chip.c 97.6 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21
#include <linux/jiffies.h>
22
#include <linux/list.h>
23
#include <linux/mdio.h>
24
#include <linux/module.h>
25
#include <linux/of_device.h>
26
#include <linux/of_mdio.h>
27
#include <linux/netdevice.h>
28
#include <linux/gpio/consumer.h>
29
#include <linux/phy.h>
30
#include <net/dsa.h>
31
#include <net/switchdev.h>
32 33
#include "mv88e6xxx.h"

34
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35
{
36 37
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
38 39 40 41
		dump_stack();
	}
}

42 43 44 45 46 47 48 49 50 51
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
52
 */
53

54
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 56
			      int addr, int reg, u16 *val)
{
57
	if (!chip->smi_ops)
58 59
		return -EOPNOTSUPP;

60
	return chip->smi_ops->read(chip, addr, reg, val);
61 62
}

63
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 65
			       int addr, int reg, u16 val)
{
66
	if (!chip->smi_ops)
67 68
		return -EOPNOTSUPP;

69
	return chip->smi_ops->write(chip, addr, reg, val);
70 71
}

72
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 74 75 76
					  int addr, int reg, u16 *val)
{
	int ret;

77
	ret = mdiobus_read_nested(chip->bus, addr, reg);
78 79 80 81 82 83 84 85
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

86
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 88 89 90
					   int addr, int reg, u16 val)
{
	int ret;

91
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 93 94 95 96 97 98 99 100 101 102
	if (ret < 0)
		return ret;

	return 0;
}

static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

103
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 105 106 107 108
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
109
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 111 112
		if (ret < 0)
			return ret;

113
		if ((ret & SMI_CMD_BUSY) == 0)
114 115 116 117 118 119
			return 0;
	}

	return -ETIMEDOUT;
}

120
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121
					 int addr, int reg, u16 *val)
122 123 124
{
	int ret;

125
	/* Wait for the bus to become free. */
126
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 128 129
	if (ret < 0)
		return ret;

130
	/* Transmit the read command. */
131
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 134 135
	if (ret < 0)
		return ret;

136
	/* Wait for the read command to complete. */
137
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 139 140
	if (ret < 0)
		return ret;

141
	/* Read the data. */
142
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 144 145
	if (ret < 0)
		return ret;

146
	*val = ret & 0xffff;
147

148
	return 0;
149 150
}

151
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152
					  int addr, int reg, u16 val)
153 154 155
{
	int ret;

156
	/* Wait for the bus to become free. */
157
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 159 160
	if (ret < 0)
		return ret;

161
	/* Transmit the data to write. */
162
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 164 165
	if (ret < 0)
		return ret;

166
	/* Transmit the write command. */
167
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 170 171
	if (ret < 0)
		return ret;

172
	/* Wait for the write command to complete. */
173
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 175 176 177 178 179
	if (ret < 0)
		return ret;

	return 0;
}

180 181 182 183 184
static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

185
static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 187 188 189
			  int addr, int reg, u16 *val)
{
	int err;

190
	assert_reg_lock(chip);
191

192
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 194 195
	if (err)
		return err;

196
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 198 199 200 201
		addr, reg, *val);

	return 0;
}

202
static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203
			   int addr, int reg, u16 val)
204
{
205 206
	int err;

207
	assert_reg_lock(chip);
208

209
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 211 212
	if (err)
		return err;

213
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 215
		addr, reg, val);

216 217 218
	return 0;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->read(chip, addr, reg, val);
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->write(chip, addr, reg, val);
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
			  u16 mask)
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

	return -ETIMEDOUT;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
/* Indirect write to single pointer-data register with an Update bit */
static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
			    u16 update)
{
	u16 val;
	int i, err;

	/* Wait until the previous operation is completed */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & BIT(15)))
			break;
	}

	if (i == 16)
		return -ETIMEDOUT;

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

289
static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
290 291 292 293
{
	u16 val;
	int err;

294
	err = mv88e6xxx_read(chip, addr, reg, &val);
295 296 297 298 299 300
	if (err)
		return err;

	return val;
}

301
static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
302 303
				int reg, u16 val)
{
304
	return mv88e6xxx_write(chip, addr, reg, val);
305 306
}

307
static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip,
308
				      int addr, int regnum)
309 310
{
	if (addr >= 0)
311
		return _mv88e6xxx_reg_read(chip, addr, regnum);
312 313 314
	return 0xffff;
}

315
static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip,
316
				       int addr, int regnum, u16 val)
317 318
{
	if (addr >= 0)
319
		return _mv88e6xxx_reg_write(chip, addr, regnum, val);
320 321 322
	return 0;
}

323
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
324 325
{
	int ret;
326
	unsigned long timeout;
327

328
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
329 330 331
	if (ret < 0)
		return ret;

332
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
333
				   ret & ~GLOBAL_CONTROL_PPU_ENABLE);
334 335
	if (ret)
		return ret;
336

337 338
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
339
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
340 341 342
		if (ret < 0)
			return ret;

343
		usleep_range(1000, 2000);
344 345
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
346
			return 0;
347 348 349 350 351
	}

	return -ETIMEDOUT;
}

352
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
353
{
354
	int ret, err;
355
	unsigned long timeout;
356

357
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
358 359 360
	if (ret < 0)
		return ret;

361
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
362
				   ret | GLOBAL_CONTROL_PPU_ENABLE);
363 364
	if (err)
		return err;
365

366 367
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
368
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
369 370 371
		if (ret < 0)
			return ret;

372
		usleep_range(1000, 2000);
373 374
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
375
			return 0;
376 377 378 379 380 381 382
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
383
	struct mv88e6xxx_chip *chip;
384

385
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
386

387
	mutex_lock(&chip->reg_lock);
388

389 390 391 392
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
393
	}
394

395
	mutex_unlock(&chip->reg_lock);
396 397 398 399
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
400
	struct mv88e6xxx_chip *chip = (void *)_ps;
401

402
	schedule_work(&chip->ppu_work);
403 404
}

405
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
406 407 408
{
	int ret;

409
	mutex_lock(&chip->ppu_mutex);
410

411
	/* If the PHY polling unit is enabled, disable it so that
412 413 414 415
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
416 417
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
418
		if (ret < 0) {
419
			mutex_unlock(&chip->ppu_mutex);
420 421
			return ret;
		}
422
		chip->ppu_disabled = 1;
423
	} else {
424
		del_timer(&chip->ppu_timer);
425
		ret = 0;
426 427 428 429 430
	}

	return ret;
}

431
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
432
{
433
	/* Schedule a timer to re-enable the PHY polling unit. */
434 435
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
436 437
}

438
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
439
{
440 441 442 443 444
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&chip->ppu_timer);
	chip->ppu_timer.data = (unsigned long)chip;
	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
445 446
}

447 448
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
449
{
450
	int err;
451

452 453 454
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
455
		mv88e6xxx_ppu_access_put(chip);
456 457
	}

458
	return err;
459 460
}

461 462
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
463
{
464
	int err;
465

466 467 468
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
469
		mv88e6xxx_ppu_access_put(chip);
470 471
	}

472
	return err;
473 474
}

475 476 477 478 479
static const struct mv88e6xxx_ops mv88e6xxx_phy_ppu_ops = {
	.read = mv88e6xxx_phy_ppu_read,
	.write = mv88e6xxx_phy_ppu_write,
};

480
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
481
{
482
	return chip->info->family == MV88E6XXX_FAMILY_6065;
483 484
}

485
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
486
{
487
	return chip->info->family == MV88E6XXX_FAMILY_6095;
488 489
}

490
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
491
{
492
	return chip->info->family == MV88E6XXX_FAMILY_6097;
493 494
}

495
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
496
{
497
	return chip->info->family == MV88E6XXX_FAMILY_6165;
498 499
}

500
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
501
{
502
	return chip->info->family == MV88E6XXX_FAMILY_6185;
503 504
}

505
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
506
{
507
	return chip->info->family == MV88E6XXX_FAMILY_6320;
508 509
}

510
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
511
{
512
	return chip->info->family == MV88E6XXX_FAMILY_6351;
513 514
}

515
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
516
{
517
	return chip->info->family == MV88E6XXX_FAMILY_6352;
518 519
}

520
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
521
{
522
	return chip->info->num_databases;
523 524
}

525
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
526 527
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
528 529
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
530 531 532 533 534
		return true;

	return false;
}

535 536 537 538
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
539 540
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
541
{
542
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
543 544
	u32 reg;
	int ret;
545 546 547 548

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

549
	mutex_lock(&chip->reg_lock);
550

551
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
552 553 554 555 556 557 558 559 560 561 562
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
563
		reg |= PORT_PCS_CTRL_LINK_UP;
564

565
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

587 588
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
	    (port >= chip->info->num_ports - 2)) {
589 590 591 592 593 594 595 596
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
597
	_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
598 599

out:
600
	mutex_unlock(&chip->reg_lock);
601 602
}

603
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
604 605 606 607 608
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
609
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
610
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
611 612 613 614 615 616
			return 0;
	}

	return -ETIMEDOUT;
}

617
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
618 619 620
{
	int ret;

621
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
622 623
		port = (port + 1) << 5;

624
	/* Snapshot the hardware statistics counters for this port. */
625
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
626 627 628 629
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
630

631
	/* Wait for the snapshotting to complete. */
632
	ret = _mv88e6xxx_stats_wait(chip);
633 634 635 636 637 638
	if (ret < 0)
		return ret;

	return 0;
}

639
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
640
				  int stat, u32 *val)
641 642 643 644 645 646
{
	u32 _val;
	int ret;

	*val = 0;

647
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
648 649
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
650 651 652
	if (ret < 0)
		return;

653
	ret = _mv88e6xxx_stats_wait(chip);
654 655 656
	if (ret < 0)
		return;

657
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
658 659 660 661 662
	if (ret < 0)
		return;

	_val = ret << 16;

663
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
664 665 666 667 668 669
	if (ret < 0)
		return;

	*val = _val | ret;
}

670
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
730 731
};

732
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
733
			       struct mv88e6xxx_hw_stat *stat)
734
{
735 736
	switch (stat->type) {
	case BANK0:
737
		return true;
738
	case BANK1:
739
		return mv88e6xxx_6320_family(chip);
740
	case PORT:
741 742 743 744 745 746
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
747
	}
748
	return false;
749 750
}

751
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
752
					    struct mv88e6xxx_hw_stat *s,
753 754 755 756 757 758 759
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

760 761
	switch (s->type) {
	case PORT:
762
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
763 764 765 766 767
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
768
			ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
769
						  s->reg + 1);
770 771 772 773
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
774 775 776
		break;
	case BANK0:
	case BANK1:
777
		_mv88e6xxx_stats_read(chip, s->reg, &low);
778
		if (s->sizeof_stat == 8)
779
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
780 781 782 783 784
	}
	value = (((u64)high) << 16) | low;
	return value;
}

785 786
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
787
{
788
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
789 790
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
791

792 793
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
794
		if (mv88e6xxx_has_stat(chip, stat)) {
795 796 797 798
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
799
	}
800 801
}

802
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
803
{
804
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
805 806 807 808 809
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
810
		if (mv88e6xxx_has_stat(chip, stat))
811 812 813
			j++;
	}
	return j;
814 815
}

816 817
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
818
{
819
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
820 821 822 823
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

824
	mutex_lock(&chip->reg_lock);
825

826
	ret = _mv88e6xxx_stats_snapshot(chip, port);
827
	if (ret < 0) {
828
		mutex_unlock(&chip->reg_lock);
829 830 831 832
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
833 834
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
835 836 837 838
			j++;
		}
	}

839
	mutex_unlock(&chip->reg_lock);
840 841
}

842
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
843 844 845 846
{
	return 32 * sizeof(u16);
}

847 848
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
849
{
850
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
851 852 853 854 855 856 857
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

858
	mutex_lock(&chip->reg_lock);
859

860 861 862
	for (i = 0; i < 32; i++) {
		int ret;

863
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
864 865 866
		if (ret >= 0)
			p[i] = ret;
	}
867

868
	mutex_unlock(&chip->reg_lock);
869 870
}

871
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
872
{
873 874
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
			      GLOBAL_ATU_OP_BUSY);
875 876
}

877 878 879 880 881
static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
				     int reg, u16 *val);
static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
				      int reg, u16 val);

882
static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip,
883
					int addr, int regnum)
884
{
885 886
	u16 val;
	int err;
887

888 889 890
	err = mv88e6xxx_g2_smi_phy_read(chip, addr, regnum, &val);
	if (err)
		return err;
891

892
	return val;
893 894
}

895
static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip,
896
					 int addr, int regnum, u16 val)
897
{
898
	return mv88e6xxx_g2_smi_phy_write(chip, addr, regnum, val);
899 900
}

901 902
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
903
{
904
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
905 906
	int reg;

907
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
908 909
		return -EOPNOTSUPP;

910
	mutex_lock(&chip->reg_lock);
911

912
	reg = mv88e6xxx_mdio_read_indirect(chip, port, 16);
913
	if (reg < 0)
914
		goto out;
915 916 917 918

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

919
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
920
	if (reg < 0)
921
		goto out;
922

923
	e->eee_active = !!(reg & PORT_STATUS_EEE);
924
	reg = 0;
925

926
out:
927
	mutex_unlock(&chip->reg_lock);
928
	return reg;
929 930
}

931 932
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
933
{
934
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
935
	int reg;
936 937
	int ret;

938
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
939 940
		return -EOPNOTSUPP;

941
	mutex_lock(&chip->reg_lock);
942

943
	ret = mv88e6xxx_mdio_read_indirect(chip, port, 16);
944 945 946 947 948 949 950 951 952
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

953
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg);
954
out:
955
	mutex_unlock(&chip->reg_lock);
956 957

	return ret;
958 959
}

960
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
961 962 963
{
	int ret;

964 965 966
	if (mv88e6xxx_has_fid_reg(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
					   fid);
967 968
		if (ret < 0)
			return ret;
969
	} else if (mv88e6xxx_num_databases(chip) == 256) {
970
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
971
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
972 973 974
		if (ret < 0)
			return ret;

975
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
976 977 978 979 980 981 982
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
983 984
	}

985
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
986 987 988
	if (ret < 0)
		return ret;

989
	return _mv88e6xxx_atu_wait(chip);
990 991
}

992
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1012
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1013 1014
}

1015
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1016 1017
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1018
{
1019 1020
	int op;
	int err;
1021

1022
	err = _mv88e6xxx_atu_wait(chip);
1023 1024
	if (err)
		return err;
1025

1026
	err = _mv88e6xxx_atu_data_write(chip, entry);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1038
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1039 1040
}

1041
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1042
				u16 fid, bool static_too)
1043 1044 1045 1046 1047
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1048

1049
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1050 1051
}

1052
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1053
			       int from_port, int to_port, bool static_too)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1067
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1068 1069
}

1070
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1071
				 int port, bool static_too)
1072 1073
{
	/* Destination port 0xF means remove the entries */
1074
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1075 1076
}

1077 1078 1079 1080 1081 1082 1083
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

1084
static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1085
				 u8 state)
1086
{
1087
	struct dsa_switch *ds = chip->ds;
1088
	int reg, ret = 0;
1089 1090
	u8 oldstate;

1091
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1092 1093
	if (reg < 0)
		return reg;
1094

1095
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1096

1097 1098 1099 1100 1101
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1102
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1103 1104 1105
		     oldstate == PORT_CONTROL_STATE_FORWARDING) &&
		    (state == PORT_CONTROL_STATE_DISABLED ||
		     state == PORT_CONTROL_STATE_BLOCKING)) {
1106
			ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1107
			if (ret)
1108
				return ret;
1109
		}
1110

1111
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1112
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1113
					   reg);
1114 1115 1116
		if (ret)
			return ret;

1117
		netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1118 1119
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1120 1121 1122 1123 1124
	}

	return ret;
}

1125
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1126
{
1127 1128 1129
	struct net_device *bridge = chip->ports[port].bridge_dev;
	const u16 mask = (1 << chip->info->num_ports) - 1;
	struct dsa_switch *ds = chip->ds;
1130
	u16 output_ports = 0;
1131
	int reg;
1132 1133 1134 1135 1136 1137
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1138
		for (i = 0; i < chip->info->num_ports; ++i) {
1139
			/* allow sending frames to every group member */
1140
			if (bridge && chip->ports[i].bridge_dev == bridge)
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1151

1152
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1153 1154
	if (reg < 0)
		return reg;
1155

1156 1157
	reg &= ~mask;
	reg |= output_ports & mask;
1158

1159
	return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1160 1161
}

1162 1163
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1164
{
1165
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1166
	int stp_state;
1167
	int err;
1168 1169 1170

	switch (state) {
	case BR_STATE_DISABLED:
1171
		stp_state = PORT_CONTROL_STATE_DISABLED;
1172 1173 1174
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1175
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1176 1177
		break;
	case BR_STATE_LEARNING:
1178
		stp_state = PORT_CONTROL_STATE_LEARNING;
1179 1180 1181
		break;
	case BR_STATE_FORWARDING:
	default:
1182
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1183 1184 1185
		break;
	}

1186 1187 1188
	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_port_state(chip, port, stp_state);
	mutex_unlock(&chip->reg_lock);
1189 1190

	if (err)
1191 1192
		netdev_err(ds->ports[port].netdev,
			   "failed to update state to %s\n",
1193
			   mv88e6xxx_port_state_names[stp_state]);
1194 1195
}

1196
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1197
				u16 *new, u16 *old)
1198
{
1199
	struct dsa_switch *ds = chip->ds;
1200
	u16 pvid;
1201 1202
	int ret;

1203
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1204 1205 1206
	if (ret < 0)
		return ret;

1207 1208 1209 1210 1211 1212
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

1213
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1214 1215 1216 1217
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

1218 1219
		netdev_dbg(ds->ports[port].netdev,
			   "DefaultVID %d (was %d)\n", *new, pvid);
1220 1221 1222 1223
	}

	if (old)
		*old = pvid;
1224 1225 1226 1227

	return 0;
}

1228
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1229
				    int port, u16 *pvid)
1230
{
1231
	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1232 1233
}

1234
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1235
				    int port, u16 pvid)
1236
{
1237
	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1238 1239
}

1240
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1241
{
1242 1243
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
			      GLOBAL_VTU_OP_BUSY);
1244 1245
}

1246
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1247 1248 1249
{
	int ret;

1250
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1251 1252 1253
	if (ret < 0)
		return ret;

1254
	return _mv88e6xxx_vtu_wait(chip);
1255 1256
}

1257
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1258 1259 1260
{
	int ret;

1261
	ret = _mv88e6xxx_vtu_wait(chip);
1262 1263 1264
	if (ret < 0)
		return ret;

1265
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1266 1267
}

1268
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1269 1270 1271 1272 1273 1274 1275 1276
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
1277
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1278 1279 1280 1281 1282 1283 1284
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

1285
	for (i = 0; i < chip->info->num_ports; ++i) {
1286 1287 1288 1289 1290 1291 1292 1293 1294
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1295
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1296 1297
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1298
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1299 1300
}

1301
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1302 1303
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1304
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1305 1306
}

1307
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1308 1309 1310 1311 1312 1313 1314
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
	int i;
	int ret;

1315
	for (i = 0; i < chip->info->num_ports; ++i) {
1316 1317 1318 1319 1320 1321 1322
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1323
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1324 1325 1326 1327 1328 1329 1330 1331
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1332
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1333 1334
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1335
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1336 1337
}

1338
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1339 1340
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1341
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1342 1343
}

1344
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1345
{
1346
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1347 1348 1349
				    vid & GLOBAL_VTU_VID_MASK);
}

1350
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1351 1352 1353 1354 1355
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1356
	ret = _mv88e6xxx_vtu_wait(chip);
1357 1358 1359
	if (ret < 0)
		return ret;

1360
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1361 1362 1363
	if (ret < 0)
		return ret;

1364
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1365 1366 1367 1368 1369 1370 1371
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1372
		ret = mv88e6xxx_vtu_data_read(chip, &next);
1373 1374 1375
		if (ret < 0)
			return ret;

1376 1377
		if (mv88e6xxx_has_fid_reg(chip)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1378 1379 1380 1381 1382
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1383
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1384 1385 1386
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1387
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1388 1389 1390 1391 1392 1393
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1394
		}
1395

1396 1397
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1410 1411 1412
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1413
{
1414
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1415 1416 1417 1418
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

1419
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1420 1421
		return -EOPNOTSUPP;

1422
	mutex_lock(&chip->reg_lock);
1423

1424
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1425 1426 1427
	if (err)
		goto unlock;

1428
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1429 1430 1431 1432
	if (err)
		goto unlock;

	do {
1433
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1444 1445
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1460
	mutex_unlock(&chip->reg_lock);
1461 1462 1463 1464

	return err;
}

1465
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1466 1467
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1468
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1469 1470 1471
	u16 reg = 0;
	int ret;

1472
	ret = _mv88e6xxx_vtu_wait(chip);
1473 1474 1475 1476 1477 1478 1479
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1480
	ret = mv88e6xxx_vtu_data_write(chip, entry);
1481 1482 1483
	if (ret < 0)
		return ret;

1484
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1485
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1486 1487
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
					   reg);
1488 1489
		if (ret < 0)
			return ret;
1490
	}
1491

1492
	if (mv88e6xxx_has_fid_reg(chip)) {
1493
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1494 1495
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
					   reg);
1496 1497
		if (ret < 0)
			return ret;
1498
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1499 1500 1501 1502 1503
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1504 1505 1506 1507 1508
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1509
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1510 1511 1512
	if (ret < 0)
		return ret;

1513
	return _mv88e6xxx_vtu_cmd(chip, op);
1514 1515
}

1516
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1517 1518 1519 1520 1521
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1522
	ret = _mv88e6xxx_vtu_wait(chip);
1523 1524 1525
	if (ret < 0)
		return ret;

1526
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1527 1528 1529 1530
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

1531
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1532 1533 1534
	if (ret < 0)
		return ret;

1535
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1536 1537 1538 1539 1540
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

1541
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1542 1543 1544 1545 1546 1547
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1548
		ret = mv88e6xxx_stu_data_read(chip, &next);
1549 1550 1551 1552 1553 1554 1555 1556
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

1557
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1558 1559 1560 1561 1562
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

1563
	ret = _mv88e6xxx_vtu_wait(chip);
1564 1565 1566 1567 1568 1569 1570
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1571
	ret = mv88e6xxx_stu_data_write(chip, entry);
1572 1573 1574 1575 1576
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1577
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1578 1579 1580 1581
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1582
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1583 1584 1585
	if (ret < 0)
		return ret;

1586
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1587 1588
}

1589
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1590
			       u16 *new, u16 *old)
1591
{
1592
	struct dsa_switch *ds = chip->ds;
1593
	u16 upper_mask;
1594 1595 1596
	u16 fid;
	int ret;

1597
	if (mv88e6xxx_num_databases(chip) == 4096)
1598
		upper_mask = 0xff;
1599
	else if (mv88e6xxx_num_databases(chip) == 256)
1600
		upper_mask = 0xf;
1601 1602 1603
	else
		return -EOPNOTSUPP;

1604
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1605
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1606 1607 1608 1609 1610 1611 1612 1613 1614
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

1615
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1616 1617 1618 1619 1620 1621
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1622
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1623 1624 1625
	if (ret < 0)
		return ret;

1626
	fid |= (ret & upper_mask) << 4;
1627 1628

	if (new) {
1629 1630
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1631

1632
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1633 1634 1635 1636
					   ret);
		if (ret < 0)
			return ret;

1637 1638
		netdev_dbg(ds->ports[port].netdev,
			   "FID %d (was %d)\n", *new, fid);
1639 1640 1641 1642 1643 1644 1645 1646
	}

	if (old)
		*old = fid;

	return 0;
}

1647
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1648
				   int port, u16 *fid)
1649
{
1650
	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1651 1652
}

1653
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1654
				   int port, u16 fid)
1655
{
1656
	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1657 1658
}

1659
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1660 1661 1662
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1663
	int i, err;
1664 1665 1666

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1667
	/* Set every FID bit used by the (un)bridged ports */
1668 1669
	for (i = 0; i < chip->info->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1670 1671 1672 1673 1674 1675
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1676
	/* Set every FID bit used by the VLAN entries */
1677
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1678 1679 1680 1681
	if (err)
		return err;

	do {
1682
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1696
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1697 1698 1699
		return -ENOSPC;

	/* Clear the database */
1700
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1701 1702
}

1703
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1704
			      struct mv88e6xxx_vtu_stu_entry *entry)
1705
{
1706
	struct dsa_switch *ds = chip->ds;
1707 1708 1709 1710
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1711 1712
	int i, err;

1713
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1714 1715
	if (err)
		return err;
1716

1717
	/* exclude all ports except the CPU and DSA ports */
1718
	for (i = 0; i < chip->info->num_ports; ++i)
1719 1720 1721
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1722

1723 1724
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1725 1726 1727 1728 1729 1730 1731
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1732
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1733 1734 1735 1736 1737 1738 1739 1740
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1741
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1742 1743 1744 1745 1746 1747 1748 1749 1750
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1751
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1752 1753 1754 1755 1756 1757 1758
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

1759
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1760 1761 1762
	if (err)
		return err;

1763
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1774
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1775 1776 1777 1778 1779
	}

	return err;
}

1780 1781 1782
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
1783
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1784 1785 1786 1787 1788 1789
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1790
	mutex_lock(&chip->reg_lock);
1791

1792
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1793 1794 1795 1796
	if (err)
		goto unlock;

	do {
1797
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1798 1799 1800 1801 1802 1803 1804 1805 1806
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1807
		for (i = 0; i < chip->info->num_ports; ++i) {
1808 1809 1810 1811 1812 1813 1814
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1815 1816
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1817 1818
				break; /* same bridge, check next VLAN */

1819
			netdev_warn(ds->ports[port].netdev,
1820 1821
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1822
				    netdev_name(chip->ports[i].bridge_dev));
1823 1824 1825 1826 1827 1828
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1829
	mutex_unlock(&chip->reg_lock);
1830 1831 1832 1833

	return err;
}

1834 1835 1836 1837 1838 1839 1840
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

1841 1842
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1843
{
1844
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1845 1846 1847 1848
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

1849
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1850 1851
		return -EOPNOTSUPP;

1852
	mutex_lock(&chip->reg_lock);
1853

1854
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1855 1856 1857 1858 1859
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1860 1861 1862
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1863

1864
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1865 1866 1867 1868
					   ret);
		if (ret < 0)
			goto unlock;

1869
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1870 1871 1872
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1873

1874
	ret = 0;
1875
unlock:
1876
	mutex_unlock(&chip->reg_lock);
1877 1878 1879 1880

	return ret;
}

1881 1882 1883 1884
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1885
{
1886
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1887 1888
	int err;

1889
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1890 1891
		return -EOPNOTSUPP;

1892 1893 1894 1895 1896 1897 1898 1899
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1900 1901 1902 1903 1904 1905
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1906
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1907
				    u16 vid, bool untagged)
1908 1909 1910 1911
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1912
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1913
	if (err)
1914
		return err;
1915 1916 1917 1918 1919

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1920
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1921 1922
}

1923 1924 1925
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1926
{
1927
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1928 1929 1930 1931
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1932
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1933 1934
		return;

1935
	mutex_lock(&chip->reg_lock);
1936

1937
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1938
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1939 1940
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1941
				   vid, untagged ? 'u' : 't');
1942

1943
	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1944
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1945
			   vlan->vid_end);
1946

1947
	mutex_unlock(&chip->reg_lock);
1948 1949
}

1950
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1951
				    int port, u16 vid)
1952
{
1953
	struct dsa_switch *ds = chip->ds;
1954 1955 1956
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

1957
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1958
	if (err)
1959
		return err;
1960

1961 1962
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1963
		return -EOPNOTSUPP;
1964 1965 1966 1967

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1968
	vlan.valid = false;
1969
	for (i = 0; i < chip->info->num_ports; ++i) {
1970
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1971 1972 1973
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1974
			vlan.valid = true;
1975 1976 1977 1978
			break;
		}
	}

1979
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1980 1981 1982
	if (err)
		return err;

1983
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1984 1985
}

1986 1987
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
1988
{
1989
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1990 1991 1992
	u16 pvid, vid;
	int err = 0;

1993
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1994 1995
		return -EOPNOTSUPP;

1996
	mutex_lock(&chip->reg_lock);
1997

1998
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1999 2000 2001
	if (err)
		goto unlock;

2002
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2003
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2004 2005 2006 2007
		if (err)
			goto unlock;

		if (vid == pvid) {
2008
			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2009 2010 2011 2012 2013
			if (err)
				goto unlock;
		}
	}

2014
unlock:
2015
	mutex_unlock(&chip->reg_lock);
2016 2017 2018 2019

	return err;
}

2020
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2021
				    const unsigned char *addr)
2022 2023 2024 2025
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2026
		ret = _mv88e6xxx_reg_write(
2027
			chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2028
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2029 2030 2031 2032 2033 2034 2035
		if (ret < 0)
			return ret;
	}

	return 0;
}

2036
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2037
				   unsigned char *addr)
2038 2039 2040 2041
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2042
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2043
					  GLOBAL_ATU_MAC_01 + i);
2044 2045 2046 2047 2048 2049 2050 2051 2052
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

2053
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2054
			       struct mv88e6xxx_atu_entry *entry)
2055
{
2056 2057
	int ret;

2058
	ret = _mv88e6xxx_atu_wait(chip);
2059 2060 2061
	if (ret < 0)
		return ret;

2062
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2063 2064 2065
	if (ret < 0)
		return ret;

2066
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2067
	if (ret < 0)
2068 2069
		return ret;

2070
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2071
}
2072

2073
static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2074 2075 2076 2077
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2078 2079 2080
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2081 2082
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2083
		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2084
	else
2085
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2086 2087
	if (err)
		return err;
2088

2089
	entry.fid = vlan.fid;
2090 2091 2092 2093 2094 2095 2096
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

2097
	return _mv88e6xxx_atu_load(chip, &entry);
2098 2099
}

2100 2101 2102
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2103 2104 2105 2106 2107 2108 2109
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2110 2111 2112
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2113
{
2114
	int state = is_multicast_ether_addr(fdb->addr) ?
2115 2116
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2117
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2118

2119 2120
	mutex_lock(&chip->reg_lock);
	if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2121 2122
		netdev_err(ds->ports[port].netdev,
			   "failed to load MAC address\n");
2123
	mutex_unlock(&chip->reg_lock);
2124 2125
}

2126 2127
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2128
{
2129
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2130 2131
	int ret;

2132 2133
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2134
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2135
	mutex_unlock(&chip->reg_lock);
2136 2137 2138 2139

	return ret;
}

2140
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2141
				  struct mv88e6xxx_atu_entry *entry)
2142
{
2143 2144 2145 2146
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2147

2148
	ret = _mv88e6xxx_atu_wait(chip);
2149 2150
	if (ret < 0)
		return ret;
2151

2152
	ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2153 2154
	if (ret < 0)
		return ret;
2155

2156
	ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2157 2158
	if (ret < 0)
		return ret;
2159

2160
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2161 2162
	if (ret < 0)
		return ret;
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2180

2181
	*entry = next;
2182 2183 2184
	return 0;
}

2185
static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2186
					u16 fid, u16 vid, int port,
2187 2188 2189 2190 2191 2192 2193 2194
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2195
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2196 2197 2198 2199
	if (err)
		return err;

	do {
2200
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2226 2227 2228
static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
2229
{
2230
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2231 2232 2233
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2234
	u16 fid;
2235 2236
	int err;

2237
	mutex_lock(&chip->reg_lock);
2238

2239
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2240
	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2241 2242 2243
	if (err)
		goto unlock;

2244
	err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2245 2246 2247
	if (err)
		goto unlock;

2248
	/* Dump VLANs' Filtering Information Databases */
2249
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2250 2251 2252 2253
	if (err)
		goto unlock;

	do {
2254
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2255
		if (err)
2256
			break;
2257 2258 2259 2260

		if (!vlan.valid)
			break;

2261 2262
		err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
						   port, fdb, cb);
2263
		if (err)
2264
			break;
2265 2266 2267
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
2268
	mutex_unlock(&chip->reg_lock);
2269 2270 2271 2272

	return err;
}

2273 2274
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2275
{
2276
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2277
	int i, err = 0;
2278

2279
	mutex_lock(&chip->reg_lock);
2280

2281
	/* Assign the bridge and remap each port's VLANTable */
2282
	chip->ports[port].bridge_dev = bridge;
2283

2284 2285 2286
	for (i = 0; i < chip->info->num_ports; ++i) {
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2287 2288 2289 2290 2291
			if (err)
				break;
		}
	}

2292
	mutex_unlock(&chip->reg_lock);
2293

2294
	return err;
2295 2296
}

2297
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2298
{
2299 2300
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	struct net_device *bridge = chip->ports[port].bridge_dev;
2301
	int i;
2302

2303
	mutex_lock(&chip->reg_lock);
2304

2305
	/* Unassign the bridge and remap each port's VLANTable */
2306
	chip->ports[port].bridge_dev = NULL;
2307

2308 2309 2310
	for (i = 0; i < chip->info->num_ports; ++i)
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2311 2312
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2313

2314
	mutex_unlock(&chip->reg_lock);
2315 2316
}

2317
static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip,
2318
				      int port, int page, int reg, int val)
2319 2320 2321
{
	int ret;

2322
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2323 2324 2325
	if (ret < 0)
		goto restore_page_0;

2326
	ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val);
2327
restore_page_0:
2328
	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2329 2330 2331 2332

	return ret;
}

2333
static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip,
2334
				     int port, int page, int reg)
2335 2336 2337
{
	int ret;

2338
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2339 2340 2341
	if (ret < 0)
		goto restore_page_0;

2342
	ret = mv88e6xxx_mdio_read_indirect(chip, port, reg);
2343
restore_page_0:
2344
	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2345 2346 2347 2348

	return ret;
}

2349
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2350
{
2351
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2352
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2353
	struct gpio_desc *gpiod = chip->reset;
2354 2355 2356 2357 2358
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
2359 2360
	for (i = 0; i < chip->info->num_ports; i++) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2361 2362 2363
		if (ret < 0)
			return ret;

2364
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
					   ret & 0xfffc);
		if (ret)
			return ret;
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2386
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2387
	else
2388
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2389 2390 2391 2392 2393 2394
	if (ret)
		return ret;

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2395
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
		if (ret < 0)
			return ret;

		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		ret = -ETIMEDOUT;
	else
		ret = 0;

	return ret;
}

2411
static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_chip *chip)
2412 2413 2414
{
	int ret;

2415
	ret = _mv88e6xxx_mdio_page_read(chip, REG_FIBER_SERDES,
2416
					PAGE_FIBER_SERDES, MII_BMCR);
2417 2418 2419 2420 2421
	if (ret < 0)
		return ret;

	if (ret & BMCR_PDOWN) {
		ret &= ~BMCR_PDOWN;
2422
		ret = _mv88e6xxx_mdio_page_write(chip, REG_FIBER_SERDES,
2423 2424
						 PAGE_FIBER_SERDES, MII_BMCR,
						 ret);
2425 2426 2427 2428 2429
	}

	return ret;
}

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
			       int reg, u16 *val)
{
	int addr = chip->info->port_base_addr + port;

	if (port >= chip->info->num_ports)
		return -EINVAL;

	return mv88e6xxx_read(chip, addr, reg, val);
}

2441
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2442
{
2443
	struct dsa_switch *ds = chip->ds;
2444
	int ret;
2445
	u16 reg;
2446

2447 2448 2449 2450
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2451 2452 2453 2454 2455 2456
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2457
		reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2458
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2459
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2460 2461 2462 2463
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2464
			if (mv88e6xxx_6065_family(chip))
2465 2466 2467 2468 2469 2470 2471
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2472
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2473 2474
					   PORT_PCS_CTRL, reg);
		if (ret)
2475
			return ret;
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2493 2494 2495 2496
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2497 2498 2499 2500
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2501
		if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
2502
			reg |= PORT_CONTROL_DSA_TAG;
2503 2504 2505 2506 2507
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2508 2509
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
				PORT_CONTROL_FORWARD_UNKNOWN |
2510
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2511 2512
		}

2513 2514 2515 2516 2517 2518 2519 2520
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6065_family(chip) ||
		    mv88e6xxx_6185_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2521
			reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2522 2523
		}
	}
2524
	if (dsa_is_dsa_port(ds, port)) {
2525 2526
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2527
			reg |= PORT_CONTROL_DSA_TAG;
2528 2529 2530 2531 2532
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2533
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2534 2535
		}

2536 2537 2538 2539 2540
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2541
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2542 2543
					   PORT_CONTROL, reg);
		if (ret)
2544
			return ret;
2545 2546
	}

2547 2548 2549
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2550 2551
	if (mv88e6xxx_6352_family(chip)) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2552
		if (ret < 0)
2553
			return ret;
2554 2555 2556 2557
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
2558
			ret = mv88e6xxx_power_on_serdes(chip);
2559
			if (ret < 0)
2560
				return ret;
2561 2562 2563
		}
	}

2564
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2565
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2566 2567 2568
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2569 2570
	 */
	reg = 0;
2571 2572 2573 2574
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2575 2576
		reg = PORT_CONTROL_2_MAP_DA;

2577 2578
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2579 2580
		reg |= PORT_CONTROL_2_JUMBO_10240;

2581
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2582 2583 2584 2585 2586 2587 2588 2589 2590
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2591
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2592

2593
	if (reg) {
2594
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2595 2596
					   PORT_CONTROL_2, reg);
		if (ret)
2597
			return ret;
2598 2599 2600 2601 2602 2603 2604
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2605
	reg = 1 << port;
2606 2607
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2608
		reg = 0;
2609

2610 2611
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
				   reg);
2612
	if (ret)
2613
		return ret;
2614 2615

	/* Egress rate control 2: disable egress rate control. */
2616
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2617 2618
				   0x0000);
	if (ret)
2619
		return ret;
2620

2621 2622 2623
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2624 2625 2626 2627
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2628
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2629 2630
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
2631
			return ret;
2632 2633 2634 2635 2636

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2637
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2638 2639 2640 2641
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2642
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2643 2644
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
2645
			return ret;
2646 2647 2648 2649

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2650
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2651 2652
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
2653
			return ret;
2654 2655 2656
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2657
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2658 2659
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
2660
			return ret;
2661 2662 2663 2664

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2665
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2666 2667
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
2668
			return ret;
2669 2670
	}

2671 2672 2673 2674
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2675
		/* Rate Control: disable ingress rate limiting. */
2676
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2677 2678
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
2679
			return ret;
2680 2681
	}

2682 2683
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2684
	 */
2685 2686
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
				   0x0000);
2687
	if (ret)
2688
		return ret;
2689

2690
	/* Port based VLAN map: give each port the same default address
2691 2692
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2693
	 */
2694
	ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2695
	if (ret)
2696
		return ret;
2697

2698
	ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2699
	if (ret)
2700
		return ret;
2701 2702 2703 2704

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2705
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2706
				   0x0000);
2707 2708
	if (ret)
		return ret;
2709 2710 2711 2712

	return 0;
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
			      (addr[0] << 8) | addr[1]);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
			      (addr[2] << 8) | addr[3]);
	if (err)
		return err;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
			       (addr[4] << 8) | addr[5]);
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

	err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2771
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2772
{
2773
	struct dsa_switch *ds = chip->ds;
2774
	u32 upstream_port = dsa_upstream_port(ds);
2775
	u16 reg;
2776
	int err;
2777

2778 2779 2780 2781
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
	reg = 0;
2782 2783
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2784 2785
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2786
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2787 2788 2789
	if (err)
		return err;

2790 2791 2792 2793 2794 2795
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2796 2797
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
				   reg);
2798 2799 2800
	if (err)
		return err;

2801
	/* Disable remote management, and set the switch's DSA device number. */
2802
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2803 2804 2805 2806 2807
				   GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				   (ds->index & 0x1f));
	if (err)
		return err;

2808 2809 2810 2811 2812
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2813 2814 2815 2816
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2817 2818
	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
			      GLOBAL_ATU_CONTROL_LEARN2ALL);
2819
	if (err)
2820
		return err;
2821

2822 2823
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2824 2825 2826 2827 2828 2829 2830
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2831
	/* Configure the IP ToS mapping registers. */
2832
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2833
	if (err)
2834
		return err;
2835
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2836
	if (err)
2837
		return err;
2838
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2839
	if (err)
2840
		return err;
2841
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2842
	if (err)
2843
		return err;
2844
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2845
	if (err)
2846
		return err;
2847
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2848
	if (err)
2849
		return err;
2850
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2851
	if (err)
2852
		return err;
2853
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2854
	if (err)
2855
		return err;
2856 2857

	/* Configure the IEEE 802.1p priority mapping register. */
2858
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2859
	if (err)
2860
		return err;
2861

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	/* Clear the statistics counters for all ports */
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_FLUSH_ALL);
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
					     int target, int port)
{
	u16 val = (target << 8) | (port & 0xf);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
}

static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
{
	int target, port;
	int err;

	/* Initialize the routing port to the 32 possible target devices */
	for (target = 0; target < 32; ++target) {
		port = 0xf;

		if (target < DSA_MAX_SWITCHES) {
			port = chip->ds->rtable[target];
			if (port == DSA_RTABLE_NONE)
				port = 0xf;
		}

		err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
		if (err)
			break;
	}

	return err;
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
					 bool hask, u16 mask)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (num << 12) | (mask & port_mask);

	if (hask)
		val |= GLOBAL2_TRUNK_MASK_HASK;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
}

static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
					    u16 map)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (id << 11) | (map & port_mask);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
}

static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	int i, err;

	/* Clear all eight possible Trunk Mask vectors */
	for (i = 0; i < 8; ++i) {
		err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
		if (err)
			return err;
	}

	/* Clear all sixteen possible Trunk ID routing vectors */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
		if (err)
			return err;
	}

	return 0;
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
{
	int port, err;

	/* Init all Ingress Rate Limit resources of all ports */
	for (port = 0; port < chip->info->num_ports; ++port) {
		/* XXX newer chips (like 88E6390) have different 2-bit ops */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				      GLOBAL2_IRL_CMD_OP_INIT_ALL |
				      (port << 8));
		if (err)
			break;

		/* Wait for the operation to complete */
2964 2965
		err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				     GLOBAL2_IRL_CMD_BUSY);
2966 2967 2968 2969 2970 2971 2972
		if (err)
			break;
	}

	return err;
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
/* Indirect write to the Switch MAC/WoL/WoF register */
static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
					 unsigned int pointer, u8 data)
{
	u16 val = (pointer << 8) | data;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
}

static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int i, err;

	for (i = 0; i < 6; i++) {
		err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
		if (err)
			break;
	}

	return err;
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
				  u8 data)
{
	u16 val = (pointer << 8) | (data & 0x7);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
}

static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
{
	int i, err;

	/* Clear all sixteen possible Priority Override entries */
	for (i = 0; i < 16; i++) {
		err = mv88e6xxx_g2_pot_write(chip, i, 0);
		if (err)
			break;
	}

	return err;
}

3017 3018
static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
{
3019 3020 3021
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
			      GLOBAL2_EEPROM_CMD_BUSY |
			      GLOBAL2_EEPROM_CMD_RUNNING);
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
}

static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_wait(chip);
}

static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
				      u8 addr, u16 *data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
}

static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
				       u8 addr, u16 data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
{
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD,
			      GLOBAL2_SMI_PHY_CMD_BUSY);
}

static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_wait(chip);
}

static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
				     int reg, u16 *val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
}

static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
				      int reg, u16 val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
}

3120 3121 3122 3123 3124
static const struct mv88e6xxx_ops mv88e6xxx_g2_smi_phy_ops = {
	.read = mv88e6xxx_g2_smi_phy_read,
	.write = mv88e6xxx_g2_smi_phy_write,
};

3125 3126
static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
{
3127
	u16 reg;
3128 3129
	int err;

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:2x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
				      0xffff);
		if (err)
			return err;
	}

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:0x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
				      0xffff);
		if (err)
			return err;
	}
3149 3150 3151 3152 3153 3154

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
3155 3156 3157 3158 3159
	reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
		reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3160
	if (err)
3161
		return err;
3162 3163

	/* Program the DSA routing table. */
3164 3165 3166
	err = mv88e6xxx_g2_set_device_mapping(chip);
	if (err)
		return err;
3167

3168 3169 3170 3171
	/* Clear all trunk masks and mapping. */
	err = mv88e6xxx_g2_clear_trunk(chip);
	if (err)
		return err;
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
		/* Disable ingress rate limiting by resetting all per port
		 * ingress rate limit resources to their initial state.
		 */
		err = mv88e6xxx_g2_clear_irl(chip);
			if (err)
				return err;
	}

3182 3183 3184 3185
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
		/* Initialize Cross-chip Port VLAN Table to reset defaults */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
				      GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3186
		if (err)
3187
			return err;
3188
	}
3189

3190
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3191
		/* Clear the priority override table. */
3192 3193 3194
		err = mv88e6xxx_g2_clear_pot(chip);
		if (err)
			return err;
3195 3196
	}

3197
	return 0;
3198 3199
}

3200
static int mv88e6xxx_setup(struct dsa_switch *ds)
3201
{
3202
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3203
	int err;
3204 3205
	int i;

3206 3207
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
3208

3209
	mutex_lock(&chip->reg_lock);
3210

3211
	err = mv88e6xxx_switch_reset(chip);
3212 3213 3214
	if (err)
		goto unlock;

3215 3216 3217 3218 3219 3220 3221 3222 3223
	/* Setup Switch Port Registers */
	for (i = 0; i < chip->info->num_ports; i++) {
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
3224 3225 3226
	if (err)
		goto unlock;

3227 3228 3229
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
3230 3231 3232
		if (err)
			goto unlock;
	}
3233

3234
unlock:
3235
	mutex_unlock(&chip->reg_lock);
3236

3237
	return err;
3238 3239
}

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
	else
		err = mv88e6xxx_g1_set_switch_mac(chip, addr);

	mutex_unlock(&chip->reg_lock);

	return err;
}

3258 3259
static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page,
				    int reg)
3260
{
3261
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3262 3263
	int ret;

3264 3265 3266
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg);
	mutex_unlock(&chip->reg_lock);
3267

3268 3269 3270
	return ret;
}

3271 3272
static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page,
				     int reg, int val)
3273
{
3274
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3275 3276
	int ret;

3277 3278 3279
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val);
	mutex_unlock(&chip->reg_lock);
3280

3281 3282 3283
	return ret;
}

3284
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
3285
{
3286
	struct mv88e6xxx_chip *chip = bus->priv;
3287 3288
	u16 val;
	int err;
3289

3290
	if (phy >= chip->info->num_ports)
3291
		return 0xffff;
3292

3293
	mutex_lock(&chip->reg_lock);
3294
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
3295
	mutex_unlock(&chip->reg_lock);
3296 3297

	return err ? err : val;
3298 3299
}

3300
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
3301
{
3302
	struct mv88e6xxx_chip *chip = bus->priv;
3303
	int err;
3304

3305
	if (phy >= chip->info->num_ports)
3306
		return 0xffff;
3307

3308
	mutex_lock(&chip->reg_lock);
3309
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
3310
	mutex_unlock(&chip->reg_lock);
3311 3312

	return err;
3313 3314
}

3315
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3316 3317 3318 3319 3320 3321 3322
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
3323
		chip->mdio_np = of_get_child_by_name(np, "mdio");
3324

3325
	bus = devm_mdiobus_alloc(chip->dev);
3326 3327 3328
	if (!bus)
		return -ENOMEM;

3329
	bus->priv = (void *)chip;
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
3340
	bus->parent = chip->dev;
3341

3342 3343
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
3344 3345 3346
	else
		err = mdiobus_register(bus);
	if (err) {
3347
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3348 3349
		goto out;
	}
3350
	chip->mdio_bus = bus;
3351 3352 3353 3354

	return 0;

out:
3355 3356
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3357 3358 3359 3360

	return err;
}

3361
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3362 3363

{
3364
	struct mii_bus *bus = chip->mdio_bus;
3365 3366 3367

	mdiobus_unregister(bus);

3368 3369
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3370 3371
}

3372 3373 3374 3375
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
3376
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3377 3378 3379 3380 3381
	int ret;
	int val;

	*temp = 0;

3382
	mutex_lock(&chip->reg_lock);
3383

3384
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6);
3385 3386 3387 3388
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3389
	ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3390 3391 3392
	if (ret < 0)
		goto error;

3393
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5));
3394 3395 3396 3397 3398 3399
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3400
	val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3401 3402 3403 3404 3405 3406
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
3407
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5));
3408 3409 3410 3411 3412 3413
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3414 3415
	mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0);
	mutex_unlock(&chip->reg_lock);
3416 3417 3418 3419 3420
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
3421 3422
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3423 3424 3425 3426
	int ret;

	*temp = 0;

3427
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27);
3428 3429 3430 3431 3432 3433 3434 3435
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

3436
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3437
{
3438
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3439

3440
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3441 3442
		return -EOPNOTSUPP;

3443
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3444 3445 3446 3447 3448
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3449
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3450
{
3451 3452
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3453 3454
	int ret;

3455
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3456 3457 3458 3459
		return -EOPNOTSUPP;

	*temp = 0;

3460
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3461 3462 3463 3464 3465 3466 3467 3468
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

3469
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3470
{
3471 3472
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3473 3474
	int ret;

3475
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3476 3477
		return -EOPNOTSUPP;

3478
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3479 3480 3481
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3482 3483
	return mv88e6xxx_mdio_page_write(ds, phy, 6, 26,
					 (ret & 0xe0ff) | (temp << 8));
3484 3485
}

3486
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3487
{
3488 3489
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3490 3491
	int ret;

3492
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3493 3494 3495 3496
		return -EOPNOTSUPP;

	*alarm = false;

3497
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3498 3499 3500 3501 3502 3503 3504 3505 3506
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = (val >> 8) & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;
		*data++ = (val >> 8) & 0xff;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	/* Ensure the RO WriteEn bit is set */
	err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
	if (err)
		return err;

	if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
		return -EROFS;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (*data++ << 8) | (val & 0xff);

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		val = *data++;
		val |= *data++ << 8;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (val & 0xff00) | *data++;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	return err;
}

3674 3675 3676 3677 3678 3679 3680
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3681
		.port_base_addr = 0x10,
3682
		.age_time_coeff = 15000,
3683 3684 3685 3686 3687 3688 3689 3690 3691
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3692
		.port_base_addr = 0x10,
3693
		.age_time_coeff = 15000,
3694 3695 3696 3697 3698 3699 3700 3701 3702
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3703
		.port_base_addr = 0x10,
3704
		.age_time_coeff = 15000,
3705 3706 3707 3708 3709 3710 3711 3712 3713
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3714
		.port_base_addr = 0x10,
3715
		.age_time_coeff = 15000,
3716 3717 3718 3719 3720 3721 3722 3723 3724
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3725
		.port_base_addr = 0x10,
3726
		.age_time_coeff = 15000,
3727 3728 3729 3730 3731 3732 3733 3734 3735
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3736
		.port_base_addr = 0x10,
3737
		.age_time_coeff = 15000,
3738 3739 3740 3741 3742 3743 3744 3745 3746
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3747
		.port_base_addr = 0x10,
3748
		.age_time_coeff = 15000,
3749 3750 3751 3752 3753 3754 3755 3756 3757
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3758
		.port_base_addr = 0x10,
3759
		.age_time_coeff = 15000,
3760 3761 3762 3763 3764 3765 3766 3767 3768
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3769
		.port_base_addr = 0x10,
3770
		.age_time_coeff = 15000,
3771 3772 3773 3774 3775 3776 3777 3778 3779
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3780
		.port_base_addr = 0x10,
3781
		.age_time_coeff = 15000,
3782 3783 3784 3785 3786 3787 3788 3789 3790
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3791
		.port_base_addr = 0x10,
3792
		.age_time_coeff = 15000,
3793 3794 3795 3796 3797 3798 3799 3800 3801
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3802
		.port_base_addr = 0x10,
3803
		.age_time_coeff = 15000,
3804 3805 3806 3807 3808 3809 3810 3811 3812
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3813
		.port_base_addr = 0x10,
3814
		.age_time_coeff = 15000,
3815 3816 3817 3818 3819 3820 3821 3822 3823
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3824
		.port_base_addr = 0x10,
3825
		.age_time_coeff = 15000,
3826 3827 3828 3829 3830 3831 3832 3833 3834
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3835
		.port_base_addr = 0x10,
3836
		.age_time_coeff = 15000,
3837 3838 3839 3840 3841 3842 3843 3844 3845
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3846
		.port_base_addr = 0x10,
3847
		.age_time_coeff = 15000,
3848 3849 3850 3851 3852 3853 3854 3855 3856
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3857
		.port_base_addr = 0x10,
3858
		.age_time_coeff = 15000,
3859 3860 3861 3862
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},
};

3863
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3864
{
3865
	int i;
3866

3867 3868 3869
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3870 3871 3872 3873

	return NULL;
}

3874
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3875 3876
{
	const struct mv88e6xxx_info *info;
3877 3878 3879
	unsigned int prod_num, rev;
	u16 id;
	int err;
3880

3881 3882 3883 3884 3885
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3886 3887 3888 3889 3890 3891 3892 3893

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3894
	/* Update the compatible info with the probed one */
3895
	chip->info = info;
3896

3897 3898
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3899 3900 3901 3902

	return 0;
}

3903
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3904
{
3905
	struct mv88e6xxx_chip *chip;
3906

3907 3908
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3909 3910
		return NULL;

3911
	chip->dev = dev;
3912

3913
	mutex_init(&chip->reg_lock);
3914

3915
	return chip;
3916 3917
}

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
static const struct mv88e6xxx_ops mv88e6xxx_phy_ops = {
	.read = mv88e6xxx_read,
	.write = mv88e6xxx_write,
};

static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY)) {
		chip->phy_ops = &mv88e6xxx_g2_smi_phy_ops;
	} else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
		chip->phy_ops = &mv88e6xxx_phy_ppu_ops;
		mv88e6xxx_ppu_state_init(chip);
	} else {
		chip->phy_ops = &mv88e6xxx_phy_ops;
	}
}

3935
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3936 3937 3938 3939 3940 3941
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3942
	if (sw_addr == 0)
3943
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3944
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3945
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3946 3947 3948
	else
		return -EINVAL;

3949 3950
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3951 3952 3953 3954

	return 0;
}

3955 3956 3957
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3958
{
3959
	struct mv88e6xxx_chip *chip;
3960
	struct mii_bus *bus;
3961
	int err;
3962

3963
	bus = dsa_host_dev_to_mii_bus(host_dev);
3964 3965 3966
	if (!bus)
		return NULL;

3967 3968
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3969 3970
		return NULL;

3971
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3972
	chip->info = &mv88e6xxx_table[MV88E6085];
3973

3974
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3975 3976 3977
	if (err)
		goto free;

3978
	err = mv88e6xxx_detect(chip);
3979
	if (err)
3980
		goto free;
3981

3982 3983
	mv88e6xxx_phy_init(chip);

3984
	err = mv88e6xxx_mdio_register(chip, NULL);
3985
	if (err)
3986
		goto free;
3987

3988
	*priv = chip;
3989

3990
	return chip->info->name;
3991
free:
3992
	devm_kfree(dsa_dev, chip);
3993 3994

	return NULL;
3995 3996
}

3997
static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3998
	.tag_protocol		= DSA_TAG_PROTO_EDSA,
3999
	.probe			= mv88e6xxx_drv_probe,
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
4014
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
4015 4016 4017 4018
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
4019
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
};

4034
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4035 4036
				     struct device_node *np)
{
4037
	struct device *dev = chip->dev;
4038 4039 4040 4041 4042 4043 4044
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
4045
	ds->priv = chip;
4046 4047 4048 4049 4050 4051 4052
	ds->drv = &mv88e6xxx_switch_driver;

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

4053
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4054
{
4055
	dsa_unregister_switch(chip->ds);
4056 4057
}

4058
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4059
{
4060
	struct device *dev = &mdiodev->dev;
4061
	struct device_node *np = dev->of_node;
4062
	const struct mv88e6xxx_info *compat_info;
4063
	struct mv88e6xxx_chip *chip;
4064
	u32 eeprom_len;
4065
	int err;
4066

4067 4068 4069 4070
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

4071 4072
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
4073 4074
		return -ENOMEM;

4075
	chip->info = compat_info;
4076

4077
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4078 4079
	if (err)
		return err;
4080

4081
	err = mv88e6xxx_detect(chip);
4082 4083
	if (err)
		return err;
4084

4085 4086
	mv88e6xxx_phy_init(chip);

4087 4088 4089
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
4090

4091
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4092
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4093
		chip->eeprom_len = eeprom_len;
4094

4095
	err = mv88e6xxx_mdio_register(chip, np);
4096 4097 4098
	if (err)
		return err;

4099
	err = mv88e6xxx_register_switch(chip, np);
4100
	if (err) {
4101
		mv88e6xxx_mdio_unregister(chip);
4102 4103 4104
		return err;
	}

4105 4106
	return 0;
}
4107 4108 4109 4110

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4111
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4112

4113 4114
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4115 4116 4117
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4118 4119 4120 4121
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
	register_switch_driver(&mv88e6xxx_switch_driver);
	return mdio_driver_register(&mv88e6xxx_driver);
}
4141 4142 4143 4144
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4145
	mdio_driver_unregister(&mv88e6xxx_driver);
4146
	unregister_switch_driver(&mv88e6xxx_switch_driver);
4147 4148
}
module_exit(mv88e6xxx_cleanup);
4149 4150 4151 4152

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");