chip.c 99.2 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21
#include <linux/jiffies.h>
22
#include <linux/list.h>
23
#include <linux/mdio.h>
24
#include <linux/module.h>
25
#include <linux/of_device.h>
26
#include <linux/of_mdio.h>
27
#include <linux/netdevice.h>
28
#include <linux/gpio/consumer.h>
29
#include <linux/phy.h>
30
#include <net/dsa.h>
31
#include <net/switchdev.h>
32 33
#include "mv88e6xxx.h"

34
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35
{
36 37
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
38 39 40 41
		dump_stack();
	}
}

42 43 44 45 46 47 48 49 50 51
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
52
 */
53

54
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 56
			      int addr, int reg, u16 *val)
{
57
	if (!chip->smi_ops)
58 59
		return -EOPNOTSUPP;

60
	return chip->smi_ops->read(chip, addr, reg, val);
61 62
}

63
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 65
			       int addr, int reg, u16 val)
{
66
	if (!chip->smi_ops)
67 68
		return -EOPNOTSUPP;

69
	return chip->smi_ops->write(chip, addr, reg, val);
70 71
}

72
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 74 75 76
					  int addr, int reg, u16 *val)
{
	int ret;

77
	ret = mdiobus_read_nested(chip->bus, addr, reg);
78 79 80 81 82 83 84 85
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

86
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 88 89 90
					   int addr, int reg, u16 val)
{
	int ret;

91
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 93 94 95 96 97 98 99 100 101 102
	if (ret < 0)
		return ret;

	return 0;
}

static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

103
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 105 106 107 108
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
109
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 111 112
		if (ret < 0)
			return ret;

113
		if ((ret & SMI_CMD_BUSY) == 0)
114 115 116 117 118 119
			return 0;
	}

	return -ETIMEDOUT;
}

120
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121
					 int addr, int reg, u16 *val)
122 123 124
{
	int ret;

125
	/* Wait for the bus to become free. */
126
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 128 129
	if (ret < 0)
		return ret;

130
	/* Transmit the read command. */
131
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 134 135
	if (ret < 0)
		return ret;

136
	/* Wait for the read command to complete. */
137
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 139 140
	if (ret < 0)
		return ret;

141
	/* Read the data. */
142
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 144 145
	if (ret < 0)
		return ret;

146
	*val = ret & 0xffff;
147

148
	return 0;
149 150
}

151
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152
					  int addr, int reg, u16 val)
153 154 155
{
	int ret;

156
	/* Wait for the bus to become free. */
157
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 159 160
	if (ret < 0)
		return ret;

161
	/* Transmit the data to write. */
162
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 164 165
	if (ret < 0)
		return ret;

166
	/* Transmit the write command. */
167
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 170 171
	if (ret < 0)
		return ret;

172
	/* Wait for the write command to complete. */
173
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 175 176 177 178 179
	if (ret < 0)
		return ret;

	return 0;
}

180 181 182 183 184
static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

185
static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 187 188 189
			  int addr, int reg, u16 *val)
{
	int err;

190
	assert_reg_lock(chip);
191

192
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 194 195
	if (err)
		return err;

196
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 198 199 200 201
		addr, reg, *val);

	return 0;
}

202
static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203
			   int addr, int reg, u16 val)
204
{
205 206
	int err;

207
	assert_reg_lock(chip);
208

209
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 211 212
	if (err)
		return err;

213
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 215
		addr, reg, val);

216 217 218
	return 0;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->read(chip, addr, reg, val);
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

	if (!chip->phy_ops)
		return -EOPNOTSUPP;

	return chip->phy_ops->write(chip, addr, reg, val);
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
			  u16 mask)
{
	unsigned long timeout = jiffies + HZ / 10;

	while (time_before(jiffies, timeout)) {
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

	return -ETIMEDOUT;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/* Indirect write to single pointer-data register with an Update bit */
static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
			    u16 update)
{
	u16 val;
	int i, err;

	/* Wait until the previous operation is completed */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & BIT(15)))
			break;
	}

	if (i == 16)
		return -ETIMEDOUT;

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

357
static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
358 359 360 361
{
	u16 val;
	int err;

362
	err = mv88e6xxx_read(chip, addr, reg, &val);
363 364 365 366 367 368
	if (err)
		return err;

	return val;
}

369
static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
370 371
				int reg, u16 val)
{
372
	return mv88e6xxx_write(chip, addr, reg, val);
373 374
}

375
static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip,
376
				      int addr, int regnum)
377 378
{
	if (addr >= 0)
379
		return _mv88e6xxx_reg_read(chip, addr, regnum);
380 381 382
	return 0xffff;
}

383
static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip,
384
				       int addr, int regnum, u16 val)
385 386
{
	if (addr >= 0)
387
		return _mv88e6xxx_reg_write(chip, addr, regnum, val);
388 389 390
	return 0;
}

391
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
392 393
{
	int ret;
394
	unsigned long timeout;
395

396
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
397 398 399
	if (ret < 0)
		return ret;

400
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
401
				   ret & ~GLOBAL_CONTROL_PPU_ENABLE);
402 403
	if (ret)
		return ret;
404

405 406
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
407
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
408 409 410
		if (ret < 0)
			return ret;

411
		usleep_range(1000, 2000);
412 413
		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
		    GLOBAL_STATUS_PPU_POLLING)
414
			return 0;
415 416 417 418 419
	}

	return -ETIMEDOUT;
}

420
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
421
{
422
	int ret, err;
423
	unsigned long timeout;
424

425
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
426 427 428
	if (ret < 0)
		return ret;

429
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
430
				   ret | GLOBAL_CONTROL_PPU_ENABLE);
431 432
	if (err)
		return err;
433

434 435
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
436
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
437 438 439
		if (ret < 0)
			return ret;

440
		usleep_range(1000, 2000);
441 442
		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
		    GLOBAL_STATUS_PPU_POLLING)
443
			return 0;
444 445 446 447 448 449 450
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
451
	struct mv88e6xxx_chip *chip;
452

453
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
454

455
	mutex_lock(&chip->reg_lock);
456

457 458 459 460
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
461
	}
462

463
	mutex_unlock(&chip->reg_lock);
464 465 466 467
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
468
	struct mv88e6xxx_chip *chip = (void *)_ps;
469

470
	schedule_work(&chip->ppu_work);
471 472
}

473
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
474 475 476
{
	int ret;

477
	mutex_lock(&chip->ppu_mutex);
478

479
	/* If the PHY polling unit is enabled, disable it so that
480 481 482 483
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
484 485
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
486
		if (ret < 0) {
487
			mutex_unlock(&chip->ppu_mutex);
488 489
			return ret;
		}
490
		chip->ppu_disabled = 1;
491
	} else {
492
		del_timer(&chip->ppu_timer);
493
		ret = 0;
494 495 496 497 498
	}

	return ret;
}

499
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
500
{
501
	/* Schedule a timer to re-enable the PHY polling unit. */
502 503
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
504 505
}

506
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
507
{
508 509 510 511 512
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
	init_timer(&chip->ppu_timer);
	chip->ppu_timer.data = (unsigned long)chip;
	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
513 514
}

515 516
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
517
{
518
	int err;
519

520 521 522
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
523
		mv88e6xxx_ppu_access_put(chip);
524 525
	}

526
	return err;
527 528
}

529 530
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
531
{
532
	int err;
533

534 535 536
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
537
		mv88e6xxx_ppu_access_put(chip);
538 539
	}

540
	return err;
541 542
}

543 544 545 546 547
static const struct mv88e6xxx_ops mv88e6xxx_phy_ppu_ops = {
	.read = mv88e6xxx_phy_ppu_read,
	.write = mv88e6xxx_phy_ppu_write,
};

548
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
549
{
550
	return chip->info->family == MV88E6XXX_FAMILY_6065;
551 552
}

553
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
554
{
555
	return chip->info->family == MV88E6XXX_FAMILY_6095;
556 557
}

558
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
559
{
560
	return chip->info->family == MV88E6XXX_FAMILY_6097;
561 562
}

563
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
564
{
565
	return chip->info->family == MV88E6XXX_FAMILY_6165;
566 567
}

568
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
569
{
570
	return chip->info->family == MV88E6XXX_FAMILY_6185;
571 572
}

573
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
574
{
575
	return chip->info->family == MV88E6XXX_FAMILY_6320;
576 577
}

578
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
579
{
580
	return chip->info->family == MV88E6XXX_FAMILY_6351;
581 582
}

583
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
584
{
585
	return chip->info->family == MV88E6XXX_FAMILY_6352;
586 587
}

588
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
589
{
590
	return chip->info->num_databases;
591 592
}

593
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
594 595
{
	/* Does the device have dedicated FID registers for ATU and VTU ops? */
596 597
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
598 599 600 601 602
		return true;

	return false;
}

603 604 605 606
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
607 608
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
609
{
610
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
611 612
	u32 reg;
	int ret;
613 614 615 616

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

617
	mutex_lock(&chip->reg_lock);
618

619
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
620 621 622 623 624 625 626 627 628 629 630
	if (ret < 0)
		goto out;

	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
		      PORT_PCS_CTRL_FORCE_LINK |
		      PORT_PCS_CTRL_DUPLEX_FULL |
		      PORT_PCS_CTRL_FORCE_DUPLEX |
		      PORT_PCS_CTRL_UNFORCED);

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
631
		reg |= PORT_PCS_CTRL_LINK_UP;
632

633
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

655 656
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
	    (port >= chip->info->num_ports - 2)) {
657 658 659 660 661 662 663 664
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
665
	_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
666 667

out:
668
	mutex_unlock(&chip->reg_lock);
669 670
}

671
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
672 673 674 675 676
{
	int ret;
	int i;

	for (i = 0; i < 10; i++) {
677
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
678
		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
679 680 681 682 683 684
			return 0;
	}

	return -ETIMEDOUT;
}

685
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
686 687 688
{
	int ret;

689
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
690 691
		port = (port + 1) << 5;

692
	/* Snapshot the hardware statistics counters for this port. */
693
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
694 695 696 697
				   GLOBAL_STATS_OP_CAPTURE_PORT |
				   GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (ret < 0)
		return ret;
698

699
	/* Wait for the snapshotting to complete. */
700
	ret = _mv88e6xxx_stats_wait(chip);
701 702 703 704 705 706
	if (ret < 0)
		return ret;

	return 0;
}

707
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
708
				  int stat, u32 *val)
709 710 711 712 713 714
{
	u32 _val;
	int ret;

	*val = 0;

715
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
716 717
				   GLOBAL_STATS_OP_READ_CAPTURED |
				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
718 719 720
	if (ret < 0)
		return;

721
	ret = _mv88e6xxx_stats_wait(chip);
722 723 724
	if (ret < 0)
		return;

725
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
726 727 728 729 730
	if (ret < 0)
		return;

	_val = ret << 16;

731
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
732 733 734 735 736 737
	if (ret < 0)
		return;

	*val = _val | ret;
}

738
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
798 799
};

800
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
801
			       struct mv88e6xxx_hw_stat *stat)
802
{
803 804
	switch (stat->type) {
	case BANK0:
805
		return true;
806
	case BANK1:
807
		return mv88e6xxx_6320_family(chip);
808
	case PORT:
809 810 811 812 813 814
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
815
	}
816
	return false;
817 818
}

819
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
820
					    struct mv88e6xxx_hw_stat *s,
821 822 823 824 825 826 827
					    int port)
{
	u32 low;
	u32 high = 0;
	int ret;
	u64 value;

828 829
	switch (s->type) {
	case PORT:
830
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
831 832 833 834 835
		if (ret < 0)
			return UINT64_MAX;

		low = ret;
		if (s->sizeof_stat == 4) {
836
			ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
837
						  s->reg + 1);
838 839 840 841
			if (ret < 0)
				return UINT64_MAX;
			high = ret;
		}
842 843 844
		break;
	case BANK0:
	case BANK1:
845
		_mv88e6xxx_stats_read(chip, s->reg, &low);
846
		if (s->sizeof_stat == 8)
847
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
848 849 850 851 852
	}
	value = (((u64)high) << 16) | low;
	return value;
}

853 854
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
855
{
856
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
857 858
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
859

860 861
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
862
		if (mv88e6xxx_has_stat(chip, stat)) {
863 864 865 866
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
867
	}
868 869
}

870
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
871
{
872
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
873 874 875 876 877
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
878
		if (mv88e6xxx_has_stat(chip, stat))
879 880 881
			j++;
	}
	return j;
882 883
}

884 885
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
886
{
887
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
888 889 890 891
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

892
	mutex_lock(&chip->reg_lock);
893

894
	ret = _mv88e6xxx_stats_snapshot(chip, port);
895
	if (ret < 0) {
896
		mutex_unlock(&chip->reg_lock);
897 898 899 900
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
901 902
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
903 904 905 906
			j++;
		}
	}

907
	mutex_unlock(&chip->reg_lock);
908 909
}

910
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
911 912 913 914
{
	return 32 * sizeof(u16);
}

915 916
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
917
{
918
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
919 920 921 922 923 924 925
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

926
	mutex_lock(&chip->reg_lock);
927

928 929 930
	for (i = 0; i < 32; i++) {
		int ret;

931
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
932 933 934
		if (ret >= 0)
			p[i] = ret;
	}
935

936
	mutex_unlock(&chip->reg_lock);
937 938
}

939
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
940
{
941 942
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
			      GLOBAL_ATU_OP_BUSY);
943 944
}

945 946 947 948 949
static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
				     int reg, u16 *val);
static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
				      int reg, u16 val);

950
static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip,
951
					int addr, int regnum)
952
{
953 954
	u16 val;
	int err;
955

956 957 958
	err = mv88e6xxx_g2_smi_phy_read(chip, addr, regnum, &val);
	if (err)
		return err;
959

960
	return val;
961 962
}

963
static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip,
964
					 int addr, int regnum, u16 val)
965
{
966
	return mv88e6xxx_g2_smi_phy_write(chip, addr, regnum, val);
967 968
}

969 970
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
971
{
972
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
973 974
	int reg;

975
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
976 977
		return -EOPNOTSUPP;

978
	mutex_lock(&chip->reg_lock);
979

980
	reg = mv88e6xxx_mdio_read_indirect(chip, port, 16);
981
	if (reg < 0)
982
		goto out;
983 984 985 986

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

987
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
988
	if (reg < 0)
989
		goto out;
990

991
	e->eee_active = !!(reg & PORT_STATUS_EEE);
992
	reg = 0;
993

994
out:
995
	mutex_unlock(&chip->reg_lock);
996
	return reg;
997 998
}

999 1000
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
1001
{
1002
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1003
	int reg;
1004 1005
	int ret;

1006
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1007 1008
		return -EOPNOTSUPP;

1009
	mutex_lock(&chip->reg_lock);
1010

1011
	ret = mv88e6xxx_mdio_read_indirect(chip, port, 16);
1012 1013 1014 1015 1016 1017 1018 1019 1020
	if (ret < 0)
		goto out;

	reg = ret & ~0x0300;
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

1021
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg);
1022
out:
1023
	mutex_unlock(&chip->reg_lock);
1024 1025

	return ret;
1026 1027
}

1028
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
1029 1030 1031
{
	int ret;

1032 1033 1034
	if (mv88e6xxx_has_fid_reg(chip)) {
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
					   fid);
1035 1036
		if (ret < 0)
			return ret;
1037
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1038
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
1039
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
1040 1041 1042
		if (ret < 0)
			return ret;

1043
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
1044 1045 1046 1047 1048 1049 1050
					   (ret & 0xfff) |
					   ((fid << 8) & 0xf000));
		if (ret < 0)
			return ret;

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1051 1052
	}

1053
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1054 1055 1056
	if (ret < 0)
		return ret;

1057
	return _mv88e6xxx_atu_wait(chip);
1058 1059
}

1060
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1080
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1081 1082
}

1083
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1084 1085
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1086
{
1087 1088
	int op;
	int err;
1089

1090
	err = _mv88e6xxx_atu_wait(chip);
1091 1092
	if (err)
		return err;
1093

1094
	err = _mv88e6xxx_atu_data_write(chip, entry);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1106
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1107 1108
}

1109
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1110
				u16 fid, bool static_too)
1111 1112 1113 1114 1115
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1116

1117
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1118 1119
}

1120
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1121
			       int from_port, int to_port, bool static_too)
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1135
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1136 1137
}

1138
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1139
				 int port, bool static_too)
1140 1141
{
	/* Destination port 0xF means remove the entries */
1142
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1143 1144
}

1145 1146 1147 1148 1149 1150 1151
static const char * const mv88e6xxx_port_state_names[] = {
	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
	[PORT_CONTROL_STATE_LEARNING] = "Learning",
	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};

1152
static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1153
				 u8 state)
1154
{
1155
	struct dsa_switch *ds = chip->ds;
1156
	int reg, ret = 0;
1157 1158
	u8 oldstate;

1159
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1160 1161
	if (reg < 0)
		return reg;
1162

1163
	oldstate = reg & PORT_CONTROL_STATE_MASK;
1164

1165 1166 1167 1168 1169
	if (oldstate != state) {
		/* Flush forwarding database if we're moving a port
		 * from Learning or Forwarding state to Disabled or
		 * Blocking or Listening state.
		 */
1170
		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1171 1172 1173
		     oldstate == PORT_CONTROL_STATE_FORWARDING) &&
		    (state == PORT_CONTROL_STATE_DISABLED ||
		     state == PORT_CONTROL_STATE_BLOCKING)) {
1174
			ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1175
			if (ret)
1176
				return ret;
1177
		}
1178

1179
		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1180
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1181
					   reg);
1182 1183 1184
		if (ret)
			return ret;

1185
		netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1186 1187
			   mv88e6xxx_port_state_names[state],
			   mv88e6xxx_port_state_names[oldstate]);
1188 1189 1190 1191 1192
	}

	return ret;
}

1193
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1194
{
1195 1196 1197
	struct net_device *bridge = chip->ports[port].bridge_dev;
	const u16 mask = (1 << chip->info->num_ports) - 1;
	struct dsa_switch *ds = chip->ds;
1198
	u16 output_ports = 0;
1199
	int reg;
1200 1201 1202 1203 1204 1205
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1206
		for (i = 0; i < chip->info->num_ports; ++i) {
1207
			/* allow sending frames to every group member */
1208
			if (bridge && chip->ports[i].bridge_dev == bridge)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1219

1220
	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1221 1222
	if (reg < 0)
		return reg;
1223

1224 1225
	reg &= ~mask;
	reg |= output_ports & mask;
1226

1227
	return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1228 1229
}

1230 1231
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1232
{
1233
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1234
	int stp_state;
1235
	int err;
1236 1237 1238

	switch (state) {
	case BR_STATE_DISABLED:
1239
		stp_state = PORT_CONTROL_STATE_DISABLED;
1240 1241 1242
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1243
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1244 1245
		break;
	case BR_STATE_LEARNING:
1246
		stp_state = PORT_CONTROL_STATE_LEARNING;
1247 1248 1249
		break;
	case BR_STATE_FORWARDING:
	default:
1250
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1251 1252 1253
		break;
	}

1254 1255 1256
	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_port_state(chip, port, stp_state);
	mutex_unlock(&chip->reg_lock);
1257 1258

	if (err)
1259 1260
		netdev_err(ds->ports[port].netdev,
			   "failed to update state to %s\n",
1261
			   mv88e6xxx_port_state_names[stp_state]);
1262 1263
}

1264
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1265
				u16 *new, u16 *old)
1266
{
1267
	struct dsa_switch *ds = chip->ds;
1268
	u16 pvid;
1269 1270
	int ret;

1271
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1272 1273 1274
	if (ret < 0)
		return ret;

1275 1276 1277 1278 1279 1280
	pvid = ret & PORT_DEFAULT_VLAN_MASK;

	if (new) {
		ret &= ~PORT_DEFAULT_VLAN_MASK;
		ret |= *new & PORT_DEFAULT_VLAN_MASK;

1281
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1282 1283 1284 1285
					   PORT_DEFAULT_VLAN, ret);
		if (ret < 0)
			return ret;

1286 1287
		netdev_dbg(ds->ports[port].netdev,
			   "DefaultVID %d (was %d)\n", *new, pvid);
1288 1289 1290 1291
	}

	if (old)
		*old = pvid;
1292 1293 1294 1295

	return 0;
}

1296
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1297
				    int port, u16 *pvid)
1298
{
1299
	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1300 1301
}

1302
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1303
				    int port, u16 pvid)
1304
{
1305
	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1306 1307
}

1308
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1309
{
1310 1311
	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
			      GLOBAL_VTU_OP_BUSY);
1312 1313
}

1314
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1315 1316 1317
{
	int ret;

1318
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1319 1320 1321
	if (ret < 0)
		return ret;

1322
	return _mv88e6xxx_vtu_wait(chip);
1323 1324
}

1325
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1326 1327 1328
{
	int ret;

1329
	ret = _mv88e6xxx_vtu_wait(chip);
1330 1331 1332
	if (ret < 0)
		return ret;

1333
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1334 1335
}

1336
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1337 1338 1339 1340 1341 1342 1343 1344
					struct mv88e6xxx_vtu_stu_entry *entry,
					unsigned int nibble_offset)
{
	u16 regs[3];
	int i;
	int ret;

	for (i = 0; i < 3; ++i) {
1345
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1346 1347 1348 1349 1350 1351 1352
					  GLOBAL_VTU_DATA_0_3 + i);
		if (ret < 0)
			return ret;

		regs[i] = ret;
	}

1353
	for (i = 0; i < chip->info->num_ports; ++i) {
1354 1355 1356 1357 1358 1359 1360 1361 1362
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1363
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1364 1365
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1366
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1367 1368
}

1369
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1370 1371
				   struct mv88e6xxx_vtu_stu_entry *entry)
{
1372
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1373 1374
}

1375
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1376 1377 1378 1379 1380 1381 1382
					 struct mv88e6xxx_vtu_stu_entry *entry,
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
	int i;
	int ret;

1383
	for (i = 0; i < chip->info->num_ports; ++i) {
1384 1385 1386 1387 1388 1389 1390
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1391
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1392 1393 1394 1395 1396 1397 1398 1399
					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1400
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1401 1402
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1403
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1404 1405
}

1406
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1407 1408
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1409
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1410 1411
}

1412
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1413
{
1414
	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1415 1416 1417
				    vid & GLOBAL_VTU_VID_MASK);
}

1418
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1419 1420 1421 1422 1423
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1424
	ret = _mv88e6xxx_vtu_wait(chip);
1425 1426 1427
	if (ret < 0)
		return ret;

1428
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1429 1430 1431
	if (ret < 0)
		return ret;

1432
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1433 1434 1435 1436 1437 1438 1439
	if (ret < 0)
		return ret;

	next.vid = ret & GLOBAL_VTU_VID_MASK;
	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1440
		ret = mv88e6xxx_vtu_data_read(chip, &next);
1441 1442 1443
		if (ret < 0)
			return ret;

1444 1445
		if (mv88e6xxx_has_fid_reg(chip)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1446 1447 1448 1449 1450
						  GLOBAL_VTU_FID);
			if (ret < 0)
				return ret;

			next.fid = ret & GLOBAL_VTU_FID_MASK;
1451
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1452 1453 1454
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1455
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1456 1457 1458 1459 1460 1461
						  GLOBAL_VTU_OP);
			if (ret < 0)
				return ret;

			next.fid = (ret & 0xf00) >> 4;
			next.fid |= ret & 0xf;
1462
		}
1463

1464 1465
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
						  GLOBAL_VTU_SID);
			if (ret < 0)
				return ret;

			next.sid = ret & GLOBAL_VTU_SID_MASK;
		}
	}

	*entry = next;
	return 0;
}

1478 1479 1480
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1481
{
1482
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1483 1484 1485 1486
	struct mv88e6xxx_vtu_stu_entry next;
	u16 pvid;
	int err;

1487
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1488 1489
		return -EOPNOTSUPP;

1490
	mutex_lock(&chip->reg_lock);
1491

1492
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1493 1494 1495
	if (err)
		goto unlock;

1496
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1497 1498 1499 1500
	if (err)
		goto unlock;

	do {
1501
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1512 1513
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1528
	mutex_unlock(&chip->reg_lock);
1529 1530 1531 1532

	return err;
}

1533
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1534 1535
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
1536
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1537 1538 1539
	u16 reg = 0;
	int ret;

1540
	ret = _mv88e6xxx_vtu_wait(chip);
1541 1542 1543 1544 1545 1546 1547
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1548
	ret = mv88e6xxx_vtu_data_write(chip, entry);
1549 1550 1551
	if (ret < 0)
		return ret;

1552
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1553
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1554 1555
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
					   reg);
1556 1557
		if (ret < 0)
			return ret;
1558
	}
1559

1560
	if (mv88e6xxx_has_fid_reg(chip)) {
1561
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1562 1563
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
					   reg);
1564 1565
		if (ret < 0)
			return ret;
1566
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1567 1568 1569 1570 1571
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1572 1573 1574 1575 1576
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1577
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1578 1579 1580
	if (ret < 0)
		return ret;

1581
	return _mv88e6xxx_vtu_cmd(chip, op);
1582 1583
}

1584
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1585 1586 1587 1588 1589
				  struct mv88e6xxx_vtu_stu_entry *entry)
{
	struct mv88e6xxx_vtu_stu_entry next = { 0 };
	int ret;

1590
	ret = _mv88e6xxx_vtu_wait(chip);
1591 1592 1593
	if (ret < 0)
		return ret;

1594
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1595 1596 1597 1598
				   sid & GLOBAL_VTU_SID_MASK);
	if (ret < 0)
		return ret;

1599
	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1600 1601 1602
	if (ret < 0)
		return ret;

1603
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1604 1605 1606 1607 1608
	if (ret < 0)
		return ret;

	next.sid = ret & GLOBAL_VTU_SID_MASK;

1609
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1610 1611 1612 1613 1614 1615
	if (ret < 0)
		return ret;

	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);

	if (next.valid) {
1616
		ret = mv88e6xxx_stu_data_read(chip, &next);
1617 1618 1619 1620 1621 1622 1623 1624
		if (ret < 0)
			return ret;
	}

	*entry = next;
	return 0;
}

1625
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1626 1627 1628 1629 1630
				    struct mv88e6xxx_vtu_stu_entry *entry)
{
	u16 reg = 0;
	int ret;

1631
	ret = _mv88e6xxx_vtu_wait(chip);
1632 1633 1634 1635 1636 1637 1638
	if (ret < 0)
		return ret;

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1639
	ret = mv88e6xxx_stu_data_write(chip, entry);
1640 1641 1642 1643 1644
	if (ret < 0)
		return ret;

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1645
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1646 1647 1648 1649
	if (ret < 0)
		return ret;

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1650
	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1651 1652 1653
	if (ret < 0)
		return ret;

1654
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1655 1656
}

1657
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1658
			       u16 *new, u16 *old)
1659
{
1660
	struct dsa_switch *ds = chip->ds;
1661
	u16 upper_mask;
1662 1663 1664
	u16 fid;
	int ret;

1665
	if (mv88e6xxx_num_databases(chip) == 4096)
1666
		upper_mask = 0xff;
1667
	else if (mv88e6xxx_num_databases(chip) == 256)
1668
		upper_mask = 0xf;
1669 1670 1671
	else
		return -EOPNOTSUPP;

1672
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1673
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1674 1675 1676 1677 1678 1679 1680 1681 1682
	if (ret < 0)
		return ret;

	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;

	if (new) {
		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;

1683
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1684 1685 1686 1687 1688 1689
					   ret);
		if (ret < 0)
			return ret;
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1690
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1691 1692 1693
	if (ret < 0)
		return ret;

1694
	fid |= (ret & upper_mask) << 4;
1695 1696

	if (new) {
1697 1698
		ret &= ~upper_mask;
		ret |= (*new >> 4) & upper_mask;
1699

1700
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1701 1702 1703 1704
					   ret);
		if (ret < 0)
			return ret;

1705 1706
		netdev_dbg(ds->ports[port].netdev,
			   "FID %d (was %d)\n", *new, fid);
1707 1708 1709 1710 1711 1712 1713 1714
	}

	if (old)
		*old = fid;

	return 0;
}

1715
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1716
				   int port, u16 *fid)
1717
{
1718
	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1719 1720
}

1721
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1722
				   int port, u16 fid)
1723
{
1724
	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1725 1726
}

1727
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1728 1729 1730
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
	struct mv88e6xxx_vtu_stu_entry vlan;
1731
	int i, err;
1732 1733 1734

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1735
	/* Set every FID bit used by the (un)bridged ports */
1736 1737
	for (i = 0; i < chip->info->num_ports; ++i) {
		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1738 1739 1740 1741 1742 1743
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1744
	/* Set every FID bit used by the VLAN entries */
1745
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1746 1747 1748 1749
	if (err)
		return err;

	do {
1750
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1764
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1765 1766 1767
		return -ENOSPC;

	/* Clear the database */
1768
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1769 1770
}

1771
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1772
			      struct mv88e6xxx_vtu_stu_entry *entry)
1773
{
1774
	struct dsa_switch *ds = chip->ds;
1775 1776 1777 1778
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.valid = true,
		.vid = vid,
	};
1779 1780
	int i, err;

1781
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1782 1783
	if (err)
		return err;
1784

1785
	/* exclude all ports except the CPU and DSA ports */
1786
	for (i = 0; i < chip->info->num_ports; ++i)
1787 1788 1789
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1790

1791 1792
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1793 1794 1795 1796 1797 1798 1799
		struct mv88e6xxx_vtu_stu_entry vstp;

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1800
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1801 1802 1803 1804 1805 1806 1807 1808
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1809
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1810 1811 1812 1813 1814 1815 1816 1817 1818
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1819
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1820 1821 1822 1823 1824 1825 1826
			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
	int err;

	if (!vid)
		return -EINVAL;

1827
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1828 1829 1830
	if (err)
		return err;

1831
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1842
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1843 1844 1845 1846 1847
	}

	return err;
}

1848 1849 1850
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
1851
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1852 1853 1854 1855 1856 1857
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1858
	mutex_lock(&chip->reg_lock);
1859

1860
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1861 1862 1863 1864
	if (err)
		goto unlock;

	do {
1865
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1866 1867 1868 1869 1870 1871 1872 1873 1874
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1875
		for (i = 0; i < chip->info->num_ports; ++i) {
1876 1877 1878 1879 1880 1881 1882
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1883 1884
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1885 1886
				break; /* same bridge, check next VLAN */

1887
			netdev_warn(ds->ports[port].netdev,
1888 1889
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1890
				    netdev_name(chip->ports[i].bridge_dev));
1891 1892 1893 1894 1895 1896
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1897
	mutex_unlock(&chip->reg_lock);
1898 1899 1900 1901

	return err;
}

1902 1903 1904 1905 1906 1907 1908
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

1909 1910
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1911
{
1912
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1913 1914 1915 1916
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
	int ret;

1917
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1918 1919
		return -EOPNOTSUPP;

1920
	mutex_lock(&chip->reg_lock);
1921

1922
	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1923 1924 1925 1926 1927
	if (ret < 0)
		goto unlock;

	old = ret & PORT_CONTROL_2_8021Q_MASK;

1928 1929 1930
	if (new != old) {
		ret &= ~PORT_CONTROL_2_8021Q_MASK;
		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1931

1932
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1933 1934 1935 1936
					   ret);
		if (ret < 0)
			goto unlock;

1937
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1938 1939 1940
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1941

1942
	ret = 0;
1943
unlock:
1944
	mutex_unlock(&chip->reg_lock);
1945 1946 1947 1948

	return ret;
}

1949 1950 1951 1952
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1953
{
1954
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1955 1956
	int err;

1957
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1958 1959
		return -EOPNOTSUPP;

1960 1961 1962 1963 1964 1965 1966 1967
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1968 1969 1970 1971 1972 1973
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1974
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1975
				    u16 vid, bool untagged)
1976 1977 1978 1979
{
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

1980
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1981
	if (err)
1982
		return err;
1983 1984 1985 1986 1987

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1988
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1989 1990
}

1991 1992 1993
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1994
{
1995
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1996 1997 1998 1999
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

2000
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2001 2002
		return;

2003
	mutex_lock(&chip->reg_lock);
2004

2005
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
2006
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
2007 2008
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
2009
				   vid, untagged ? 'u' : 't');
2010

2011
	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
2012
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
2013
			   vlan->vid_end);
2014

2015
	mutex_unlock(&chip->reg_lock);
2016 2017
}

2018
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
2019
				    int port, u16 vid)
2020
{
2021
	struct dsa_switch *ds = chip->ds;
2022 2023 2024
	struct mv88e6xxx_vtu_stu_entry vlan;
	int i, err;

2025
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2026
	if (err)
2027
		return err;
2028

2029 2030
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
2031
		return -EOPNOTSUPP;
2032 2033 2034 2035

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
2036
	vlan.valid = false;
2037
	for (i = 0; i < chip->info->num_ports; ++i) {
2038
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
2039 2040 2041
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
2042
			vlan.valid = true;
2043 2044 2045 2046
			break;
		}
	}

2047
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
2048 2049 2050
	if (err)
		return err;

2051
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2052 2053
}

2054 2055
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
2056
{
2057
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2058 2059 2060
	u16 pvid, vid;
	int err = 0;

2061
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2062 2063
		return -EOPNOTSUPP;

2064
	mutex_lock(&chip->reg_lock);
2065

2066
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2067 2068 2069
	if (err)
		goto unlock;

2070
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2071
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2072 2073 2074 2075
		if (err)
			goto unlock;

		if (vid == pvid) {
2076
			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2077 2078 2079 2080 2081
			if (err)
				goto unlock;
		}
	}

2082
unlock:
2083
	mutex_unlock(&chip->reg_lock);
2084 2085 2086 2087

	return err;
}

2088
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2089
				    const unsigned char *addr)
2090 2091 2092 2093
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2094
		ret = _mv88e6xxx_reg_write(
2095
			chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2096
			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2097 2098 2099 2100 2101 2102 2103
		if (ret < 0)
			return ret;
	}

	return 0;
}

2104
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2105
				   unsigned char *addr)
2106 2107 2108 2109
{
	int i, ret;

	for (i = 0; i < 3; i++) {
2110
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2111
					  GLOBAL_ATU_MAC_01 + i);
2112 2113 2114 2115 2116 2117 2118 2119 2120
		if (ret < 0)
			return ret;
		addr[i * 2] = ret >> 8;
		addr[i * 2 + 1] = ret & 0xff;
	}

	return 0;
}

2121
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2122
			       struct mv88e6xxx_atu_entry *entry)
2123
{
2124 2125
	int ret;

2126
	ret = _mv88e6xxx_atu_wait(chip);
2127 2128 2129
	if (ret < 0)
		return ret;

2130
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2131 2132 2133
	if (ret < 0)
		return ret;

2134
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2135
	if (ret < 0)
2136 2137
		return ret;

2138
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2139
}
2140

2141
static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2142 2143 2144 2145
				    const unsigned char *addr, u16 vid,
				    u8 state)
{
	struct mv88e6xxx_atu_entry entry = { 0 };
2146 2147 2148
	struct mv88e6xxx_vtu_stu_entry vlan;
	int err;

2149 2150
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2151
		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2152
	else
2153
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2154 2155
	if (err)
		return err;
2156

2157
	entry.fid = vlan.fid;
2158 2159 2160 2161 2162 2163 2164
	entry.state = state;
	ether_addr_copy(entry.mac, addr);
	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.trunk = false;
		entry.portv_trunkid = BIT(port);
	}

2165
	return _mv88e6xxx_atu_load(chip, &entry);
2166 2167
}

2168 2169 2170
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2171 2172 2173 2174 2175 2176 2177
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2178 2179 2180
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2181
{
2182
	int state = is_multicast_ether_addr(fdb->addr) ?
2183 2184
		GLOBAL_ATU_DATA_STATE_MC_STATIC :
		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2185
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2186

2187 2188
	mutex_lock(&chip->reg_lock);
	if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2189 2190
		netdev_err(ds->ports[port].netdev,
			   "failed to load MAC address\n");
2191
	mutex_unlock(&chip->reg_lock);
2192 2193
}

2194 2195
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2196
{
2197
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2198 2199
	int ret;

2200 2201
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2202
				       GLOBAL_ATU_DATA_STATE_UNUSED);
2203
	mutex_unlock(&chip->reg_lock);
2204 2205 2206 2207

	return ret;
}

2208
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2209
				  struct mv88e6xxx_atu_entry *entry)
2210
{
2211 2212 2213 2214
	struct mv88e6xxx_atu_entry next = { 0 };
	int ret;

	next.fid = fid;
2215

2216
	ret = _mv88e6xxx_atu_wait(chip);
2217 2218
	if (ret < 0)
		return ret;
2219

2220
	ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2221 2222
	if (ret < 0)
		return ret;
2223

2224
	ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2225 2226
	if (ret < 0)
		return ret;
2227

2228
	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2229 2230
	if (ret < 0)
		return ret;
2231

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (ret & GLOBAL_ATU_DATA_TRUNK) {
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		next.portv_trunkid = (ret & mask) >> shift;
	}
2248

2249
	*entry = next;
2250 2251 2252
	return 0;
}

2253
static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2254
					u16 fid, u16 vid, int port,
2255 2256 2257 2258 2259 2260 2261 2262
					struct switchdev_obj_port_fdb *fdb,
					int (*cb)(struct switchdev_obj *obj))
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2263
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2264 2265 2266 2267
	if (err)
		return err;

	do {
2268
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		if (err)
			break;

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
			bool is_static = addr.state ==
				(is_multicast_ether_addr(addr.mac) ?
				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
				 GLOBAL_ATU_DATA_STATE_UC_STATIC);

			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;

			err = cb(&fdb->obj);
			if (err)
				break;
		}
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2294 2295 2296
static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
2297
{
2298
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2299 2300 2301
	struct mv88e6xxx_vtu_stu_entry vlan = {
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2302
	u16 fid;
2303 2304
	int err;

2305
	mutex_lock(&chip->reg_lock);
2306

2307
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2308
	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2309 2310 2311
	if (err)
		goto unlock;

2312
	err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2313 2314 2315
	if (err)
		goto unlock;

2316
	/* Dump VLANs' Filtering Information Databases */
2317
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2318 2319 2320 2321
	if (err)
		goto unlock;

	do {
2322
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2323
		if (err)
2324
			break;
2325 2326 2327 2328

		if (!vlan.valid)
			break;

2329 2330
		err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
						   port, fdb, cb);
2331
		if (err)
2332
			break;
2333 2334 2335
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

unlock:
2336
	mutex_unlock(&chip->reg_lock);
2337 2338 2339 2340

	return err;
}

2341 2342
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2343
{
2344
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2345
	int i, err = 0;
2346

2347
	mutex_lock(&chip->reg_lock);
2348

2349
	/* Assign the bridge and remap each port's VLANTable */
2350
	chip->ports[port].bridge_dev = bridge;
2351

2352 2353 2354
	for (i = 0; i < chip->info->num_ports; ++i) {
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2355 2356 2357 2358 2359
			if (err)
				break;
		}
	}

2360
	mutex_unlock(&chip->reg_lock);
2361

2362
	return err;
2363 2364
}

2365
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2366
{
2367 2368
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	struct net_device *bridge = chip->ports[port].bridge_dev;
2369
	int i;
2370

2371
	mutex_lock(&chip->reg_lock);
2372

2373
	/* Unassign the bridge and remap each port's VLANTable */
2374
	chip->ports[port].bridge_dev = NULL;
2375

2376 2377 2378
	for (i = 0; i < chip->info->num_ports; ++i)
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2379 2380
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2381

2382
	mutex_unlock(&chip->reg_lock);
2383 2384
}

2385
static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip,
2386
				      int port, int page, int reg, int val)
2387 2388 2389
{
	int ret;

2390
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2391 2392 2393
	if (ret < 0)
		goto restore_page_0;

2394
	ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val);
2395
restore_page_0:
2396
	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2397 2398 2399 2400

	return ret;
}

2401
static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip,
2402
				     int port, int page, int reg)
2403 2404 2405
{
	int ret;

2406
	ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
2407 2408 2409
	if (ret < 0)
		goto restore_page_0;

2410
	ret = mv88e6xxx_mdio_read_indirect(chip, port, reg);
2411
restore_page_0:
2412
	mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
2413 2414 2415 2416

	return ret;
}

2417
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2418
{
2419
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2420
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2421
	struct gpio_desc *gpiod = chip->reset;
2422 2423 2424 2425 2426
	unsigned long timeout;
	int ret;
	int i;

	/* Set all ports to the disabled state. */
2427 2428
	for (i = 0; i < chip->info->num_ports; i++) {
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2429 2430 2431
		if (ret < 0)
			return ret;

2432
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
					   ret & 0xfffc);
		if (ret)
			return ret;
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2454
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2455
	else
2456
		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2457 2458 2459 2460 2461 2462
	if (ret)
		return ret;

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2463
		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
		if (ret < 0)
			return ret;

		if ((ret & is_reset) == is_reset)
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
		ret = -ETIMEDOUT;
	else
		ret = 0;

	return ret;
}

2479
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2480
{
2481 2482
	u16 val;
	int err;
2483

2484 2485 2486 2487
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2488

2489 2490 2491
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2492 2493
	}

2494
	return err;
2495 2496
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
			       int reg, u16 *val)
{
	int addr = chip->info->port_base_addr + port;

	if (port >= chip->info->num_ports)
		return -EINVAL;

	return mv88e6xxx_read(chip, addr, reg, val);
}

2508
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2509
{
2510
	struct dsa_switch *ds = chip->ds;
2511
	int ret;
2512
	u16 reg;
2513

2514 2515 2516 2517
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2518 2519 2520 2521 2522 2523
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2524
		reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2525
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2526
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2527 2528 2529 2530
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2531
			if (mv88e6xxx_6065_family(chip))
2532 2533 2534 2535 2536 2537 2538
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2539
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2540 2541
					   PORT_PCS_CTRL, reg);
		if (ret)
2542
			return ret;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2560 2561 2562 2563
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2564 2565 2566 2567
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2568
		if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
2569
			reg |= PORT_CONTROL_DSA_TAG;
2570 2571 2572 2573 2574
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2575 2576
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
				PORT_CONTROL_FORWARD_UNKNOWN |
2577
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2578 2579
		}

2580 2581 2582 2583 2584 2585 2586 2587
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6065_family(chip) ||
		    mv88e6xxx_6185_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2588
			reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2589 2590
		}
	}
2591
	if (dsa_is_dsa_port(ds, port)) {
2592 2593
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2594
			reg |= PORT_CONTROL_DSA_TAG;
2595 2596 2597 2598 2599
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2600
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2601 2602
		}

2603 2604 2605 2606 2607
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2608
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2609 2610
					   PORT_CONTROL, reg);
		if (ret)
2611
			return ret;
2612 2613
	}

2614 2615 2616
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2617
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2618
		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2619
		if (ret < 0)
2620
			return ret;
2621 2622 2623 2624
		ret &= PORT_STATUS_CMODE_MASK;
		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
		    (ret == PORT_STATUS_CMODE_SGMII)) {
2625
			ret = mv88e6xxx_serdes_power_on(chip);
2626
			if (ret < 0)
2627
				return ret;
2628 2629 2630
		}
	}

2631
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2632
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2633 2634 2635
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2636 2637
	 */
	reg = 0;
2638 2639 2640 2641
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2642 2643
		reg = PORT_CONTROL_2_MAP_DA;

2644 2645
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2646 2647
		reg |= PORT_CONTROL_2_JUMBO_10240;

2648
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2649 2650 2651 2652 2653 2654 2655 2656 2657
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2658
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2659

2660
	if (reg) {
2661
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2662 2663
					   PORT_CONTROL_2, reg);
		if (ret)
2664
			return ret;
2665 2666 2667 2668 2669 2670 2671
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2672
	reg = 1 << port;
2673 2674
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2675
		reg = 0;
2676

2677 2678
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
				   reg);
2679
	if (ret)
2680
		return ret;
2681 2682

	/* Egress rate control 2: disable egress rate control. */
2683
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2684 2685
				   0x0000);
	if (ret)
2686
		return ret;
2687

2688 2689 2690
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2691 2692 2693 2694
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2695
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2696 2697
					   PORT_PAUSE_CTRL, 0x0000);
		if (ret)
2698
			return ret;
2699 2700 2701 2702 2703

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2704
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2705 2706 2707 2708
					   PORT_ATU_CONTROL, 0x0000);
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2709
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2710 2711
					   PORT_PRI_OVERRIDE, 0x0000);
		if (ret)
2712
			return ret;
2713 2714 2715 2716

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2717
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2718 2719
					   PORT_ETH_TYPE, ETH_P_EDSA);
		if (ret)
2720
			return ret;
2721 2722 2723
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2724
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2725 2726
					   PORT_TAG_REGMAP_0123, 0x3210);
		if (ret)
2727
			return ret;
2728 2729 2730 2731

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2732
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2733 2734
					   PORT_TAG_REGMAP_4567, 0x7654);
		if (ret)
2735
			return ret;
2736 2737
	}

2738 2739 2740 2741
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2742
		/* Rate Control: disable ingress rate limiting. */
2743
		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2744 2745
					   PORT_RATE_CONTROL, 0x0001);
		if (ret)
2746
			return ret;
2747 2748
	}

2749 2750
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2751
	 */
2752 2753
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
				   0x0000);
2754
	if (ret)
2755
		return ret;
2756

2757
	/* Port based VLAN map: give each port the same default address
2758 2759
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2760
	 */
2761
	ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2762
	if (ret)
2763
		return ret;
2764

2765
	ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2766
	if (ret)
2767
		return ret;
2768 2769 2770 2771

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2772
	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2773
				   0x0000);
2774 2775
	if (ret)
		return ret;
2776 2777 2778 2779

	return 0;
}

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
			      (addr[0] << 8) | addr[1]);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
			      (addr[2] << 8) | addr[3]);
	if (err)
		return err;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
			       (addr[4] << 8) | addr[5]);
}

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

	err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2838
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2839
{
2840
	struct dsa_switch *ds = chip->ds;
2841
	u32 upstream_port = dsa_upstream_port(ds);
2842
	u16 reg;
2843
	int err;
2844

2845 2846 2847 2848
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
	reg = 0;
2849 2850
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2851 2852
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2853
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2854 2855 2856
	if (err)
		return err;

2857 2858 2859 2860 2861 2862
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2863 2864
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
				   reg);
2865 2866 2867
	if (err)
		return err;

2868
	/* Disable remote management, and set the switch's DSA device number. */
2869
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2870 2871 2872 2873 2874
				   GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				   (ds->index & 0x1f));
	if (err)
		return err;

2875 2876 2877 2878 2879
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2880 2881 2882 2883
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2884 2885
	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
			      GLOBAL_ATU_CONTROL_LEARN2ALL);
2886
	if (err)
2887
		return err;
2888

2889 2890
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2891 2892 2893 2894 2895 2896 2897
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2898
	/* Configure the IP ToS mapping registers. */
2899
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2900
	if (err)
2901
		return err;
2902
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2903
	if (err)
2904
		return err;
2905
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2906
	if (err)
2907
		return err;
2908
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2909
	if (err)
2910
		return err;
2911
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2912
	if (err)
2913
		return err;
2914
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2915
	if (err)
2916
		return err;
2917
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2918
	if (err)
2919
		return err;
2920
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2921
	if (err)
2922
		return err;
2923 2924

	/* Configure the IEEE 802.1p priority mapping register. */
2925
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2926
	if (err)
2927
		return err;
2928

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	/* Clear the statistics counters for all ports */
	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
				   GLOBAL_STATS_OP_FLUSH_ALL);
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
					     int target, int port)
{
	u16 val = (target << 8) | (port & 0xf);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
}

static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
{
	int target, port;
	int err;

	/* Initialize the routing port to the 32 possible target devices */
	for (target = 0; target < 32; ++target) {
		port = 0xf;

		if (target < DSA_MAX_SWITCHES) {
			port = chip->ds->rtable[target];
			if (port == DSA_RTABLE_NONE)
				port = 0xf;
		}

		err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
		if (err)
			break;
	}

	return err;
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
					 bool hask, u16 mask)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (num << 12) | (mask & port_mask);

	if (hask)
		val |= GLOBAL2_TRUNK_MASK_HASK;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
}

static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
					    u16 map)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	u16 val = (id << 11) | (map & port_mask);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
}

static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
{
	const u16 port_mask = BIT(chip->info->num_ports) - 1;
	int i, err;

	/* Clear all eight possible Trunk Mask vectors */
	for (i = 0; i < 8; ++i) {
		err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
		if (err)
			return err;
	}

	/* Clear all sixteen possible Trunk ID routing vectors */
	for (i = 0; i < 16; ++i) {
		err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
		if (err)
			return err;
	}

	return 0;
}

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
{
	int port, err;

	/* Init all Ingress Rate Limit resources of all ports */
	for (port = 0; port < chip->info->num_ports; ++port) {
		/* XXX newer chips (like 88E6390) have different 2-bit ops */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				      GLOBAL2_IRL_CMD_OP_INIT_ALL |
				      (port << 8));
		if (err)
			break;

		/* Wait for the operation to complete */
3031 3032
		err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
				     GLOBAL2_IRL_CMD_BUSY);
3033 3034 3035 3036 3037 3038 3039
		if (err)
			break;
	}

	return err;
}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
/* Indirect write to the Switch MAC/WoL/WoF register */
static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
					 unsigned int pointer, u8 data)
{
	u16 val = (pointer << 8) | data;

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
}

static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
{
	int i, err;

	for (i = 0; i < 6; i++) {
		err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
		if (err)
			break;
	}

	return err;
}

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
				  u8 data)
{
	u16 val = (pointer << 8) | (data & 0x7);

	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
}

static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
{
	int i, err;

	/* Clear all sixteen possible Priority Override entries */
	for (i = 0; i < 16; i++) {
		err = mv88e6xxx_g2_pot_write(chip, i, 0);
		if (err)
			break;
	}

	return err;
}

3084 3085
static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
{
3086 3087 3088
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
			      GLOBAL2_EEPROM_CMD_BUSY |
			      GLOBAL2_EEPROM_CMD_RUNNING);
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
}

static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_wait(chip);
}

static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
				      u8 addr, u16 *data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
}

static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
				       u8 addr, u16 data)
{
	u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
	int err;

	err = mv88e6xxx_g2_eeprom_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
	if (err)
		return err;

	return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
}

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
{
	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD,
			      GLOBAL2_SMI_PHY_CMD_BUSY);
}

static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
{
	int err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD, cmd);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_wait(chip);
}

static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
				     int reg, u16 *val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
	if (err)
		return err;

	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
}

static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
				      int reg, u16 val)
{
	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
	int err;

	err = mv88e6xxx_g2_smi_phy_wait(chip);
	if (err)
		return err;

	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
	if (err)
		return err;

	return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
}

3187 3188 3189 3190 3191
static const struct mv88e6xxx_ops mv88e6xxx_g2_smi_phy_ops = {
	.read = mv88e6xxx_g2_smi_phy_read,
	.write = mv88e6xxx_g2_smi_phy_write,
};

3192 3193
static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
{
3194
	u16 reg;
3195 3196
	int err;

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:2x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
				      0xffff);
		if (err)
			return err;
	}

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
		/* Consider the frames with reserved multicast destination
		 * addresses matching 01:80:c2:00:00:0x as MGMT.
		 */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
				      0xffff);
		if (err)
			return err;
	}
3216 3217 3218 3219 3220 3221

	/* Ignore removed tag data on doubly tagged packets, disable
	 * flow control messages, force flow control priority to the
	 * highest, and send all special multicast frames to the CPU
	 * port at the highest priority.
	 */
3222 3223 3224 3225 3226
	reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
		reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3227
	if (err)
3228
		return err;
3229 3230

	/* Program the DSA routing table. */
3231 3232 3233
	err = mv88e6xxx_g2_set_device_mapping(chip);
	if (err)
		return err;
3234

3235 3236 3237 3238
	/* Clear all trunk masks and mapping. */
	err = mv88e6xxx_g2_clear_trunk(chip);
	if (err)
		return err;
3239

3240 3241 3242 3243 3244 3245 3246 3247 3248
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
		/* Disable ingress rate limiting by resetting all per port
		 * ingress rate limit resources to their initial state.
		 */
		err = mv88e6xxx_g2_clear_irl(chip);
			if (err)
				return err;
	}

3249 3250 3251 3252
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
		/* Initialize Cross-chip Port VLAN Table to reset defaults */
		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
				      GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3253
		if (err)
3254
			return err;
3255
	}
3256

3257
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3258
		/* Clear the priority override table. */
3259 3260 3261
		err = mv88e6xxx_g2_clear_pot(chip);
		if (err)
			return err;
3262 3263
	}

3264
	return 0;
3265 3266
}

3267
static int mv88e6xxx_setup(struct dsa_switch *ds)
3268
{
3269
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3270
	int err;
3271 3272
	int i;

3273 3274
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
3275

3276
	mutex_lock(&chip->reg_lock);
3277

3278
	err = mv88e6xxx_switch_reset(chip);
3279 3280 3281
	if (err)
		goto unlock;

3282 3283 3284 3285 3286 3287 3288 3289 3290
	/* Setup Switch Port Registers */
	for (i = 0; i < chip->info->num_ports; i++) {
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
3291 3292 3293
	if (err)
		goto unlock;

3294 3295 3296
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
3297 3298 3299
		if (err)
			goto unlock;
	}
3300

3301
unlock:
3302
	mutex_unlock(&chip->reg_lock);
3303

3304
	return err;
3305 3306
}

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
	else
		err = mv88e6xxx_g1_set_switch_mac(chip, addr);

	mutex_unlock(&chip->reg_lock);

	return err;
}

3325 3326
static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page,
				    int reg)
3327
{
3328
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3329 3330
	int ret;

3331 3332 3333
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg);
	mutex_unlock(&chip->reg_lock);
3334

3335 3336 3337
	return ret;
}

3338 3339
static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page,
				     int reg, int val)
3340
{
3341
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3342 3343
	int ret;

3344 3345 3346
	mutex_lock(&chip->reg_lock);
	ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val);
	mutex_unlock(&chip->reg_lock);
3347

3348 3349 3350
	return ret;
}

3351
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
3352
{
3353
	struct mv88e6xxx_chip *chip = bus->priv;
3354 3355
	u16 val;
	int err;
3356

3357
	if (phy >= chip->info->num_ports)
3358
		return 0xffff;
3359

3360
	mutex_lock(&chip->reg_lock);
3361
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
3362
	mutex_unlock(&chip->reg_lock);
3363 3364

	return err ? err : val;
3365 3366
}

3367
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
3368
{
3369
	struct mv88e6xxx_chip *chip = bus->priv;
3370
	int err;
3371

3372
	if (phy >= chip->info->num_ports)
3373
		return 0xffff;
3374

3375
	mutex_lock(&chip->reg_lock);
3376
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
3377
	mutex_unlock(&chip->reg_lock);
3378 3379

	return err;
3380 3381
}

3382
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3383 3384 3385 3386 3387 3388 3389
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
3390
		chip->mdio_np = of_get_child_by_name(np, "mdio");
3391

3392
	bus = devm_mdiobus_alloc(chip->dev);
3393 3394 3395
	if (!bus)
		return -ENOMEM;

3396
	bus->priv = (void *)chip;
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
3407
	bus->parent = chip->dev;
3408

3409 3410
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
3411 3412 3413
	else
		err = mdiobus_register(bus);
	if (err) {
3414
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3415 3416
		goto out;
	}
3417
	chip->mdio_bus = bus;
3418 3419 3420 3421

	return 0;

out:
3422 3423
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3424 3425 3426 3427

	return err;
}

3428
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3429 3430

{
3431
	struct mii_bus *bus = chip->mdio_bus;
3432 3433 3434

	mdiobus_unregister(bus);

3435 3436
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3437 3438
}

3439 3440 3441 3442
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
3443
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3444 3445 3446 3447 3448
	int ret;
	int val;

	*temp = 0;

3449
	mutex_lock(&chip->reg_lock);
3450

3451
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6);
3452 3453 3454 3455
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3456
	ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3457 3458 3459
	if (ret < 0)
		goto error;

3460
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5));
3461 3462 3463 3464 3465 3466
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3467
	val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
3468 3469 3470 3471 3472 3473
	if (val < 0) {
		ret = val;
		goto error;
	}

	/* Disable temperature sensor */
3474
	ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5));
3475 3476 3477 3478 3479 3480
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3481 3482
	mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0);
	mutex_unlock(&chip->reg_lock);
3483 3484 3485 3486 3487
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
3488 3489
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3490 3491 3492 3493
	int ret;

	*temp = 0;

3494
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27);
3495 3496 3497 3498 3499 3500 3501 3502
	if (ret < 0)
		return ret;

	*temp = (ret & 0xff) - 25;

	return 0;
}

3503
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3504
{
3505
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3506

3507
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3508 3509
		return -EOPNOTSUPP;

3510
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3511 3512 3513 3514 3515
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3516
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3517
{
3518 3519
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3520 3521
	int ret;

3522
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3523 3524 3525 3526
		return -EOPNOTSUPP;

	*temp = 0;

3527
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3528 3529 3530 3531 3532 3533 3534 3535
	if (ret < 0)
		return ret;

	*temp = (((ret >> 8) & 0x1f) * 5) - 25;

	return 0;
}

3536
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3537
{
3538 3539
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3540 3541
	int ret;

3542
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3543 3544
		return -EOPNOTSUPP;

3545
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3546 3547 3548
	if (ret < 0)
		return ret;
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3549 3550
	return mv88e6xxx_mdio_page_write(ds, phy, 6, 26,
					 (ret & 0xe0ff) | (temp << 8));
3551 3552
}

3553
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3554
{
3555 3556
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3557 3558
	int ret;

3559
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3560 3561 3562 3563
		return -EOPNOTSUPP;

	*alarm = false;

3564
	ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
3565 3566 3567 3568 3569 3570 3571 3572 3573
	if (ret < 0)
		return ret;

	*alarm = !!(ret & 0x40);

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = (val >> 8) & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;
		*data++ = (val >> 8) & 0xff;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		*data++ = val & 0xff;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
				  struct ethtool_eeprom *eeprom, u8 *data)
{
	unsigned int offset = eeprom->offset;
	unsigned int len = eeprom->len;
	u16 val;
	int err;

	/* Ensure the RO WriteEn bit is set */
	err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
	if (err)
		return err;

	if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
		return -EROFS;

	eeprom->len = 0;

	if (offset & 1) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (*data++ << 8) | (val & 0xff);

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	while (len >= 2) {
		val = *data++;
		val |= *data++ << 8;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset += 2;
		len -= 2;
		eeprom->len += 2;
	}

	if (len) {
		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
		if (err)
			return err;

		val = (val & 0xff00) | *data++;

		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
		if (err)
			return err;

		offset++;
		len--;
		eeprom->len++;
	}

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
	int err;

	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
		err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
	else
		err = -EOPNOTSUPP;

	mutex_unlock(&chip->reg_lock);

	return err;
}

3741 3742 3743 3744 3745 3746 3747
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3748
		.port_base_addr = 0x10,
3749
		.age_time_coeff = 15000,
3750 3751 3752 3753 3754 3755 3756 3757 3758
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3759
		.port_base_addr = 0x10,
3760
		.age_time_coeff = 15000,
3761 3762 3763 3764 3765 3766 3767 3768 3769
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3770
		.port_base_addr = 0x10,
3771
		.age_time_coeff = 15000,
3772 3773 3774 3775 3776 3777 3778 3779 3780
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3781
		.port_base_addr = 0x10,
3782
		.age_time_coeff = 15000,
3783 3784 3785 3786 3787 3788 3789 3790 3791
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3792
		.port_base_addr = 0x10,
3793
		.age_time_coeff = 15000,
3794 3795 3796 3797 3798 3799 3800 3801 3802
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3803
		.port_base_addr = 0x10,
3804
		.age_time_coeff = 15000,
3805 3806 3807 3808 3809 3810 3811 3812 3813
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3814
		.port_base_addr = 0x10,
3815
		.age_time_coeff = 15000,
3816 3817 3818 3819 3820 3821 3822 3823 3824
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3825
		.port_base_addr = 0x10,
3826
		.age_time_coeff = 15000,
3827 3828 3829 3830 3831 3832 3833 3834 3835
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3836
		.port_base_addr = 0x10,
3837
		.age_time_coeff = 15000,
3838 3839 3840 3841 3842 3843 3844 3845 3846
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3847
		.port_base_addr = 0x10,
3848
		.age_time_coeff = 15000,
3849 3850 3851 3852 3853 3854 3855 3856 3857
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3858
		.port_base_addr = 0x10,
3859
		.age_time_coeff = 15000,
3860 3861 3862 3863 3864 3865 3866 3867 3868
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3869
		.port_base_addr = 0x10,
3870
		.age_time_coeff = 15000,
3871 3872 3873 3874 3875 3876 3877 3878 3879
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3880
		.port_base_addr = 0x10,
3881
		.age_time_coeff = 15000,
3882 3883 3884 3885 3886 3887 3888 3889 3890
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3891
		.port_base_addr = 0x10,
3892
		.age_time_coeff = 15000,
3893 3894 3895 3896 3897 3898 3899 3900 3901
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3902
		.port_base_addr = 0x10,
3903
		.age_time_coeff = 15000,
3904 3905 3906 3907 3908 3909 3910 3911 3912
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3913
		.port_base_addr = 0x10,
3914
		.age_time_coeff = 15000,
3915 3916 3917 3918 3919 3920 3921 3922 3923
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3924
		.port_base_addr = 0x10,
3925
		.age_time_coeff = 15000,
3926 3927 3928 3929
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
	},
};

3930
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3931
{
3932
	int i;
3933

3934 3935 3936
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3937 3938 3939 3940

	return NULL;
}

3941
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3942 3943
{
	const struct mv88e6xxx_info *info;
3944 3945 3946
	unsigned int prod_num, rev;
	u16 id;
	int err;
3947

3948 3949 3950 3951 3952
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3953 3954 3955 3956 3957 3958 3959 3960

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3961
	/* Update the compatible info with the probed one */
3962
	chip->info = info;
3963

3964 3965
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3966 3967 3968 3969

	return 0;
}

3970
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3971
{
3972
	struct mv88e6xxx_chip *chip;
3973

3974 3975
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3976 3977
		return NULL;

3978
	chip->dev = dev;
3979

3980
	mutex_init(&chip->reg_lock);
3981

3982
	return chip;
3983 3984
}

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
static const struct mv88e6xxx_ops mv88e6xxx_phy_ops = {
	.read = mv88e6xxx_read,
	.write = mv88e6xxx_write,
};

static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY)) {
		chip->phy_ops = &mv88e6xxx_g2_smi_phy_ops;
	} else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
		chip->phy_ops = &mv88e6xxx_phy_ppu_ops;
		mv88e6xxx_ppu_state_init(chip);
	} else {
		chip->phy_ops = &mv88e6xxx_phy_ops;
	}
}

4002
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
4003 4004 4005 4006 4007 4008
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

4009
	if (sw_addr == 0)
4010
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
4011
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
4012
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
4013 4014 4015
	else
		return -EINVAL;

4016 4017
	chip->bus = bus;
	chip->sw_addr = sw_addr;
4018 4019 4020 4021

	return 0;
}

4022 4023 4024
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
4025
{
4026
	struct mv88e6xxx_chip *chip;
4027
	struct mii_bus *bus;
4028
	int err;
4029

4030
	bus = dsa_host_dev_to_mii_bus(host_dev);
4031 4032 4033
	if (!bus)
		return NULL;

4034 4035
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
4036 4037
		return NULL;

4038
	/* Legacy SMI probing will only support chips similar to 88E6085 */
4039
	chip->info = &mv88e6xxx_table[MV88E6085];
4040

4041
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
4042 4043 4044
	if (err)
		goto free;

4045
	err = mv88e6xxx_detect(chip);
4046
	if (err)
4047
		goto free;
4048

4049 4050
	mv88e6xxx_phy_init(chip);

4051
	err = mv88e6xxx_mdio_register(chip, NULL);
4052
	if (err)
4053
		goto free;
4054

4055
	*priv = chip;
4056

4057
	return chip->info->name;
4058
free:
4059
	devm_kfree(dsa_dev, chip);
4060 4061

	return NULL;
4062 4063
}

4064
static struct dsa_switch_driver mv88e6xxx_switch_driver = {
4065
	.tag_protocol		= DSA_TAG_PROTO_EDSA,
4066
	.probe			= mv88e6xxx_drv_probe,
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
4081
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
4082 4083 4084 4085
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
4086
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
};

4101
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4102 4103
				     struct device_node *np)
{
4104
	struct device *dev = chip->dev;
4105 4106 4107 4108 4109 4110 4111
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
4112
	ds->priv = chip;
4113 4114 4115 4116 4117 4118 4119
	ds->drv = &mv88e6xxx_switch_driver;

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

4120
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4121
{
4122
	dsa_unregister_switch(chip->ds);
4123 4124
}

4125
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4126
{
4127
	struct device *dev = &mdiodev->dev;
4128
	struct device_node *np = dev->of_node;
4129
	const struct mv88e6xxx_info *compat_info;
4130
	struct mv88e6xxx_chip *chip;
4131
	u32 eeprom_len;
4132
	int err;
4133

4134 4135 4136 4137
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

4138 4139
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
4140 4141
		return -ENOMEM;

4142
	chip->info = compat_info;
4143

4144
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4145 4146
	if (err)
		return err;
4147

4148
	err = mv88e6xxx_detect(chip);
4149 4150
	if (err)
		return err;
4151

4152 4153
	mv88e6xxx_phy_init(chip);

4154 4155 4156
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
4157

4158
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4159
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4160
		chip->eeprom_len = eeprom_len;
4161

4162
	err = mv88e6xxx_mdio_register(chip, np);
4163 4164 4165
	if (err)
		return err;

4166
	err = mv88e6xxx_register_switch(chip, np);
4167
	if (err) {
4168
		mv88e6xxx_mdio_unregister(chip);
4169 4170 4171
		return err;
	}

4172 4173
	return 0;
}
4174 4175 4176 4177

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4178
	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4179

4180 4181
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4182 4183 4184
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4185 4186 4187 4188
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
	register_switch_driver(&mv88e6xxx_switch_driver);
	return mdio_driver_register(&mv88e6xxx_driver);
}
4208 4209 4210 4211
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4212
	mdio_driver_unregister(&mv88e6xxx_driver);
4213
	unregister_switch_driver(&mv88e6xxx_switch_driver);
4214 4215
}
module_exit(mv88e6xxx_cleanup);
4216 4217 4218 4219

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");