bool creat)
1728 1729 1730 1731 1732 1733
{
	int err;

	if (!vid)
		return -EINVAL;

1734
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1735 1736 1737
	if (err)
		return err;

1738
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1749
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1750 1751 1752 1753 1754
	}

	return err;
}

1755 1756 1757
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
V
Vivien Didelot 已提交
1758
	struct mv88e6xxx_chip *chip = ds->priv;
1759
	struct mv88e6xxx_vtu_entry vlan;
1760 1761 1762 1763 1764
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1765
	mutex_lock(&chip->reg_lock);
1766

1767
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1768 1769 1770 1771
	if (err)
		goto unlock;

	do {
1772
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1773 1774 1775 1776 1777 1778 1779 1780 1781
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1782
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1783 1784 1785 1786 1787 1788 1789
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1790 1791
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1792 1793
				break; /* same bridge, check next VLAN */

1794
			netdev_warn(ds->ports[port].netdev,
1795 1796
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1797
				    netdev_name(chip->ports[i].bridge_dev));
1798 1799 1800 1801 1802 1803
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1804
	mutex_unlock(&chip->reg_lock);
1805 1806 1807 1808

	return err;
}

1809 1810
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1811
{
V
Vivien Didelot 已提交
1812
	struct mv88e6xxx_chip *chip = ds->priv;
1813
	u16 mode = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1814
		PORT_CONTROL_2_8021Q_DISABLED;
1815
	int err;
1816

1817
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1818 1819
		return -EOPNOTSUPP;

1820
	mutex_lock(&chip->reg_lock);
1821
	err = mv88e6xxx_port_set_8021q_mode(chip, port, mode);
1822
	mutex_unlock(&chip->reg_lock);
1823

1824
	return err;
1825 1826
}

1827 1828 1829 1830
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1831
{
V
Vivien Didelot 已提交
1832
	struct mv88e6xxx_chip *chip = ds->priv;
1833 1834
	int err;

1835
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1836 1837
		return -EOPNOTSUPP;

1838 1839 1840 1841 1842 1843 1844 1845
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1846 1847 1848 1849 1850 1851
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1852
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1853
				    u16 vid, bool untagged)
1854
{
1855
	struct mv88e6xxx_vtu_entry vlan;
1856 1857
	int err;

1858
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1859
	if (err)
1860
		return err;
1861 1862 1863 1864 1865

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1866
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1867 1868
}

1869 1870 1871
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1872
{
V
Vivien Didelot 已提交
1873
	struct mv88e6xxx_chip *chip = ds->priv;
1874 1875 1876 1877
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1878
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1879 1880
		return;

1881
	mutex_lock(&chip->reg_lock);
1882

1883
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1884
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1885 1886
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1887
				   vid, untagged ? 'u' : 't');
1888

1889
	if (pvid && mv88e6xxx_port_set_pvid(chip, port, vlan->vid_end))
1890
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1891
			   vlan->vid_end);
1892

1893
	mutex_unlock(&chip->reg_lock);
1894 1895
}

1896
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1897
				    int port, u16 vid)
1898
{
1899
	struct dsa_switch *ds = chip->ds;
1900
	struct mv88e6xxx_vtu_entry vlan;
1901 1902
	int i, err;

1903
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1904
	if (err)
1905
		return err;
1906

1907 1908
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1909
		return -EOPNOTSUPP;
1910 1911 1912 1913

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1914
	vlan.valid = false;
1915
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1916
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1917 1918 1919
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1920
			vlan.valid = true;
1921 1922 1923 1924
			break;
		}
	}

1925
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1926 1927 1928
	if (err)
		return err;

1929
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1930 1931
}

1932 1933
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
1934
{
V
Vivien Didelot 已提交
1935
	struct mv88e6xxx_chip *chip = ds->priv;
1936 1937 1938
	u16 pvid, vid;
	int err = 0;

1939
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1940 1941
		return -EOPNOTSUPP;

1942
	mutex_lock(&chip->reg_lock);
1943

1944
	err = mv88e6xxx_port_get_pvid(chip, port, &pvid);
1945 1946 1947
	if (err)
		goto unlock;

1948
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1949
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
1950 1951 1952 1953
		if (err)
			goto unlock;

		if (vid == pvid) {
1954
			err = mv88e6xxx_port_set_pvid(chip, port, 0);
1955 1956 1957 1958 1959
			if (err)
				goto unlock;
		}
	}

1960
unlock:
1961
	mutex_unlock(&chip->reg_lock);
1962 1963 1964 1965

	return err;
}

1966
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
1967
				    const unsigned char *addr)
1968
{
1969
	int i, err;
1970 1971

	for (i = 0; i < 3; i++) {
1972 1973 1974 1975
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_MAC_01 + i,
					 (addr[i * 2] << 8) | addr[i * 2 + 1]);
		if (err)
			return err;
1976 1977 1978 1979 1980
	}

	return 0;
}

1981
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
1982
				   unsigned char *addr)
1983
{
1984 1985
	u16 val;
	int i, err;
1986 1987

	for (i = 0; i < 3; i++) {
1988 1989 1990 1991 1992 1993
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_MAC_01 + i, &val);
		if (err)
			return err;

		addr[i * 2] = val >> 8;
		addr[i * 2 + 1] = val & 0xff;
1994 1995 1996 1997 1998
	}

	return 0;
}

1999
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2000
			       struct mv88e6xxx_atu_entry *entry)
2001
{
2002 2003
	int ret;

2004
	ret = _mv88e6xxx_atu_wait(chip);
2005 2006 2007
	if (ret < 0)
		return ret;

2008
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2009 2010 2011
	if (ret < 0)
		return ret;

2012
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2013
	if (ret < 0)
2014 2015
		return ret;

2016
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2017
}
2018

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
				  struct mv88e6xxx_atu_entry *entry);

static int mv88e6xxx_atu_get(struct mv88e6xxx_chip *chip, int fid,
			     const u8 *addr, struct mv88e6xxx_atu_entry *entry)
{
	struct mv88e6xxx_atu_entry next;
	int err;

	eth_broadcast_addr(next.mac);

	err = _mv88e6xxx_atu_mac_write(chip, next.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(chip, fid, &next);
		if (err)
			return err;

		if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (ether_addr_equal(next.mac, addr)) {
			*entry = next;
			return 0;
		}
	} while (!is_broadcast_ether_addr(next.mac));

	memset(entry, 0, sizeof(*entry));
	entry->fid = fid;
	ether_addr_copy(entry->mac, addr);

	return 0;
}

2055 2056 2057
static int mv88e6xxx_port_db_load_purge(struct mv88e6xxx_chip *chip, int port,
					const unsigned char *addr, u16 vid,
					u8 state)
2058
{
2059
	struct mv88e6xxx_vtu_entry vlan;
2060
	struct mv88e6xxx_atu_entry entry;
2061 2062
	int err;

2063 2064
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2065
		err = mv88e6xxx_port_get_fid(chip, port, &vlan.fid);
2066
	else
2067
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2068 2069
	if (err)
		return err;
2070

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	err = mv88e6xxx_atu_get(chip, vlan.fid, addr, &entry);
	if (err)
		return err;

	/* Purge the ATU entry only if no port is using it anymore */
	if (state == GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.portv_trunkid &= ~BIT(port);
		if (!entry.portv_trunkid)
			entry.state = GLOBAL_ATU_DATA_STATE_UNUSED;
	} else {
		entry.portv_trunkid |= BIT(port);
		entry.state = state;
2083 2084
	}

2085
	return _mv88e6xxx_atu_load(chip, &entry);
2086 2087
}

2088 2089 2090
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2091 2092 2093 2094 2095 2096 2097
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2098 2099 2100
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2101
{
V
Vivien Didelot 已提交
2102
	struct mv88e6xxx_chip *chip = ds->priv;
2103

2104
	mutex_lock(&chip->reg_lock);
2105 2106 2107
	if (mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					 GLOBAL_ATU_DATA_STATE_UC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load unicast MAC address\n");
2108
	mutex_unlock(&chip->reg_lock);
2109 2110
}

2111 2112
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2113
{
V
Vivien Didelot 已提交
2114
	struct mv88e6xxx_chip *chip = ds->priv;
2115
	int err;
2116

2117
	mutex_lock(&chip->reg_lock);
2118 2119
	err = mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
2120
	mutex_unlock(&chip->reg_lock);
2121

2122
	return err;
2123 2124
}

2125
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2126
				  struct mv88e6xxx_atu_entry *entry)
2127
{
2128
	struct mv88e6xxx_atu_entry next = { 0 };
2129 2130
	u16 val;
	int err;
2131 2132

	next.fid = fid;
2133

2134 2135 2136
	err = _mv88e6xxx_atu_wait(chip);
	if (err)
		return err;
2137

2138 2139 2140
	err = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
	if (err)
		return err;
2141

2142 2143 2144
	err = _mv88e6xxx_atu_mac_read(chip, next.mac);
	if (err)
		return err;
2145

2146 2147 2148
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_DATA, &val);
	if (err)
		return err;
2149

2150
	next.state = val & GLOBAL_ATU_DATA_STATE_MASK;
2151 2152 2153
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

2154
		if (val & GLOBAL_ATU_DATA_TRUNK) {
2155 2156 2157 2158 2159 2160 2161 2162 2163
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

2164
		next.portv_trunkid = (val & mask) >> shift;
2165
	}
2166

2167
	*entry = next;
2168 2169 2170
	return 0;
}

2171 2172 2173 2174
static int mv88e6xxx_port_db_dump_fid(struct mv88e6xxx_chip *chip,
				      u16 fid, u16 vid, int port,
				      struct switchdev_obj *obj,
				      int (*cb)(struct switchdev_obj *obj))
2175 2176 2177 2178 2179 2180
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2181
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2182 2183 2184 2185
	if (err)
		return err;

	do {
2186
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2187
		if (err)
2188
			return err;
2189 2190 2191 2192

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

2193 2194 2195 2196 2197
		if (addr.trunk || (addr.portv_trunkid & BIT(port)) == 0)
			continue;

		if (obj->id == SWITCHDEV_OBJ_ID_PORT_FDB) {
			struct switchdev_obj_port_fdb *fdb;
2198

2199 2200 2201 2202
			if (!is_unicast_ether_addr(addr.mac))
				continue;

			fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
2203 2204
			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
2205 2206 2207 2208
			if (addr.state == GLOBAL_ATU_DATA_STATE_UC_STATIC)
				fdb->ndm_state = NUD_NOARP;
			else
				fdb->ndm_state = NUD_REACHABLE;
2209 2210 2211 2212 2213 2214 2215 2216 2217
		} else if (obj->id == SWITCHDEV_OBJ_ID_PORT_MDB) {
			struct switchdev_obj_port_mdb *mdb;

			if (!is_multicast_ether_addr(addr.mac))
				continue;

			mdb = SWITCHDEV_OBJ_PORT_MDB(obj);
			mdb->vid = vid;
			ether_addr_copy(mdb->addr, addr.mac);
2218 2219
		} else {
			return -EOPNOTSUPP;
2220
		}
2221 2222 2223 2224

		err = cb(obj);
		if (err)
			return err;
2225 2226 2227 2228 2229
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2230 2231 2232
static int mv88e6xxx_port_db_dump(struct mv88e6xxx_chip *chip, int port,
				  struct switchdev_obj *obj,
				  int (*cb)(struct switchdev_obj *obj))
2233
{
2234
	struct mv88e6xxx_vtu_entry vlan = {
2235 2236
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2237
	u16 fid;
2238 2239
	int err;

2240
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2241
	err = mv88e6xxx_port_get_fid(chip, port, &fid);
2242
	if (err)
2243
		return err;
2244

2245
	err = mv88e6xxx_port_db_dump_fid(chip, fid, 0, port, obj, cb);
2246
	if (err)
2247
		return err;
2248

2249
	/* Dump VLANs' Filtering Information Databases */
2250
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2251
	if (err)
2252
		return err;
2253 2254

	do {
2255
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2256
		if (err)
2257
			return err;
2258 2259 2260 2261

		if (!vlan.valid)
			break;

2262 2263
		err = mv88e6xxx_port_db_dump_fid(chip, vlan.fid, vlan.vid, port,
						 obj, cb);
2264
		if (err)
2265
			return err;
2266 2267
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

2268 2269 2270 2271 2272 2273 2274
	return err;
}

static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
2275
	struct mv88e6xxx_chip *chip = ds->priv;
2276 2277 2278 2279
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &fdb->obj, cb);
2280
	mutex_unlock(&chip->reg_lock);
2281 2282 2283 2284

	return err;
}

2285 2286
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2287
{
V
Vivien Didelot 已提交
2288
	struct mv88e6xxx_chip *chip = ds->priv;
2289
	int i, err = 0;
2290

2291
	mutex_lock(&chip->reg_lock);
2292

2293
	/* Assign the bridge and remap each port's VLANTable */
2294
	chip->ports[port].bridge_dev = bridge;
2295

2296
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
2297 2298
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2299 2300 2301 2302 2303
			if (err)
				break;
		}
	}

2304
	mutex_unlock(&chip->reg_lock);
2305

2306
	return err;
2307 2308
}

2309
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2310
{
V
Vivien Didelot 已提交
2311
	struct mv88e6xxx_chip *chip = ds->priv;
2312
	struct net_device *bridge = chip->ports[port].bridge_dev;
2313
	int i;
2314

2315
	mutex_lock(&chip->reg_lock);
2316

2317
	/* Unassign the bridge and remap each port's VLANTable */
2318
	chip->ports[port].bridge_dev = NULL;
2319

2320
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
2321 2322
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2323 2324
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2325

2326
	mutex_unlock(&chip->reg_lock);
2327 2328
}

2329
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2330
{
2331
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2332
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2333
	struct gpio_desc *gpiod = chip->reset;
2334
	unsigned long timeout;
2335
	u16 reg;
2336
	int err;
2337 2338 2339
	int i;

	/* Set all ports to the disabled state. */
2340
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2341 2342
		err = mv88e6xxx_port_set_state(chip, i,
					       PORT_CONTROL_STATE_DISABLED);
2343 2344
		if (err)
			return err;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2363
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc000);
2364
	else
2365
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc400);
2366 2367
	if (err)
		return err;
2368 2369 2370 2371

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2372 2373 2374
		err = mv88e6xxx_g1_read(chip, 0x00, &reg);
		if (err)
			return err;
2375

2376
		if ((reg & is_reset) == is_reset)
2377 2378 2379 2380
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
2381
		err = -ETIMEDOUT;
2382
	else
2383
		err = 0;
2384

2385
	return err;
2386 2387
}

2388
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2389
{
2390 2391
	u16 val;
	int err;
2392

2393 2394 2395 2396
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2397

2398 2399 2400
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2401 2402
	}

2403
	return err;
2404 2405
}

2406
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2407
{
2408
	struct dsa_switch *ds = chip->ds;
2409
	int err;
2410
	u16 reg;
2411

2412 2413 2414 2415
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2416 2417 2418 2419 2420 2421
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2422
		err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
2423
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2424
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2425 2426 2427 2428
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2429
			if (mv88e6xxx_6065_family(chip))
2430 2431 2432 2433 2434 2435 2436
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2437 2438 2439
		err = mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
		if (err)
			return err;
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2457 2458 2459 2460
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2461 2462 2463 2464
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2465
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2466
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2467
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2468 2469
		else
			reg |= PORT_CONTROL_DSA_TAG;
2470 2471
		reg |= PORT_CONTROL_EGRESS_ADD_TAG |
			PORT_CONTROL_FORWARD_UNKNOWN;
2472
	}
2473
	if (dsa_is_dsa_port(ds, port)) {
2474 2475
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2476
			reg |= PORT_CONTROL_DSA_TAG;
2477 2478 2479 2480 2481
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2482
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2483 2484
		}

2485 2486 2487 2488 2489
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2490 2491 2492
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL, reg);
		if (err)
			return err;
2493 2494
	}

2495 2496 2497
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2498
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
		if (err)
			return err;
		reg &= PORT_STATUS_CMODE_MASK;
		if ((reg == PORT_STATUS_CMODE_100BASE_X) ||
		    (reg == PORT_STATUS_CMODE_1000BASE_X) ||
		    (reg == PORT_STATUS_CMODE_SGMII)) {
			err = mv88e6xxx_serdes_power_on(chip);
			if (err < 0)
				return err;
2509 2510 2511
		}
	}

2512
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2513
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2514 2515 2516
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2517 2518
	 */
	reg = 0;
2519 2520 2521 2522
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2523 2524
		reg = PORT_CONTROL_2_MAP_DA;

2525 2526
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2527 2528
		reg |= PORT_CONTROL_2_JUMBO_10240;

2529
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2530 2531 2532 2533 2534 2535 2536 2537 2538
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2539
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2540

2541
	if (reg) {
2542 2543 2544
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
		if (err)
			return err;
2545 2546 2547 2548 2549 2550 2551
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2552
	reg = 1 << port;
2553 2554
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2555
		reg = 0;
2556

2557 2558 2559
	err = mv88e6xxx_port_write(chip, port, PORT_ASSOC_VECTOR, reg);
	if (err)
		return err;
2560 2561

	/* Egress rate control 2: disable egress rate control. */
2562 2563 2564
	err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL_2, 0x0000);
	if (err)
		return err;
2565

2566 2567 2568
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2569 2570 2571 2572
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2573 2574 2575
		err = mv88e6xxx_port_write(chip, port, PORT_PAUSE_CTRL, 0x0000);
		if (err)
			return err;
2576 2577 2578 2579 2580

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2581 2582
		err = mv88e6xxx_port_write(chip, port, PORT_ATU_CONTROL,
					   0x0000);
2583 2584 2585
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2586 2587 2588 2589
		err = mv88e6xxx_port_write(chip, port, PORT_PRI_OVERRIDE,
					   0x0000);
		if (err)
			return err;
2590 2591 2592 2593

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2594
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
2595 2596 2597 2598
			err = mv88e6xxx_port_write(chip, port, PORT_ETH_TYPE,
						   ETH_P_EDSA);
			if (err)
				return err;
2599 2600
		}

2601 2602 2603
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2604 2605 2606 2607
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_0123,
					   0x3210);
		if (err)
			return err;
2608 2609 2610 2611

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2612 2613 2614 2615
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_4567,
					   0x7654);
		if (err)
			return err;
2616 2617
	}

2618
	/* Rate Control: disable ingress rate limiting. */
2619 2620 2621
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2622 2623 2624 2625
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0001);
		if (err)
			return err;
2626
	} else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
2627 2628 2629 2630
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0000);
		if (err)
			return err;
2631 2632
	}

2633 2634
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2635
	 */
2636 2637 2638
	err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, 0x0000);
	if (err)
		return err;
2639

2640
	/* Port based VLAN map: give each port the same default address
2641 2642
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2643
	 */
2644
	err = mv88e6xxx_port_set_fid(chip, port, 0);
2645 2646
	if (err)
		return err;
2647

2648 2649 2650
	err = _mv88e6xxx_port_based_vlan_map(chip, port);
	if (err)
		return err;
2651 2652 2653 2654

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2655
	return mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, 0x0000);
2656 2657
}

2658
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2659 2660 2661
{
	int err;

2662
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
2663 2664 2665
	if (err)
		return err;

2666
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
2667 2668 2669
	if (err)
		return err;

2670 2671 2672 2673 2674
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
	if (err)
		return err;

	return 0;
2675 2676
}

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

2693
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
2694 2695 2696 2697 2698 2699 2700
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

2701
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL, val);
2702 2703
}

2704 2705 2706
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
V
Vivien Didelot 已提交
2707
	struct mv88e6xxx_chip *chip = ds->priv;
2708 2709 2710 2711 2712 2713 2714 2715 2716
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2717
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2718
{
2719
	struct dsa_switch *ds = chip->ds;
2720
	u32 upstream_port = dsa_upstream_port(ds);
2721
	u16 reg;
2722
	int err;
2723

2724 2725 2726
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
2727 2728 2729 2730 2731
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err < 0)
		return err;

	reg &= ~GLOBAL_CONTROL_PPU_ENABLE;
2732 2733
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2734 2735
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2736
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
2737 2738 2739
	if (err)
		return err;

2740 2741 2742 2743 2744 2745
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2746
	err = mv88e6xxx_g1_write(chip, GLOBAL_MONITOR_CONTROL, reg);
2747 2748 2749
	if (err)
		return err;

2750
	/* Disable remote management, and set the switch's DSA device number. */
2751 2752 2753
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL_2,
				 GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				 (ds->index & 0x1f));
2754 2755 2756
	if (err)
		return err;

2757 2758 2759 2760 2761
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2762 2763 2764 2765
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2766 2767
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
				 GLOBAL_ATU_CONTROL_LEARN2ALL);
2768
	if (err)
2769
		return err;
2770

2771 2772
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2773 2774 2775 2776 2777 2778 2779
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2780
	/* Configure the IP ToS mapping registers. */
2781
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_0, 0x0000);
2782
	if (err)
2783
		return err;
2784
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_1, 0x0000);
2785
	if (err)
2786
		return err;
2787
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_2, 0x5555);
2788
	if (err)
2789
		return err;
2790
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_3, 0x5555);
2791
	if (err)
2792
		return err;
2793
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_4, 0xaaaa);
2794
	if (err)
2795
		return err;
2796
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_5, 0xaaaa);
2797
	if (err)
2798
		return err;
2799
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_6, 0xffff);
2800
	if (err)
2801
		return err;
2802
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_7, 0xffff);
2803
	if (err)
2804
		return err;
2805 2806

	/* Configure the IEEE 802.1p priority mapping register. */
2807
	err = mv88e6xxx_g1_write(chip, GLOBAL_IEEE_PRI, 0xfa41);
2808
	if (err)
2809
		return err;
2810

2811
	/* Clear the statistics counters for all ports */
2812 2813
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_FLUSH_ALL);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2825
static int mv88e6xxx_setup(struct dsa_switch *ds)
2826
{
V
Vivien Didelot 已提交
2827
	struct mv88e6xxx_chip *chip = ds->priv;
2828
	int err;
2829 2830
	int i;

2831 2832
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
2833

2834
	mutex_lock(&chip->reg_lock);
2835

2836
	/* Setup Switch Port Registers */
2837
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2838 2839 2840 2841 2842 2843 2844
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
2845 2846 2847
	if (err)
		goto unlock;

2848 2849 2850
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
2851 2852 2853
		if (err)
			goto unlock;
	}
2854

2855
unlock:
2856
	mutex_unlock(&chip->reg_lock);
2857

2858
	return err;
2859 2860
}

2861 2862
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
V
Vivien Didelot 已提交
2863
	struct mv88e6xxx_chip *chip = ds->priv;
2864 2865
	int err;

2866 2867
	if (!chip->info->ops->set_switch_mac)
		return -EOPNOTSUPP;
2868

2869 2870
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->set_switch_mac(chip, addr);
2871 2872 2873 2874 2875
	mutex_unlock(&chip->reg_lock);

	return err;
}

2876
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
2877
{
2878
	struct mv88e6xxx_chip *chip = bus->priv;
2879 2880
	u16 val;
	int err;
2881

2882
	if (phy >= mv88e6xxx_num_ports(chip))
2883
		return 0xffff;
2884

2885
	mutex_lock(&chip->reg_lock);
2886
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
2887
	mutex_unlock(&chip->reg_lock);
2888 2889

	return err ? err : val;
2890 2891
}

2892
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
2893
{
2894
	struct mv88e6xxx_chip *chip = bus->priv;
2895
	int err;
2896

2897
	if (phy >= mv88e6xxx_num_ports(chip))
2898
		return 0xffff;
2899

2900
	mutex_lock(&chip->reg_lock);
2901
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
2902
	mutex_unlock(&chip->reg_lock);
2903 2904

	return err;
2905 2906
}

2907
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
2908 2909 2910 2911 2912 2913 2914
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
2915
		chip->mdio_np = of_get_child_by_name(np, "mdio");
2916

2917
	bus = devm_mdiobus_alloc(chip->dev);
2918 2919 2920
	if (!bus)
		return -ENOMEM;

2921
	bus->priv = (void *)chip;
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
2932
	bus->parent = chip->dev;
2933

2934 2935
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
2936 2937 2938
	else
		err = mdiobus_register(bus);
	if (err) {
2939
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
2940 2941
		goto out;
	}
2942
	chip->mdio_bus = bus;
2943 2944 2945 2946

	return 0;

out:
2947 2948
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
2949 2950 2951 2952

	return err;
}

2953
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
2954 2955

{
2956
	struct mii_bus *bus = chip->mdio_bus;
2957 2958 2959

	mdiobus_unregister(bus);

2960 2961
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
2962 2963
}

2964 2965 2966 2967
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
2968
	struct mv88e6xxx_chip *chip = ds->priv;
2969
	u16 val;
2970 2971 2972 2973
	int ret;

	*temp = 0;

2974
	mutex_lock(&chip->reg_lock);
2975

2976
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
2977 2978 2979 2980
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
2981
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
2982 2983 2984
	if (ret < 0)
		goto error;

2985
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
2986 2987 2988 2989 2990 2991
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

2992 2993
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
	if (ret < 0)
2994 2995 2996
		goto error;

	/* Disable temperature sensor */
2997
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
2998 2999 3000 3001 3002 3003
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3004
	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3005
	mutex_unlock(&chip->reg_lock);
3006 3007 3008 3009 3010
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
3011
	struct mv88e6xxx_chip *chip = ds->priv;
3012
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3013
	u16 val;
3014 3015 3016 3017
	int ret;

	*temp = 0;

3018 3019 3020
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
	mutex_unlock(&chip->reg_lock);
3021 3022 3023
	if (ret < 0)
		return ret;

3024
	*temp = (val & 0xff) - 25;
3025 3026 3027 3028

	return 0;
}

3029
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3030
{
V
Vivien Didelot 已提交
3031
	struct mv88e6xxx_chip *chip = ds->priv;
3032

3033
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3034 3035
		return -EOPNOTSUPP;

3036
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3037 3038 3039 3040 3041
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3042
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3043
{
V
Vivien Didelot 已提交
3044
	struct mv88e6xxx_chip *chip = ds->priv;
3045
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3046
	u16 val;
3047 3048
	int ret;

3049
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3050 3051 3052 3053
		return -EOPNOTSUPP;

	*temp = 0;

3054 3055 3056
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3057 3058 3059
	if (ret < 0)
		return ret;

3060
	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3061 3062 3063 3064

	return 0;
}

3065
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3066
{
V
Vivien Didelot 已提交
3067
	struct mv88e6xxx_chip *chip = ds->priv;
3068
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3069 3070
	u16 val;
	int err;
3071

3072
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3073 3074
		return -EOPNOTSUPP;

3075 3076 3077 3078
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	if (err)
		goto unlock;
3079
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3080 3081 3082 3083 3084 3085
	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
				       (val & 0xe0ff) | (temp << 8));
unlock:
	mutex_unlock(&chip->reg_lock);

	return err;
3086 3087
}

3088
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3089
{
V
Vivien Didelot 已提交
3090
	struct mv88e6xxx_chip *chip = ds->priv;
3091
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3092
	u16 val;
3093 3094
	int ret;

3095
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3096 3097 3098 3099
		return -EOPNOTSUPP;

	*alarm = false;

3100 3101 3102
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3103 3104 3105
	if (ret < 0)
		return ret;

3106
	*alarm = !!(val & 0x40);
3107 3108 3109 3110 3111

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3112 3113
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3114
	struct mv88e6xxx_chip *chip = ds->priv;
3115 3116 3117 3118 3119 3120 3121

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3122
	struct mv88e6xxx_chip *chip = ds->priv;
3123 3124
	int err;

3125 3126
	if (!chip->info->ops->get_eeprom)
		return -EOPNOTSUPP;
3127

3128 3129
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->get_eeprom(chip, eeprom, data);
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3143
	struct mv88e6xxx_chip *chip = ds->priv;
3144 3145
	int err;

3146 3147 3148
	if (!chip->info->ops->set_eeprom)
		return -EOPNOTSUPP;

3149 3150 3151 3152
	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);
3153
	err = chip->info->ops->set_eeprom(chip, eeprom, data);
3154 3155 3156 3157 3158
	mutex_unlock(&chip->reg_lock);

	return err;
}

3159
static const struct mv88e6xxx_ops mv88e6085_ops = {
3160
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3161 3162 3163 3164 3165
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6095_ops = {
3166
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3167 3168 3169 3170 3171
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6123_ops = {
3172
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3173 3174 3175 3176 3177
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6131_ops = {
3178
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3179 3180 3181 3182 3183
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6161_ops = {
3184
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3185 3186 3187 3188 3189
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6165_ops = {
3190
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3191 3192 3193 3194 3195
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6171_ops = {
3196
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3197 3198 3199 3200 3201
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6172_ops = {
3202 3203
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3204
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3205 3206 3207 3208 3209
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6175_ops = {
3210
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3211 3212 3213 3214 3215
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6176_ops = {
3216 3217
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3218
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3219 3220 3221 3222 3223
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6185_ops = {
3224
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3225 3226 3227 3228 3229
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6240_ops = {
3230 3231
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3232
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3233 3234 3235 3236 3237
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6320_ops = {
3238 3239
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3240
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3241 3242 3243 3244 3245
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6321_ops = {
3246 3247
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3248
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3249 3250 3251 3252 3253
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6350_ops = {
3254
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3255 3256 3257 3258 3259
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6351_ops = {
3260
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3261 3262 3263 3264 3265
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6352_ops = {
3266 3267
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3268
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3269 3270 3271 3272
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

3273 3274 3275 3276 3277 3278 3279
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3280
		.port_base_addr = 0x10,
3281
		.global1_addr = 0x1b,
3282
		.age_time_coeff = 15000,
3283
		.g1_irqs = 8,
3284
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
3285
		.ops = &mv88e6085_ops,
3286 3287 3288 3289 3290 3291 3292 3293
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3294
		.port_base_addr = 0x10,
3295
		.global1_addr = 0x1b,
3296
		.age_time_coeff = 15000,
3297
		.g1_irqs = 8,
3298
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
3299
		.ops = &mv88e6095_ops,
3300 3301 3302 3303 3304 3305 3306 3307
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3308
		.port_base_addr = 0x10,
3309
		.global1_addr = 0x1b,
3310
		.age_time_coeff = 15000,
3311
		.g1_irqs = 9,
3312
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3313
		.ops = &mv88e6123_ops,
3314 3315 3316 3317 3318 3319 3320 3321
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3322
		.port_base_addr = 0x10,
3323
		.global1_addr = 0x1b,
3324
		.age_time_coeff = 15000,
3325
		.g1_irqs = 9,
3326
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3327
		.ops = &mv88e6131_ops,
3328 3329 3330 3331 3332 3333 3334 3335
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3336
		.port_base_addr = 0x10,
3337
		.global1_addr = 0x1b,
3338
		.age_time_coeff = 15000,
3339
		.g1_irqs = 9,
3340
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3341
		.ops = &mv88e6161_ops,
3342 3343 3344 3345 3346 3347 3348 3349
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3350
		.port_base_addr = 0x10,
3351
		.global1_addr = 0x1b,
3352
		.age_time_coeff = 15000,
3353
		.g1_irqs = 9,
3354
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3355
		.ops = &mv88e6165_ops,
3356 3357 3358 3359 3360 3361 3362 3363
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3364
		.port_base_addr = 0x10,
3365
		.global1_addr = 0x1b,
3366
		.age_time_coeff = 15000,
3367
		.g1_irqs = 9,
3368
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3369
		.ops = &mv88e6171_ops,
3370 3371 3372 3373 3374 3375 3376 3377
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3378
		.port_base_addr = 0x10,
3379
		.global1_addr = 0x1b,
3380
		.age_time_coeff = 15000,
3381
		.g1_irqs = 9,
3382
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3383
		.ops = &mv88e6172_ops,
3384 3385 3386 3387 3388 3389 3390 3391
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3392
		.port_base_addr = 0x10,
3393
		.global1_addr = 0x1b,
3394
		.age_time_coeff = 15000,
3395
		.g1_irqs = 9,
3396
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3397
		.ops = &mv88e6175_ops,
3398 3399 3400 3401 3402 3403 3404 3405
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3406
		.port_base_addr = 0x10,
3407
		.global1_addr = 0x1b,
3408
		.age_time_coeff = 15000,
3409
		.g1_irqs = 9,
3410
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3411
		.ops = &mv88e6176_ops,
3412 3413 3414 3415 3416 3417 3418 3419
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3420
		.port_base_addr = 0x10,
3421
		.global1_addr = 0x1b,
3422
		.age_time_coeff = 15000,
3423
		.g1_irqs = 8,
3424
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3425
		.ops = &mv88e6185_ops,
3426 3427 3428 3429 3430 3431 3432 3433
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3434
		.port_base_addr = 0x10,
3435
		.global1_addr = 0x1b,
3436
		.age_time_coeff = 15000,
3437
		.g1_irqs = 9,
3438
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3439
		.ops = &mv88e6240_ops,
3440 3441 3442 3443 3444 3445 3446 3447
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3448
		.port_base_addr = 0x10,
3449
		.global1_addr = 0x1b,
3450
		.age_time_coeff = 15000,
3451
		.g1_irqs = 8,
3452
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3453
		.ops = &mv88e6320_ops,
3454 3455 3456 3457 3458 3459 3460 3461
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3462
		.port_base_addr = 0x10,
3463
		.global1_addr = 0x1b,
3464
		.age_time_coeff = 15000,
3465
		.g1_irqs = 8,
3466
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3467
		.ops = &mv88e6321_ops,
3468 3469 3470 3471 3472 3473 3474 3475
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3476
		.port_base_addr = 0x10,
3477
		.global1_addr = 0x1b,
3478
		.age_time_coeff = 15000,
3479
		.g1_irqs = 9,
3480
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3481
		.ops = &mv88e6350_ops,
3482 3483 3484 3485 3486 3487 3488 3489
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3490
		.port_base_addr = 0x10,
3491
		.global1_addr = 0x1b,
3492
		.age_time_coeff = 15000,
3493
		.g1_irqs = 9,
3494
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3495
		.ops = &mv88e6351_ops,
3496 3497 3498 3499 3500 3501 3502 3503
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3504
		.port_base_addr = 0x10,
3505
		.global1_addr = 0x1b,
3506
		.age_time_coeff = 15000,
3507
		.g1_irqs = 9,
3508
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3509
		.ops = &mv88e6352_ops,
3510 3511 3512
	},
};

3513
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3514
{
3515
	int i;
3516

3517 3518 3519
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3520 3521 3522 3523

	return NULL;
}

3524
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3525 3526
{
	const struct mv88e6xxx_info *info;
3527 3528 3529
	unsigned int prod_num, rev;
	u16 id;
	int err;
3530

3531 3532 3533 3534 3535
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3536 3537 3538 3539 3540 3541 3542 3543

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3544
	/* Update the compatible info with the probed one */
3545
	chip->info = info;
3546

3547 3548 3549 3550
	err = mv88e6xxx_g2_require(chip);
	if (err)
		return err;

3551 3552
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3553 3554 3555 3556

	return 0;
}

3557
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3558
{
3559
	struct mv88e6xxx_chip *chip;
3560

3561 3562
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3563 3564
		return NULL;

3565
	chip->dev = dev;
3566

3567
	mutex_init(&chip->reg_lock);
3568

3569
	return chip;
3570 3571
}

3572 3573
static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
3574
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3575 3576 3577
		mv88e6xxx_ppu_state_init(chip);
}

3578 3579
static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
{
3580
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3581 3582 3583
		mv88e6xxx_ppu_state_destroy(chip);
}

3584
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3585 3586 3587 3588 3589 3590
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3591
	if (sw_addr == 0)
3592
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3593
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3594
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3595 3596 3597
	else
		return -EINVAL;

3598 3599
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3600 3601 3602 3603

	return 0;
}

3604 3605
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3606
	struct mv88e6xxx_chip *chip = ds->priv;
3607 3608 3609 3610 3611

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
		return DSA_TAG_PROTO_EDSA;

	return DSA_TAG_PROTO_DSA;
3612 3613
}

3614 3615 3616
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3617
{
3618
	struct mv88e6xxx_chip *chip;
3619
	struct mii_bus *bus;
3620
	int err;
3621

3622
	bus = dsa_host_dev_to_mii_bus(host_dev);
3623 3624 3625
	if (!bus)
		return NULL;

3626 3627
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3628 3629
		return NULL;

3630
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3631
	chip->info = &mv88e6xxx_table[MV88E6085];
3632

3633
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3634 3635 3636
	if (err)
		goto free;

3637
	err = mv88e6xxx_detect(chip);
3638
	if (err)
3639
		goto free;
3640

3641 3642 3643 3644 3645 3646
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto free;

3647 3648
	mv88e6xxx_phy_init(chip);

3649
	err = mv88e6xxx_mdio_register(chip, NULL);
3650
	if (err)
3651
		goto free;
3652

3653
	*priv = chip;
3654

3655
	return chip->info->name;
3656
free:
3657
	devm_kfree(dsa_dev, chip);
3658 3659

	return NULL;
3660 3661
}

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
static int mv88e6xxx_port_mdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_mdb *mdb,
				      struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */

	return 0;
}

static void mv88e6xxx_port_mdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_mdb *mdb,
				   struct switchdev_trans *trans)
{
V
Vivien Didelot 已提交
3677
	struct mv88e6xxx_chip *chip = ds->priv;
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688

	mutex_lock(&chip->reg_lock);
	if (mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					 GLOBAL_ATU_DATA_STATE_MC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load multicast MAC address\n");
	mutex_unlock(&chip->reg_lock);
}

static int mv88e6xxx_port_mdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_mdb *mdb)
{
V
Vivien Didelot 已提交
3689
	struct mv88e6xxx_chip *chip = ds->priv;
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
	mutex_unlock(&chip->reg_lock);

	return err;
}

static int mv88e6xxx_port_mdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_mdb *mdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
3704
	struct mv88e6xxx_chip *chip = ds->priv;
3705 3706 3707 3708 3709 3710 3711 3712 3713
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &mdb->obj, cb);
	mutex_unlock(&chip->reg_lock);

	return err;
}

3714
static struct dsa_switch_ops mv88e6xxx_switch_ops = {
3715
	.probe			= mv88e6xxx_drv_probe,
3716
	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
3731
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3732 3733 3734 3735
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
3736
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3737 3738 3739
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
3740
	.port_fast_age		= mv88e6xxx_port_fast_age,
3741 3742 3743 3744 3745 3746 3747 3748 3749
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
3750 3751 3752 3753
	.port_mdb_prepare       = mv88e6xxx_port_mdb_prepare,
	.port_mdb_add           = mv88e6xxx_port_mdb_add,
	.port_mdb_del           = mv88e6xxx_port_mdb_del,
	.port_mdb_dump          = mv88e6xxx_port_mdb_dump,
3754 3755
};

3756
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3757 3758
				     struct device_node *np)
{
3759
	struct device *dev = chip->dev;
3760 3761 3762 3763 3764 3765 3766
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
3767
	ds->priv = chip;
3768
	ds->ops = &mv88e6xxx_switch_ops;
3769 3770 3771 3772 3773 3774

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

3775
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
3776
{
3777
	dsa_unregister_switch(chip->ds);
3778 3779
}

3780
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
3781
{
3782
	struct device *dev = &mdiodev->dev;
3783
	struct device_node *np = dev->of_node;
3784
	const struct mv88e6xxx_info *compat_info;
3785
	struct mv88e6xxx_chip *chip;
3786
	u32 eeprom_len;
3787
	int err;
3788

3789 3790 3791 3792
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

3793 3794
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
3795 3796
		return -ENOMEM;

3797
	chip->info = compat_info;
3798

3799
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
3800 3801
	if (err)
		return err;
3802

3803
	err = mv88e6xxx_detect(chip);
3804 3805
	if (err)
		return err;
3806

3807 3808
	mv88e6xxx_phy_init(chip);

3809 3810 3811
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
3812

3813
	if (chip->info->ops->get_eeprom &&
3814
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
3815
		chip->eeprom_len = eeprom_len;
3816

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto out;

	chip->irq = of_irq_get(np, 0);
	if (chip->irq == -EPROBE_DEFER) {
		err = chip->irq;
		goto out;
	}

	if (chip->irq > 0) {
		/* Has to be performed before the MDIO bus is created,
		 * because the PHYs will link there interrupts to these
		 * interrupt controllers
		 */
		mutex_lock(&chip->reg_lock);
		err = mv88e6xxx_g1_irq_setup(chip);
		mutex_unlock(&chip->reg_lock);

		if (err)
			goto out;

		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT)) {
			err = mv88e6xxx_g2_irq_setup(chip);
			if (err)
				goto out_g1_irq;
		}
	}

3848
	err = mv88e6xxx_mdio_register(chip, np);
3849
	if (err)
3850
		goto out_g2_irq;
3851

3852
	err = mv88e6xxx_register_switch(chip, np);
3853 3854
	if (err)
		goto out_mdio;
3855

3856
	return 0;
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

out_mdio:
	mv88e6xxx_mdio_unregister(chip);
out_g2_irq:
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT))
		mv88e6xxx_g2_irq_free(chip);
out_g1_irq:
	mv88e6xxx_g1_irq_free(chip);
out:
	return err;
3867
}
3868 3869 3870 3871

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
V
Vivien Didelot 已提交
3872
	struct mv88e6xxx_chip *chip = ds->priv;
3873

3874
	mv88e6xxx_phy_destroy(chip);
3875 3876
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
3877 3878 3879 3880

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT))
		mv88e6xxx_g2_irq_free(chip);
	mv88e6xxx_g1_irq_free(chip);
3881 3882 3883
}

static const struct of_device_id mv88e6xxx_of_match[] = {
3884 3885 3886 3887
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
3904
	register_switch_driver(&mv88e6xxx_switch_ops);
3905 3906
	return mdio_driver_register(&mv88e6xxx_driver);
}
3907 3908 3909 3910
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
3911
	mdio_driver_unregister(&mv88e6xxx_driver);
3912
	unregister_switch_driver(&mv88e6xxx_switch_ops);
3913 3914
}
module_exit(mv88e6xxx_cleanup);
3915 3916 3917 3918

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");