chip.c 95.7 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21 22 23
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
24
#include <linux/jiffies.h>
25
#include <linux/list.h>
26
#include <linux/mdio.h>
27
#include <linux/module.h>
28
#include <linux/of_device.h>
29
#include <linux/of_irq.h>
30
#include <linux/of_mdio.h>
31
#include <linux/netdevice.h>
32
#include <linux/gpio/consumer.h>
33
#include <linux/phy.h>
34
#include <net/dsa.h>
35
#include <net/switchdev.h>
36

37
#include "mv88e6xxx.h"
38
#include "global1.h"
39
#include "global2.h"
40
#include "port.h"
41

42
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
43
{
44 45
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
46 47 48 49
		dump_stack();
	}
}

50 51 52 53 54 55 56 57 58 59
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
60
 */
61

62
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
63 64
			      int addr, int reg, u16 *val)
{
65
	if (!chip->smi_ops)
66 67
		return -EOPNOTSUPP;

68
	return chip->smi_ops->read(chip, addr, reg, val);
69 70
}

71
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
72 73
			       int addr, int reg, u16 val)
{
74
	if (!chip->smi_ops)
75 76
		return -EOPNOTSUPP;

77
	return chip->smi_ops->write(chip, addr, reg, val);
78 79
}

80
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
81 82 83 84
					  int addr, int reg, u16 *val)
{
	int ret;

85
	ret = mdiobus_read_nested(chip->bus, addr, reg);
86 87 88 89 90 91 92 93
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

94
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
95 96 97 98
					   int addr, int reg, u16 val)
{
	int ret;

99
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
100 101 102 103 104 105
	if (ret < 0)
		return ret;

	return 0;
}

106
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_single_chip_ops = {
107 108 109 110
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

111
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
112 113 114 115 116
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
117
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
118 119 120
		if (ret < 0)
			return ret;

121
		if ((ret & SMI_CMD_BUSY) == 0)
122 123 124 125 126 127
			return 0;
	}

	return -ETIMEDOUT;
}

128
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
129
					 int addr, int reg, u16 *val)
130 131 132
{
	int ret;

133
	/* Wait for the bus to become free. */
134
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
135 136 137
	if (ret < 0)
		return ret;

138
	/* Transmit the read command. */
139
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
140
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
141 142 143
	if (ret < 0)
		return ret;

144
	/* Wait for the read command to complete. */
145
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
146 147 148
	if (ret < 0)
		return ret;

149
	/* Read the data. */
150
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
151 152 153
	if (ret < 0)
		return ret;

154
	*val = ret & 0xffff;
155

156
	return 0;
157 158
}

159
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
160
					  int addr, int reg, u16 val)
161 162 163
{
	int ret;

164
	/* Wait for the bus to become free. */
165
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
166 167 168
	if (ret < 0)
		return ret;

169
	/* Transmit the data to write. */
170
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
171 172 173
	if (ret < 0)
		return ret;

174
	/* Transmit the write command. */
175
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
176
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
177 178 179
	if (ret < 0)
		return ret;

180
	/* Wait for the write command to complete. */
181
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
182 183 184 185 186 187
	if (ret < 0)
		return ret;

	return 0;
}

188
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_multi_chip_ops = {
189 190 191 192
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

193
int mv88e6xxx_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val)
194 195 196
{
	int err;

197
	assert_reg_lock(chip);
198

199
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
200 201 202
	if (err)
		return err;

203
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
204 205 206 207 208
		addr, reg, *val);

	return 0;
}

209
int mv88e6xxx_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val)
210
{
211 212
	int err;

213
	assert_reg_lock(chip);
214

215
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
216 217 218
	if (err)
		return err;

219
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
220 221
		addr, reg, val);

222 223 224
	return 0;
}

225 226 227 228 229
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

230
	if (!chip->info->ops->phy_read)
231 232
		return -EOPNOTSUPP;

233
	return chip->info->ops->phy_read(chip, addr, reg, val);
234 235 236 237 238 239 240
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

241
	if (!chip->info->ops->phy_write)
242 243
		return -EOPNOTSUPP;

244
	return chip->info->ops->phy_write(chip, addr, reg, val);
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void mv88e6xxx_g1_irq_mask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked |= (1 << n);
}

static void mv88e6xxx_g1_irq_unmask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked &= ~(1 << n);
}

static irqreturn_t mv88e6xxx_g1_irq_thread_fn(int irq, void *dev_id)
{
	struct mv88e6xxx_chip *chip = dev_id;
	unsigned int nhandled = 0;
	unsigned int sub_irq;
	unsigned int n;
	u16 reg;
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	mutex_unlock(&chip->reg_lock);

	if (err)
		goto out;

	for (n = 0; n < chip->g1_irq.nirqs; ++n) {
		if (reg & (1 << n)) {
			sub_irq = irq_find_mapping(chip->g1_irq.domain, n);
			handle_nested_irq(sub_irq);
			++nhandled;
		}
	}
out:
	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
}

static void mv88e6xxx_g1_irq_bus_lock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);

	mutex_lock(&chip->reg_lock);
}

static void mv88e6xxx_g1_irq_bus_sync_unlock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	u16 mask = GENMASK(chip->g1_irq.nirqs, 0);
	u16 reg;
	int err;

	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err)
		goto out;

	reg &= ~mask;
	reg |= (~chip->g1_irq.masked & mask);

	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
	if (err)
		goto out;

out:
	mutex_unlock(&chip->reg_lock);
}

static struct irq_chip mv88e6xxx_g1_irq_chip = {
	.name			= "mv88e6xxx-g1",
	.irq_mask		= mv88e6xxx_g1_irq_mask,
	.irq_unmask		= mv88e6xxx_g1_irq_unmask,
	.irq_bus_lock		= mv88e6xxx_g1_irq_bus_lock,
	.irq_bus_sync_unlock	= mv88e6xxx_g1_irq_bus_sync_unlock,
};

static int mv88e6xxx_g1_irq_domain_map(struct irq_domain *d,
				       unsigned int irq,
				       irq_hw_number_t hwirq)
{
	struct mv88e6xxx_chip *chip = d->host_data;

	irq_set_chip_data(irq, d->host_data);
	irq_set_chip_and_handler(irq, &chip->g1_irq.chip, handle_level_irq);
	irq_set_noprobe(irq);

	return 0;
}

static const struct irq_domain_ops mv88e6xxx_g1_irq_domain_ops = {
	.map	= mv88e6xxx_g1_irq_domain_map,
	.xlate	= irq_domain_xlate_twocell,
};

static void mv88e6xxx_g1_irq_free(struct mv88e6xxx_chip *chip)
{
	int irq, virq;

	for (irq = 0; irq < 16; irq++) {
		virq = irq_find_mapping(chip->g2_irq.domain, irq);
		irq_dispose_mapping(virq);
	}

	irq_domain_remove(chip->g2_irq.domain);
}

static int mv88e6xxx_g1_irq_setup(struct mv88e6xxx_chip *chip)
{
	int err, irq;
	u16 reg;

	chip->g1_irq.nirqs = chip->info->g1_irqs;
	chip->g1_irq.domain = irq_domain_add_simple(
		NULL, chip->g1_irq.nirqs, 0,
		&mv88e6xxx_g1_irq_domain_ops, chip);
	if (!chip->g1_irq.domain)
		return -ENOMEM;

	for (irq = 0; irq < chip->g1_irq.nirqs; irq++)
		irq_create_mapping(chip->g1_irq.domain, irq);

	chip->g1_irq.chip = mv88e6xxx_g1_irq_chip;
	chip->g1_irq.masked = ~0;

	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err)
		goto out;

	reg &= ~GENMASK(chip->g1_irq.nirqs, 0);

	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
	if (err)
		goto out;

	/* Reading the interrupt status clears (most of) them */
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	if (err)
		goto out;

	err = request_threaded_irq(chip->irq, NULL,
				   mv88e6xxx_g1_irq_thread_fn,
				   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
				   dev_name(chip->dev), chip);
	if (err)
		goto out;

	return 0;

out:
	mv88e6xxx_g1_irq_free(chip);

	return err;
}

473
int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg, u16 mask)
474
{
475
	int i;
476

477
	for (i = 0; i < 16; i++) {
478 479 480 481 482 483 484 485 486 487 488 489 490
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

491
	dev_err(chip->dev, "Timeout while waiting for switch\n");
492 493 494
	return -ETIMEDOUT;
}

495
/* Indirect write to single pointer-data register with an Update bit */
496
int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg, u16 update)
497 498
{
	u16 val;
499
	int err;
500 501

	/* Wait until the previous operation is completed */
502 503 504
	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
	if (err)
		return err;
505 506 507 508 509 510 511

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

512
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
513 514
{
	u16 val;
515
	int i, err;
516

517
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
518 519 520
	if (err)
		return err;

521 522 523 524
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val & ~GLOBAL_CONTROL_PPU_ENABLE);
	if (err)
		return err;
525

526
	for (i = 0; i < 16; i++) {
527 528 529
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
530

531
		usleep_range(1000, 2000);
532
		if ((val & GLOBAL_STATUS_PPU_MASK) != GLOBAL_STATUS_PPU_POLLING)
533
			return 0;
534 535 536 537 538
	}

	return -ETIMEDOUT;
}

539
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
540
{
541 542
	u16 val;
	int i, err;
543

544 545 546
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
	if (err)
		return err;
547

548 549
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val | GLOBAL_CONTROL_PPU_ENABLE);
550 551
	if (err)
		return err;
552

553
	for (i = 0; i < 16; i++) {
554 555 556
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
557

558
		usleep_range(1000, 2000);
559
		if ((val & GLOBAL_STATUS_PPU_MASK) == GLOBAL_STATUS_PPU_POLLING)
560
			return 0;
561 562 563 564 565 566 567
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
568
	struct mv88e6xxx_chip *chip;
569

570
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
571

572
	mutex_lock(&chip->reg_lock);
573

574 575 576 577
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
578
	}
579

580
	mutex_unlock(&chip->reg_lock);
581 582 583 584
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
585
	struct mv88e6xxx_chip *chip = (void *)_ps;
586

587
	schedule_work(&chip->ppu_work);
588 589
}

590
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
591 592 593
{
	int ret;

594
	mutex_lock(&chip->ppu_mutex);
595

596
	/* If the PHY polling unit is enabled, disable it so that
597 598 599 600
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
601 602
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
603
		if (ret < 0) {
604
			mutex_unlock(&chip->ppu_mutex);
605 606
			return ret;
		}
607
		chip->ppu_disabled = 1;
608
	} else {
609
		del_timer(&chip->ppu_timer);
610
		ret = 0;
611 612 613 614 615
	}

	return ret;
}

616
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
617
{
618
	/* Schedule a timer to re-enable the PHY polling unit. */
619 620
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
621 622
}

623
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
624
{
625 626
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
627 628
	setup_timer(&chip->ppu_timer, mv88e6xxx_ppu_reenable_timer,
		    (unsigned long)chip);
629 630
}

631 632 633 634 635
static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
{
	del_timer_sync(&chip->ppu_timer);
}

636 637
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
638
{
639
	int err;
640

641 642 643
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
644
		mv88e6xxx_ppu_access_put(chip);
645 646
	}

647
	return err;
648 649
}

650 651
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
652
{
653
	int err;
654

655 656 657
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
658
		mv88e6xxx_ppu_access_put(chip);
659 660
	}

661
	return err;
662 663
}

664
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
665
{
666
	return chip->info->family == MV88E6XXX_FAMILY_6065;
667 668
}

669
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
670
{
671
	return chip->info->family == MV88E6XXX_FAMILY_6095;
672 673
}

674
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
675
{
676
	return chip->info->family == MV88E6XXX_FAMILY_6097;
677 678
}

679
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
680
{
681
	return chip->info->family == MV88E6XXX_FAMILY_6165;
682 683
}

684
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
685
{
686
	return chip->info->family == MV88E6XXX_FAMILY_6185;
687 688
}

689
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
690
{
691
	return chip->info->family == MV88E6XXX_FAMILY_6320;
692 693
}

694
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
695
{
696
	return chip->info->family == MV88E6XXX_FAMILY_6351;
697 698
}

699
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
700
{
701
	return chip->info->family == MV88E6XXX_FAMILY_6352;
702 703
}

704 705 706 707
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
708 709
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
710
{
V
Vivien Didelot 已提交
711
	struct mv88e6xxx_chip *chip = ds->priv;
712 713
	u16 reg;
	int err;
714 715 716 717

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

718
	mutex_lock(&chip->reg_lock);
719

720 721
	err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
	if (err)
722 723
		goto out;

724 725 726 727 728
	reg &= ~(PORT_PCS_CTRL_LINK_UP |
		 PORT_PCS_CTRL_FORCE_LINK |
		 PORT_PCS_CTRL_DUPLEX_FULL |
		 PORT_PCS_CTRL_FORCE_DUPLEX |
		 PORT_PCS_CTRL_UNFORCED);
729 730 731

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
732
		reg |= PORT_PCS_CTRL_LINK_UP;
733

734
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

756
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
757
	    (port >= mv88e6xxx_num_ports(chip) - 2)) {
758 759 760 761 762 763 764 765
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
766
	mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
767 768

out:
769
	mutex_unlock(&chip->reg_lock);
770 771
}

772
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
773
{
774 775
	u16 val;
	int i, err;
776 777

	for (i = 0; i < 10; i++) {
778 779
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_OP, &val);
		if ((val & GLOBAL_STATS_OP_BUSY) == 0)
780 781 782 783 784 785
			return 0;
	}

	return -ETIMEDOUT;
}

786
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
787
{
788
	int err;
789

790
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
791 792
		port = (port + 1) << 5;

793
	/* Snapshot the hardware statistics counters for this port. */
794 795 796 797 798
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_CAPTURE_PORT |
				 GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (err)
		return err;
799

800
	/* Wait for the snapshotting to complete. */
801
	return _mv88e6xxx_stats_wait(chip);
802 803
}

804
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
805
				  int stat, u32 *val)
806
{
807 808 809
	u32 value;
	u16 reg;
	int err;
810 811 812

	*val = 0;

813 814 815 816
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_READ_CAPTURED |
				 GLOBAL_STATS_OP_HIST_RX_TX | stat);
	if (err)
817 818
		return;

819 820
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
821 822
		return;

823 824
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_32, &reg);
	if (err)
825 826
		return;

827
	value = reg << 16;
828

829 830
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_01, &reg);
	if (err)
831 832
		return;

833
	*val = value | reg;
834 835
}

836
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
896 897
};

898
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
899
			       struct mv88e6xxx_hw_stat *stat)
900
{
901 902
	switch (stat->type) {
	case BANK0:
903
		return true;
904
	case BANK1:
905
		return mv88e6xxx_6320_family(chip);
906
	case PORT:
907 908 909 910 911 912
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
913
	}
914
	return false;
915 916
}

917
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
918
					    struct mv88e6xxx_hw_stat *s,
919 920 921 922
					    int port)
{
	u32 low;
	u32 high = 0;
923 924
	int err;
	u16 reg;
925 926
	u64 value;

927 928
	switch (s->type) {
	case PORT:
929 930
		err = mv88e6xxx_port_read(chip, port, s->reg, &reg);
		if (err)
931 932
			return UINT64_MAX;

933
		low = reg;
934
		if (s->sizeof_stat == 4) {
935 936
			err = mv88e6xxx_port_read(chip, port, s->reg + 1, &reg);
			if (err)
937
				return UINT64_MAX;
938
			high = reg;
939
		}
940 941 942
		break;
	case BANK0:
	case BANK1:
943
		_mv88e6xxx_stats_read(chip, s->reg, &low);
944
		if (s->sizeof_stat == 8)
945
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
946 947 948 949 950
	}
	value = (((u64)high) << 16) | low;
	return value;
}

951 952
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
953
{
V
Vivien Didelot 已提交
954
	struct mv88e6xxx_chip *chip = ds->priv;
955 956
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
957

958 959
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
960
		if (mv88e6xxx_has_stat(chip, stat)) {
961 962 963 964
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
965
	}
966 967
}

968
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
969
{
V
Vivien Didelot 已提交
970
	struct mv88e6xxx_chip *chip = ds->priv;
971 972 973 974 975
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
976
		if (mv88e6xxx_has_stat(chip, stat))
977 978 979
			j++;
	}
	return j;
980 981
}

982 983
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
984
{
V
Vivien Didelot 已提交
985
	struct mv88e6xxx_chip *chip = ds->priv;
986 987 988 989
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

990
	mutex_lock(&chip->reg_lock);
991

992
	ret = _mv88e6xxx_stats_snapshot(chip, port);
993
	if (ret < 0) {
994
		mutex_unlock(&chip->reg_lock);
995 996 997 998
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
999 1000
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
1001 1002 1003 1004
			j++;
		}
	}

1005
	mutex_unlock(&chip->reg_lock);
1006 1007
}

1008
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
1009 1010 1011 1012
{
	return 32 * sizeof(u16);
}

1013 1014
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
1015
{
V
Vivien Didelot 已提交
1016
	struct mv88e6xxx_chip *chip = ds->priv;
1017 1018
	int err;
	u16 reg;
1019 1020 1021 1022 1023 1024 1025
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

1026
	mutex_lock(&chip->reg_lock);
1027

1028 1029
	for (i = 0; i < 32; i++) {

1030 1031 1032
		err = mv88e6xxx_port_read(chip, port, i, &reg);
		if (!err)
			p[i] = reg;
1033
	}
1034

1035
	mutex_unlock(&chip->reg_lock);
1036 1037
}

1038
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
1039
{
1040
	return mv88e6xxx_g1_wait(chip, GLOBAL_ATU_OP, GLOBAL_ATU_OP_BUSY);
1041 1042
}

1043 1044
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
1045
{
V
Vivien Didelot 已提交
1046
	struct mv88e6xxx_chip *chip = ds->priv;
1047 1048
	u16 reg;
	int err;
1049

1050
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1051 1052
		return -EOPNOTSUPP;

1053
	mutex_lock(&chip->reg_lock);
1054

1055 1056
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1057
		goto out;
1058 1059 1060 1061

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

1062
	err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
1063
	if (err)
1064
		goto out;
1065

1066
	e->eee_active = !!(reg & PORT_STATUS_EEE);
1067
out:
1068
	mutex_unlock(&chip->reg_lock);
1069 1070

	return err;
1071 1072
}

1073 1074
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
1075
{
V
Vivien Didelot 已提交
1076
	struct mv88e6xxx_chip *chip = ds->priv;
1077 1078
	u16 reg;
	int err;
1079

1080
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1081 1082
		return -EOPNOTSUPP;

1083
	mutex_lock(&chip->reg_lock);
1084

1085 1086
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1087 1088
		goto out;

1089
	reg &= ~0x0300;
1090 1091 1092 1093 1094
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

1095
	err = mv88e6xxx_phy_write(chip, port, 16, reg);
1096
out:
1097
	mutex_unlock(&chip->reg_lock);
1098

1099
	return err;
1100 1101
}

1102
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
1103
{
1104 1105
	u16 val;
	int err;
1106

1107
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_ATU_FID)) {
1108 1109 1110
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_FID, fid);
		if (err)
			return err;
1111
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1112
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
1113 1114 1115
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
		if (err)
			return err;
1116

1117 1118 1119 1120
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
					 (val & 0xfff) | ((fid << 8) & 0xf000));
		if (err)
			return err;
1121 1122 1123

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1124 1125
	}

1126 1127 1128
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_OP, cmd);
	if (err)
		return err;
1129

1130
	return _mv88e6xxx_atu_wait(chip);
1131 1132
}

1133
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1153
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_DATA, data);
1154 1155
}

1156
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1157 1158
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1159
{
1160 1161
	int op;
	int err;
1162

1163
	err = _mv88e6xxx_atu_wait(chip);
1164 1165
	if (err)
		return err;
1166

1167
	err = _mv88e6xxx_atu_data_write(chip, entry);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1179
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1180 1181
}

1182
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1183
				u16 fid, bool static_too)
1184 1185 1186 1187 1188
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1189

1190
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1191 1192
}

1193
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1194
			       int from_port, int to_port, bool static_too)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1208
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1209 1210
}

1211
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1212
				 int port, bool static_too)
1213 1214
{
	/* Destination port 0xF means remove the entries */
1215
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1216 1217
}

1218
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1219
{
1220
	struct net_device *bridge = chip->ports[port].bridge_dev;
1221
	const u16 mask = (1 << mv88e6xxx_num_ports(chip)) - 1;
1222
	struct dsa_switch *ds = chip->ds;
1223
	u16 output_ports = 0;
1224 1225
	u16 reg;
	int err;
1226 1227 1228 1229 1230 1231
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
		output_ports = mask;
	} else {
1232
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1233
			/* allow sending frames to every group member */
1234
			if (bridge && chip->ports[i].bridge_dev == bridge)
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1245

1246 1247 1248
	err = mv88e6xxx_port_read(chip, port, PORT_BASE_VLAN, &reg);
	if (err)
		return err;
1249

1250 1251
	reg &= ~mask;
	reg |= output_ports & mask;
1252

1253
	return mv88e6xxx_port_write(chip, port, PORT_BASE_VLAN, reg);
1254 1255
}

1256 1257
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1258
{
V
Vivien Didelot 已提交
1259
	struct mv88e6xxx_chip *chip = ds->priv;
1260
	int stp_state;
1261
	int err;
1262 1263 1264

	switch (state) {
	case BR_STATE_DISABLED:
1265
		stp_state = PORT_CONTROL_STATE_DISABLED;
1266 1267 1268
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1269
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1270 1271
		break;
	case BR_STATE_LEARNING:
1272
		stp_state = PORT_CONTROL_STATE_LEARNING;
1273 1274 1275
		break;
	case BR_STATE_FORWARDING:
	default:
1276
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1277 1278 1279
		break;
	}

1280
	mutex_lock(&chip->reg_lock);
1281
	err = mv88e6xxx_port_set_state(chip, port, stp_state);
1282
	mutex_unlock(&chip->reg_lock);
1283 1284

	if (err)
1285
		netdev_err(ds->ports[port].netdev, "failed to update state\n");
1286 1287
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static void mv88e6xxx_port_fast_age(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_chip *chip = ds->priv;
	int err;

	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_atu_remove(chip, 0, port, false);
	mutex_unlock(&chip->reg_lock);

	if (err)
		netdev_err(ds->ports[port].netdev, "failed to flush ATU\n");
}

1301
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1302
				u16 *new, u16 *old)
1303
{
1304
	struct dsa_switch *ds = chip->ds;
1305 1306
	u16 pvid, reg;
	int err;
1307

1308 1309 1310
	err = mv88e6xxx_port_read(chip, port, PORT_DEFAULT_VLAN, &reg);
	if (err)
		return err;
1311

1312
	pvid = reg & PORT_DEFAULT_VLAN_MASK;
1313 1314

	if (new) {
1315 1316
		reg &= ~PORT_DEFAULT_VLAN_MASK;
		reg |= *new & PORT_DEFAULT_VLAN_MASK;
1317

1318 1319 1320
		err = mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, reg);
		if (err)
			return err;
1321

1322 1323
		netdev_dbg(ds->ports[port].netdev,
			   "DefaultVID %d (was %d)\n", *new, pvid);
1324 1325 1326 1327
	}

	if (old)
		*old = pvid;
1328 1329 1330 1331

	return 0;
}

1332
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1333
				    int port, u16 *pvid)
1334
{
1335
	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1336 1337
}

1338
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1339
				    int port, u16 pvid)
1340
{
1341
	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1342 1343
}

1344
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1345
{
1346
	return mv88e6xxx_g1_wait(chip, GLOBAL_VTU_OP, GLOBAL_VTU_OP_BUSY);
1347 1348
}

1349
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1350
{
1351
	int err;
1352

1353 1354 1355
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_OP, op);
	if (err)
		return err;
1356

1357
	return _mv88e6xxx_vtu_wait(chip);
1358 1359
}

1360
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1361 1362 1363
{
	int ret;

1364
	ret = _mv88e6xxx_vtu_wait(chip);
1365 1366 1367
	if (ret < 0)
		return ret;

1368
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1369 1370
}

1371
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1372
					struct mv88e6xxx_vtu_entry *entry,
1373 1374 1375
					unsigned int nibble_offset)
{
	u16 regs[3];
1376
	int i, err;
1377 1378

	for (i = 0; i < 3; ++i) {
1379
		u16 *reg = &regs[i];
1380

1381 1382 1383
		err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1384 1385
	}

1386
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1387 1388 1389 1390 1391 1392 1393 1394 1395
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1396
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1397
				   struct mv88e6xxx_vtu_entry *entry)
1398
{
1399
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1400 1401
}

1402
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1403
				   struct mv88e6xxx_vtu_entry *entry)
1404
{
1405
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1406 1407
}

1408
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1409
					 struct mv88e6xxx_vtu_entry *entry,
1410 1411 1412
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
1413
	int i, err;
1414

1415
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1416 1417 1418 1419 1420 1421 1422
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1423 1424 1425 1426 1427
		u16 reg = regs[i];

		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1428 1429 1430 1431 1432
	}

	return 0;
}

1433
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1434
				    struct mv88e6xxx_vtu_entry *entry)
1435
{
1436
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1437 1438
}

1439
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1440
				    struct mv88e6xxx_vtu_entry *entry)
1441
{
1442
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1443 1444
}

1445
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1446
{
1447 1448
	return mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID,
				  vid & GLOBAL_VTU_VID_MASK);
1449 1450
}

1451
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1452
				  struct mv88e6xxx_vtu_entry *entry)
1453
{
1454
	struct mv88e6xxx_vtu_entry next = { 0 };
1455 1456
	u16 val;
	int err;
1457

1458 1459 1460
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1461

1462 1463 1464
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (err)
		return err;
1465

1466 1467 1468
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1469

1470 1471
	next.vid = val & GLOBAL_VTU_VID_MASK;
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1472 1473

	if (next.valid) {
1474 1475 1476
		err = mv88e6xxx_vtu_data_read(chip, &next);
		if (err)
			return err;
1477

1478
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1479 1480 1481
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_FID, &val);
			if (err)
				return err;
1482

1483
			next.fid = val & GLOBAL_VTU_FID_MASK;
1484
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1485 1486 1487
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1488 1489 1490
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_OP, &val);
			if (err)
				return err;
1491

1492 1493
			next.fid = (val & 0xf00) >> 4;
			next.fid |= val & 0xf;
1494
		}
1495

1496
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1497 1498 1499
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
			if (err)
				return err;
1500

1501
			next.sid = val & GLOBAL_VTU_SID_MASK;
1502 1503 1504 1505 1506 1507 1508
		}
	}

	*entry = next;
	return 0;
}

1509 1510 1511
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1512
{
V
Vivien Didelot 已提交
1513
	struct mv88e6xxx_chip *chip = ds->priv;
1514
	struct mv88e6xxx_vtu_entry next;
1515 1516 1517
	u16 pvid;
	int err;

1518
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1519 1520
		return -EOPNOTSUPP;

1521
	mutex_lock(&chip->reg_lock);
1522

1523
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1524 1525 1526
	if (err)
		goto unlock;

1527
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1528 1529 1530 1531
	if (err)
		goto unlock;

	do {
1532
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1543 1544
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1559
	mutex_unlock(&chip->reg_lock);
1560 1561 1562 1563

	return err;
}

1564
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1565
				    struct mv88e6xxx_vtu_entry *entry)
1566
{
1567
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1568
	u16 reg = 0;
1569
	int err;
1570

1571 1572 1573
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1574 1575 1576 1577 1578

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1579 1580 1581
	err = mv88e6xxx_vtu_data_write(chip, entry);
	if (err)
		return err;
1582

1583
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1584
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1585 1586 1587
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
		if (err)
			return err;
1588
	}
1589

1590
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1591
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1592 1593 1594
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_FID, reg);
		if (err)
			return err;
1595
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1596 1597 1598 1599 1600
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1601 1602 1603 1604 1605
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1606 1607 1608
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1609

1610
	return _mv88e6xxx_vtu_cmd(chip, op);
1611 1612
}

1613
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1614
				  struct mv88e6xxx_vtu_entry *entry)
1615
{
1616
	struct mv88e6xxx_vtu_entry next = { 0 };
1617 1618
	u16 val;
	int err;
1619

1620 1621 1622
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1623

1624 1625 1626 1627
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID,
				 sid & GLOBAL_VTU_SID_MASK);
	if (err)
		return err;
1628

1629 1630 1631
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (err)
		return err;
1632

1633 1634 1635
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
	if (err)
		return err;
1636

1637
	next.sid = val & GLOBAL_VTU_SID_MASK;
1638

1639 1640 1641
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1642

1643
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1644 1645

	if (next.valid) {
1646 1647 1648
		err = mv88e6xxx_stu_data_read(chip, &next);
		if (err)
			return err;
1649 1650 1651 1652 1653 1654
	}

	*entry = next;
	return 0;
}

1655
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1656
				    struct mv88e6xxx_vtu_entry *entry)
1657 1658
{
	u16 reg = 0;
1659
	int err;
1660

1661 1662 1663
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1664 1665 1666 1667 1668

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1669 1670 1671
	err = mv88e6xxx_stu_data_write(chip, entry);
	if (err)
		return err;
1672 1673 1674

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1675 1676 1677
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1678 1679

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1680 1681 1682
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
	if (err)
		return err;
1683

1684
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1685 1686
}

1687
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1688
			       u16 *new, u16 *old)
1689
{
1690
	struct dsa_switch *ds = chip->ds;
1691
	u16 upper_mask;
1692
	u16 fid;
1693 1694
	u16 reg;
	int err;
1695

1696
	if (mv88e6xxx_num_databases(chip) == 4096)
1697
		upper_mask = 0xff;
1698
	else if (mv88e6xxx_num_databases(chip) == 256)
1699
		upper_mask = 0xf;
1700 1701 1702
	else
		return -EOPNOTSUPP;

1703
	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1704 1705 1706
	err = mv88e6xxx_port_read(chip, port, PORT_BASE_VLAN, &reg);
	if (err)
		return err;
1707

1708
	fid = (reg & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1709 1710

	if (new) {
1711 1712
		reg &= ~PORT_BASE_VLAN_FID_3_0_MASK;
		reg |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1713

1714 1715 1716
		err = mv88e6xxx_port_write(chip, port, PORT_BASE_VLAN, reg);
		if (err)
			return err;
1717 1718 1719
	}

	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1720 1721 1722
	err = mv88e6xxx_port_read(chip, port, PORT_CONTROL_1, &reg);
	if (err)
		return err;
1723

1724
	fid |= (reg & upper_mask) << 4;
1725 1726

	if (new) {
1727 1728
		reg &= ~upper_mask;
		reg |= (*new >> 4) & upper_mask;
1729

1730 1731 1732
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, reg);
		if (err)
			return err;
1733

1734 1735
		netdev_dbg(ds->ports[port].netdev,
			   "FID %d (was %d)\n", *new, fid);
1736 1737 1738 1739 1740 1741 1742 1743
	}

	if (old)
		*old = fid;

	return 0;
}

1744
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1745
				   int port, u16 *fid)
1746
{
1747
	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1748 1749
}

1750
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1751
				   int port, u16 fid)
1752
{
1753
	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1754 1755
}

1756
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1757 1758
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1759
	struct mv88e6xxx_vtu_entry vlan;
1760
	int i, err;
1761 1762 1763

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1764
	/* Set every FID bit used by the (un)bridged ports */
1765
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1766
		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1767 1768 1769 1770 1771 1772
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1773
	/* Set every FID bit used by the VLAN entries */
1774
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1775 1776 1777 1778
	if (err)
		return err;

	do {
1779
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1793
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1794 1795 1796
		return -ENOSPC;

	/* Clear the database */
1797
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1798 1799
}

1800
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1801
			      struct mv88e6xxx_vtu_entry *entry)
1802
{
1803
	struct dsa_switch *ds = chip->ds;
1804
	struct mv88e6xxx_vtu_entry vlan = {
1805 1806 1807
		.valid = true,
		.vid = vid,
	};
1808 1809
	int i, err;

1810
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1811 1812
	if (err)
		return err;
1813

1814
	/* exclude all ports except the CPU and DSA ports */
1815
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
1816 1817 1818
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1819

1820 1821
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1822
		struct mv88e6xxx_vtu_entry vstp;
1823 1824 1825 1826 1827 1828

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1829
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1830 1831 1832 1833 1834 1835 1836 1837
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1838
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1839 1840 1841 1842 1843 1844 1845 1846 1847
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1848
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1849
			      struct mv88e6xxx_vtu_entry *entry, bool creat)
1850 1851 1852 1853 1854 1855
{
	int err;

	if (!vid)
		return -EINVAL;

1856
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1857 1858 1859
	if (err)
		return err;

1860
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1871
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1872 1873 1874 1875 1876
	}

	return err;
}

1877 1878 1879
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
V
Vivien Didelot 已提交
1880
	struct mv88e6xxx_chip *chip = ds->priv;
1881
	struct mv88e6xxx_vtu_entry vlan;
1882 1883 1884 1885 1886
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1887
	mutex_lock(&chip->reg_lock);
1888

1889
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1890 1891 1892 1893
	if (err)
		goto unlock;

	do {
1894
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1895 1896 1897 1898 1899 1900 1901 1902 1903
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1904
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1905 1906 1907 1908 1909 1910 1911
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1912 1913
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1914 1915
				break; /* same bridge, check next VLAN */

1916
			netdev_warn(ds->ports[port].netdev,
1917 1918
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1919
				    netdev_name(chip->ports[i].bridge_dev));
1920 1921 1922 1923 1924 1925
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1926
	mutex_unlock(&chip->reg_lock);
1927 1928 1929 1930

	return err;
}

1931 1932 1933 1934 1935 1936 1937
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

1938 1939
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1940
{
V
Vivien Didelot 已提交
1941
	struct mv88e6xxx_chip *chip = ds->priv;
1942 1943
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
1944 1945
	u16 reg;
	int err;
1946

1947
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1948 1949
		return -EOPNOTSUPP;

1950
	mutex_lock(&chip->reg_lock);
1951

1952 1953
	err = mv88e6xxx_port_read(chip, port, PORT_CONTROL_2, &reg);
	if (err)
1954 1955
		goto unlock;

1956
	old = reg & PORT_CONTROL_2_8021Q_MASK;
1957

1958
	if (new != old) {
1959 1960
		reg &= ~PORT_CONTROL_2_8021Q_MASK;
		reg |= new & PORT_CONTROL_2_8021Q_MASK;
1961

1962 1963
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
		if (err)
1964 1965
			goto unlock;

1966
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1967 1968 1969
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1970

1971
	err = 0;
1972
unlock:
1973
	mutex_unlock(&chip->reg_lock);
1974

1975
	return err;
1976 1977
}

1978 1979 1980 1981
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1982
{
V
Vivien Didelot 已提交
1983
	struct mv88e6xxx_chip *chip = ds->priv;
1984 1985
	int err;

1986
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1987 1988
		return -EOPNOTSUPP;

1989 1990 1991 1992 1993 1994 1995 1996
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1997 1998 1999 2000 2001 2002
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2003
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
2004
				    u16 vid, bool untagged)
2005
{
2006
	struct mv88e6xxx_vtu_entry vlan;
2007 2008
	int err;

2009
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
2010
	if (err)
2011
		return err;
2012 2013 2014 2015 2016

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

2017
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
2018 2019
}

2020 2021 2022
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
2023
{
V
Vivien Didelot 已提交
2024
	struct mv88e6xxx_chip *chip = ds->priv;
2025 2026 2027 2028
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

2029
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2030 2031
		return;

2032
	mutex_lock(&chip->reg_lock);
2033

2034
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
2035
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
2036 2037
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
2038
				   vid, untagged ? 'u' : 't');
2039

2040
	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
2041
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
2042
			   vlan->vid_end);
2043

2044
	mutex_unlock(&chip->reg_lock);
2045 2046
}

2047
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
2048
				    int port, u16 vid)
2049
{
2050
	struct dsa_switch *ds = chip->ds;
2051
	struct mv88e6xxx_vtu_entry vlan;
2052 2053
	int i, err;

2054
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2055
	if (err)
2056
		return err;
2057

2058 2059
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
2060
		return -EOPNOTSUPP;
2061 2062 2063 2064

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
2065
	vlan.valid = false;
2066
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
2067
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
2068 2069 2070
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
2071
			vlan.valid = true;
2072 2073 2074 2075
			break;
		}
	}

2076
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
2077 2078 2079
	if (err)
		return err;

2080
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2081 2082
}

2083 2084
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
2085
{
V
Vivien Didelot 已提交
2086
	struct mv88e6xxx_chip *chip = ds->priv;
2087 2088 2089
	u16 pvid, vid;
	int err = 0;

2090
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2091 2092
		return -EOPNOTSUPP;

2093
	mutex_lock(&chip->reg_lock);
2094

2095
	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2096 2097 2098
	if (err)
		goto unlock;

2099
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2100
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2101 2102 2103 2104
		if (err)
			goto unlock;

		if (vid == pvid) {
2105
			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2106 2107 2108 2109 2110
			if (err)
				goto unlock;
		}
	}

2111
unlock:
2112
	mutex_unlock(&chip->reg_lock);
2113 2114 2115 2116

	return err;
}

2117
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2118
				    const unsigned char *addr)
2119
{
2120
	int i, err;
2121 2122

	for (i = 0; i < 3; i++) {
2123 2124 2125 2126
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_MAC_01 + i,
					 (addr[i * 2] << 8) | addr[i * 2 + 1]);
		if (err)
			return err;
2127 2128 2129 2130 2131
	}

	return 0;
}

2132
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2133
				   unsigned char *addr)
2134
{
2135 2136
	u16 val;
	int i, err;
2137 2138

	for (i = 0; i < 3; i++) {
2139 2140 2141 2142 2143 2144
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_MAC_01 + i, &val);
		if (err)
			return err;

		addr[i * 2] = val >> 8;
		addr[i * 2 + 1] = val & 0xff;
2145 2146 2147 2148 2149
	}

	return 0;
}

2150
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2151
			       struct mv88e6xxx_atu_entry *entry)
2152
{
2153 2154
	int ret;

2155
	ret = _mv88e6xxx_atu_wait(chip);
2156 2157 2158
	if (ret < 0)
		return ret;

2159
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2160 2161 2162
	if (ret < 0)
		return ret;

2163
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2164
	if (ret < 0)
2165 2166
		return ret;

2167
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2168
}
2169

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
				  struct mv88e6xxx_atu_entry *entry);

static int mv88e6xxx_atu_get(struct mv88e6xxx_chip *chip, int fid,
			     const u8 *addr, struct mv88e6xxx_atu_entry *entry)
{
	struct mv88e6xxx_atu_entry next;
	int err;

	eth_broadcast_addr(next.mac);

	err = _mv88e6xxx_atu_mac_write(chip, next.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(chip, fid, &next);
		if (err)
			return err;

		if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (ether_addr_equal(next.mac, addr)) {
			*entry = next;
			return 0;
		}
	} while (!is_broadcast_ether_addr(next.mac));

	memset(entry, 0, sizeof(*entry));
	entry->fid = fid;
	ether_addr_copy(entry->mac, addr);

	return 0;
}

2206 2207 2208
static int mv88e6xxx_port_db_load_purge(struct mv88e6xxx_chip *chip, int port,
					const unsigned char *addr, u16 vid,
					u8 state)
2209
{
2210
	struct mv88e6xxx_vtu_entry vlan;
2211
	struct mv88e6xxx_atu_entry entry;
2212 2213
	int err;

2214 2215
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2216
		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2217
	else
2218
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2219 2220
	if (err)
		return err;
2221

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	err = mv88e6xxx_atu_get(chip, vlan.fid, addr, &entry);
	if (err)
		return err;

	/* Purge the ATU entry only if no port is using it anymore */
	if (state == GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.portv_trunkid &= ~BIT(port);
		if (!entry.portv_trunkid)
			entry.state = GLOBAL_ATU_DATA_STATE_UNUSED;
	} else {
		entry.portv_trunkid |= BIT(port);
		entry.state = state;
2234 2235
	}

2236
	return _mv88e6xxx_atu_load(chip, &entry);
2237 2238
}

2239 2240 2241
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2242 2243 2244 2245 2246 2247 2248
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2249 2250 2251
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2252
{
V
Vivien Didelot 已提交
2253
	struct mv88e6xxx_chip *chip = ds->priv;
2254

2255
	mutex_lock(&chip->reg_lock);
2256 2257 2258
	if (mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					 GLOBAL_ATU_DATA_STATE_UC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load unicast MAC address\n");
2259
	mutex_unlock(&chip->reg_lock);
2260 2261
}

2262 2263
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2264
{
V
Vivien Didelot 已提交
2265
	struct mv88e6xxx_chip *chip = ds->priv;
2266
	int err;
2267

2268
	mutex_lock(&chip->reg_lock);
2269 2270
	err = mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
2271
	mutex_unlock(&chip->reg_lock);
2272

2273
	return err;
2274 2275
}

2276
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2277
				  struct mv88e6xxx_atu_entry *entry)
2278
{
2279
	struct mv88e6xxx_atu_entry next = { 0 };
2280 2281
	u16 val;
	int err;
2282 2283

	next.fid = fid;
2284

2285 2286 2287
	err = _mv88e6xxx_atu_wait(chip);
	if (err)
		return err;
2288

2289 2290 2291
	err = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
	if (err)
		return err;
2292

2293 2294 2295
	err = _mv88e6xxx_atu_mac_read(chip, next.mac);
	if (err)
		return err;
2296

2297 2298 2299
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_DATA, &val);
	if (err)
		return err;
2300

2301
	next.state = val & GLOBAL_ATU_DATA_STATE_MASK;
2302 2303 2304
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

2305
		if (val & GLOBAL_ATU_DATA_TRUNK) {
2306 2307 2308 2309 2310 2311 2312 2313 2314
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

2315
		next.portv_trunkid = (val & mask) >> shift;
2316
	}
2317

2318
	*entry = next;
2319 2320 2321
	return 0;
}

2322 2323 2324 2325
static int mv88e6xxx_port_db_dump_fid(struct mv88e6xxx_chip *chip,
				      u16 fid, u16 vid, int port,
				      struct switchdev_obj *obj,
				      int (*cb)(struct switchdev_obj *obj))
2326 2327 2328 2329 2330 2331
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2332
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2333 2334 2335 2336
	if (err)
		return err;

	do {
2337
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2338
		if (err)
2339
			return err;
2340 2341 2342 2343

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

2344 2345 2346 2347 2348
		if (addr.trunk || (addr.portv_trunkid & BIT(port)) == 0)
			continue;

		if (obj->id == SWITCHDEV_OBJ_ID_PORT_FDB) {
			struct switchdev_obj_port_fdb *fdb;
2349

2350 2351 2352 2353
			if (!is_unicast_ether_addr(addr.mac))
				continue;

			fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
2354 2355
			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
2356 2357 2358 2359
			if (addr.state == GLOBAL_ATU_DATA_STATE_UC_STATIC)
				fdb->ndm_state = NUD_NOARP;
			else
				fdb->ndm_state = NUD_REACHABLE;
2360 2361 2362 2363 2364 2365 2366 2367 2368
		} else if (obj->id == SWITCHDEV_OBJ_ID_PORT_MDB) {
			struct switchdev_obj_port_mdb *mdb;

			if (!is_multicast_ether_addr(addr.mac))
				continue;

			mdb = SWITCHDEV_OBJ_PORT_MDB(obj);
			mdb->vid = vid;
			ether_addr_copy(mdb->addr, addr.mac);
2369 2370
		} else {
			return -EOPNOTSUPP;
2371
		}
2372 2373 2374 2375

		err = cb(obj);
		if (err)
			return err;
2376 2377 2378 2379 2380
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2381 2382 2383
static int mv88e6xxx_port_db_dump(struct mv88e6xxx_chip *chip, int port,
				  struct switchdev_obj *obj,
				  int (*cb)(struct switchdev_obj *obj))
2384
{
2385
	struct mv88e6xxx_vtu_entry vlan = {
2386 2387
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2388
	u16 fid;
2389 2390
	int err;

2391
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2392
	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2393
	if (err)
2394
		return err;
2395

2396
	err = mv88e6xxx_port_db_dump_fid(chip, fid, 0, port, obj, cb);
2397
	if (err)
2398
		return err;
2399

2400
	/* Dump VLANs' Filtering Information Databases */
2401
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2402
	if (err)
2403
		return err;
2404 2405

	do {
2406
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2407
		if (err)
2408
			return err;
2409 2410 2411 2412

		if (!vlan.valid)
			break;

2413 2414
		err = mv88e6xxx_port_db_dump_fid(chip, vlan.fid, vlan.vid, port,
						 obj, cb);
2415
		if (err)
2416
			return err;
2417 2418
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

2419 2420 2421 2422 2423 2424 2425
	return err;
}

static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
2426
	struct mv88e6xxx_chip *chip = ds->priv;
2427 2428 2429 2430
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &fdb->obj, cb);
2431
	mutex_unlock(&chip->reg_lock);
2432 2433 2434 2435

	return err;
}

2436 2437
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2438
{
V
Vivien Didelot 已提交
2439
	struct mv88e6xxx_chip *chip = ds->priv;
2440
	int i, err = 0;
2441

2442
	mutex_lock(&chip->reg_lock);
2443

2444
	/* Assign the bridge and remap each port's VLANTable */
2445
	chip->ports[port].bridge_dev = bridge;
2446

2447
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
2448 2449
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2450 2451 2452 2453 2454
			if (err)
				break;
		}
	}

2455
	mutex_unlock(&chip->reg_lock);
2456

2457
	return err;
2458 2459
}

2460
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2461
{
V
Vivien Didelot 已提交
2462
	struct mv88e6xxx_chip *chip = ds->priv;
2463
	struct net_device *bridge = chip->ports[port].bridge_dev;
2464
	int i;
2465

2466
	mutex_lock(&chip->reg_lock);
2467

2468
	/* Unassign the bridge and remap each port's VLANTable */
2469
	chip->ports[port].bridge_dev = NULL;
2470

2471
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
2472 2473
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2474 2475
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2476

2477
	mutex_unlock(&chip->reg_lock);
2478 2479
}

2480
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2481
{
2482
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2483
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2484
	struct gpio_desc *gpiod = chip->reset;
2485
	unsigned long timeout;
2486
	u16 reg;
2487
	int err;
2488 2489 2490
	int i;

	/* Set all ports to the disabled state. */
2491
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2492 2493
		err = mv88e6xxx_port_set_state(chip, i,
					       PORT_CONTROL_STATE_DISABLED);
2494 2495
		if (err)
			return err;
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2514
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc000);
2515
	else
2516
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc400);
2517 2518
	if (err)
		return err;
2519 2520 2521 2522

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2523 2524 2525
		err = mv88e6xxx_g1_read(chip, 0x00, &reg);
		if (err)
			return err;
2526

2527
		if ((reg & is_reset) == is_reset)
2528 2529 2530 2531
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
2532
		err = -ETIMEDOUT;
2533
	else
2534
		err = 0;
2535

2536
	return err;
2537 2538
}

2539
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2540
{
2541 2542
	u16 val;
	int err;
2543

2544 2545 2546 2547
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2548

2549 2550 2551
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2552 2553
	}

2554
	return err;
2555 2556
}

2557
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2558
{
2559
	struct dsa_switch *ds = chip->ds;
2560
	int err;
2561
	u16 reg;
2562

2563 2564 2565 2566
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2567 2568 2569 2570 2571 2572
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2573
		err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
2574
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2575
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2576 2577 2578 2579
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2580
			if (mv88e6xxx_6065_family(chip))
2581 2582 2583 2584 2585 2586 2587
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2588 2589 2590
		err = mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
		if (err)
			return err;
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2608 2609 2610 2611
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2612 2613 2614 2615
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2616
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2617
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2618
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2619 2620
		else
			reg |= PORT_CONTROL_DSA_TAG;
2621 2622
		reg |= PORT_CONTROL_EGRESS_ADD_TAG |
			PORT_CONTROL_FORWARD_UNKNOWN;
2623
	}
2624
	if (dsa_is_dsa_port(ds, port)) {
2625 2626
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2627
			reg |= PORT_CONTROL_DSA_TAG;
2628 2629 2630 2631 2632
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2633
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2634 2635
		}

2636 2637 2638 2639 2640
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2641 2642 2643
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL, reg);
		if (err)
			return err;
2644 2645
	}

2646 2647 2648
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2649
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
		err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
		if (err)
			return err;
		reg &= PORT_STATUS_CMODE_MASK;
		if ((reg == PORT_STATUS_CMODE_100BASE_X) ||
		    (reg == PORT_STATUS_CMODE_1000BASE_X) ||
		    (reg == PORT_STATUS_CMODE_SGMII)) {
			err = mv88e6xxx_serdes_power_on(chip);
			if (err < 0)
				return err;
2660 2661 2662
		}
	}

2663
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2664
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2665 2666 2667
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2668 2669
	 */
	reg = 0;
2670 2671 2672 2673
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2674 2675
		reg = PORT_CONTROL_2_MAP_DA;

2676 2677
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2678 2679
		reg |= PORT_CONTROL_2_JUMBO_10240;

2680
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2681 2682 2683 2684 2685 2686 2687 2688 2689
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2690
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2691

2692
	if (reg) {
2693 2694 2695
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
		if (err)
			return err;
2696 2697 2698 2699 2700 2701 2702
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2703
	reg = 1 << port;
2704 2705
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2706
		reg = 0;
2707

2708 2709 2710
	err = mv88e6xxx_port_write(chip, port, PORT_ASSOC_VECTOR, reg);
	if (err)
		return err;
2711 2712

	/* Egress rate control 2: disable egress rate control. */
2713 2714 2715
	err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL_2, 0x0000);
	if (err)
		return err;
2716

2717 2718 2719
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2720 2721 2722 2723
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2724 2725 2726
		err = mv88e6xxx_port_write(chip, port, PORT_PAUSE_CTRL, 0x0000);
		if (err)
			return err;
2727 2728 2729 2730 2731

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2732 2733
		err = mv88e6xxx_port_write(chip, port, PORT_ATU_CONTROL,
					   0x0000);
2734 2735 2736
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2737 2738 2739 2740
		err = mv88e6xxx_port_write(chip, port, PORT_PRI_OVERRIDE,
					   0x0000);
		if (err)
			return err;
2741 2742 2743 2744

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2745
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
2746 2747 2748 2749
			err = mv88e6xxx_port_write(chip, port, PORT_ETH_TYPE,
						   ETH_P_EDSA);
			if (err)
				return err;
2750 2751
		}

2752 2753 2754
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2755 2756 2757 2758
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_0123,
					   0x3210);
		if (err)
			return err;
2759 2760 2761 2762

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2763 2764 2765 2766
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_4567,
					   0x7654);
		if (err)
			return err;
2767 2768
	}

2769
	/* Rate Control: disable ingress rate limiting. */
2770 2771 2772
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2773 2774 2775 2776
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0001);
		if (err)
			return err;
2777
	} else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
2778 2779 2780 2781
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0000);
		if (err)
			return err;
2782 2783
	}

2784 2785
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2786
	 */
2787 2788 2789
	err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, 0x0000);
	if (err)
		return err;
2790

2791
	/* Port based VLAN map: give each port the same default address
2792 2793
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2794
	 */
2795 2796 2797
	err = _mv88e6xxx_port_fid_set(chip, port, 0);
	if (err)
		return err;
2798

2799 2800 2801
	err = _mv88e6xxx_port_based_vlan_map(chip, port);
	if (err)
		return err;
2802 2803 2804 2805

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2806
	return mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, 0x0000);
2807 2808
}

2809
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2810 2811 2812
{
	int err;

2813
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
2814 2815 2816
	if (err)
		return err;

2817
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
2818 2819 2820
	if (err)
		return err;

2821 2822 2823 2824 2825
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
	if (err)
		return err;

	return 0;
2826 2827
}

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

2844
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
2845 2846 2847 2848 2849 2850 2851
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

2852
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL, val);
2853 2854
}

2855 2856 2857
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
V
Vivien Didelot 已提交
2858
	struct mv88e6xxx_chip *chip = ds->priv;
2859 2860 2861 2862 2863 2864 2865 2866 2867
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2868
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2869
{
2870
	struct dsa_switch *ds = chip->ds;
2871
	u32 upstream_port = dsa_upstream_port(ds);
2872
	u16 reg;
2873
	int err;
2874

2875 2876 2877
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
2878 2879 2880 2881 2882
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err < 0)
		return err;

	reg &= ~GLOBAL_CONTROL_PPU_ENABLE;
2883 2884
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2885 2886
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2887
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
2888 2889 2890
	if (err)
		return err;

2891 2892 2893 2894 2895 2896
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2897
	err = mv88e6xxx_g1_write(chip, GLOBAL_MONITOR_CONTROL, reg);
2898 2899 2900
	if (err)
		return err;

2901
	/* Disable remote management, and set the switch's DSA device number. */
2902 2903 2904
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL_2,
				 GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				 (ds->index & 0x1f));
2905 2906 2907
	if (err)
		return err;

2908 2909 2910 2911 2912
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2913 2914 2915 2916
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2917 2918
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
				 GLOBAL_ATU_CONTROL_LEARN2ALL);
2919
	if (err)
2920
		return err;
2921

2922 2923
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2924 2925 2926 2927 2928 2929 2930
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2931
	/* Configure the IP ToS mapping registers. */
2932
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_0, 0x0000);
2933
	if (err)
2934
		return err;
2935
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_1, 0x0000);
2936
	if (err)
2937
		return err;
2938
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_2, 0x5555);
2939
	if (err)
2940
		return err;
2941
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_3, 0x5555);
2942
	if (err)
2943
		return err;
2944
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_4, 0xaaaa);
2945
	if (err)
2946
		return err;
2947
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_5, 0xaaaa);
2948
	if (err)
2949
		return err;
2950
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_6, 0xffff);
2951
	if (err)
2952
		return err;
2953
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_7, 0xffff);
2954
	if (err)
2955
		return err;
2956 2957

	/* Configure the IEEE 802.1p priority mapping register. */
2958
	err = mv88e6xxx_g1_write(chip, GLOBAL_IEEE_PRI, 0xfa41);
2959
	if (err)
2960
		return err;
2961

2962
	/* Clear the statistics counters for all ports */
2963 2964
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_FLUSH_ALL);
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2976
static int mv88e6xxx_setup(struct dsa_switch *ds)
2977
{
V
Vivien Didelot 已提交
2978
	struct mv88e6xxx_chip *chip = ds->priv;
2979
	int err;
2980 2981
	int i;

2982 2983
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
2984

2985
	mutex_lock(&chip->reg_lock);
2986

2987
	/* Setup Switch Port Registers */
2988
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2989 2990 2991 2992 2993 2994 2995
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
2996 2997 2998
	if (err)
		goto unlock;

2999 3000 3001
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
3002 3003 3004
		if (err)
			goto unlock;
	}
3005

3006
unlock:
3007
	mutex_unlock(&chip->reg_lock);
3008

3009
	return err;
3010 3011
}

3012 3013
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
V
Vivien Didelot 已提交
3014
	struct mv88e6xxx_chip *chip = ds->priv;
3015 3016
	int err;

3017 3018
	if (!chip->info->ops->set_switch_mac)
		return -EOPNOTSUPP;
3019

3020 3021
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->set_switch_mac(chip, addr);
3022 3023 3024 3025 3026
	mutex_unlock(&chip->reg_lock);

	return err;
}

3027
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
3028
{
3029
	struct mv88e6xxx_chip *chip = bus->priv;
3030 3031
	u16 val;
	int err;
3032

3033
	if (phy >= mv88e6xxx_num_ports(chip))
3034
		return 0xffff;
3035

3036
	mutex_lock(&chip->reg_lock);
3037
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
3038
	mutex_unlock(&chip->reg_lock);
3039 3040

	return err ? err : val;
3041 3042
}

3043
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
3044
{
3045
	struct mv88e6xxx_chip *chip = bus->priv;
3046
	int err;
3047

3048
	if (phy >= mv88e6xxx_num_ports(chip))
3049
		return 0xffff;
3050

3051
	mutex_lock(&chip->reg_lock);
3052
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
3053
	mutex_unlock(&chip->reg_lock);
3054 3055

	return err;
3056 3057
}

3058
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3059 3060 3061 3062 3063 3064 3065
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
3066
		chip->mdio_np = of_get_child_by_name(np, "mdio");
3067

3068
	bus = devm_mdiobus_alloc(chip->dev);
3069 3070 3071
	if (!bus)
		return -ENOMEM;

3072
	bus->priv = (void *)chip;
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
3083
	bus->parent = chip->dev;
3084

3085 3086
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
3087 3088 3089
	else
		err = mdiobus_register(bus);
	if (err) {
3090
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3091 3092
		goto out;
	}
3093
	chip->mdio_bus = bus;
3094 3095 3096 3097

	return 0;

out:
3098 3099
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3100 3101 3102 3103

	return err;
}

3104
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3105 3106

{
3107
	struct mii_bus *bus = chip->mdio_bus;
3108 3109 3110

	mdiobus_unregister(bus);

3111 3112
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
3113 3114
}

3115 3116 3117 3118
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
3119
	struct mv88e6xxx_chip *chip = ds->priv;
3120
	u16 val;
3121 3122 3123 3124
	int ret;

	*temp = 0;

3125
	mutex_lock(&chip->reg_lock);
3126

3127
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3128 3129 3130 3131
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3132
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3133 3134 3135
	if (ret < 0)
		goto error;

3136
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3137 3138 3139 3140 3141 3142
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3143 3144
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
	if (ret < 0)
3145 3146 3147
		goto error;

	/* Disable temperature sensor */
3148
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3149 3150 3151 3152 3153 3154
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3155
	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3156
	mutex_unlock(&chip->reg_lock);
3157 3158 3159 3160 3161
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
3162
	struct mv88e6xxx_chip *chip = ds->priv;
3163
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3164
	u16 val;
3165 3166 3167 3168
	int ret;

	*temp = 0;

3169 3170 3171
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
	mutex_unlock(&chip->reg_lock);
3172 3173 3174
	if (ret < 0)
		return ret;

3175
	*temp = (val & 0xff) - 25;
3176 3177 3178 3179

	return 0;
}

3180
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3181
{
V
Vivien Didelot 已提交
3182
	struct mv88e6xxx_chip *chip = ds->priv;
3183

3184
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3185 3186
		return -EOPNOTSUPP;

3187
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3188 3189 3190 3191 3192
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3193
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3194
{
V
Vivien Didelot 已提交
3195
	struct mv88e6xxx_chip *chip = ds->priv;
3196
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3197
	u16 val;
3198 3199
	int ret;

3200
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3201 3202 3203 3204
		return -EOPNOTSUPP;

	*temp = 0;

3205 3206 3207
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3208 3209 3210
	if (ret < 0)
		return ret;

3211
	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3212 3213 3214 3215

	return 0;
}

3216
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3217
{
V
Vivien Didelot 已提交
3218
	struct mv88e6xxx_chip *chip = ds->priv;
3219
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3220 3221
	u16 val;
	int err;
3222

3223
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3224 3225
		return -EOPNOTSUPP;

3226 3227 3228 3229
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	if (err)
		goto unlock;
3230
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3231 3232 3233 3234 3235 3236
	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
				       (val & 0xe0ff) | (temp << 8));
unlock:
	mutex_unlock(&chip->reg_lock);

	return err;
3237 3238
}

3239
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3240
{
V
Vivien Didelot 已提交
3241
	struct mv88e6xxx_chip *chip = ds->priv;
3242
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3243
	u16 val;
3244 3245
	int ret;

3246
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3247 3248 3249 3250
		return -EOPNOTSUPP;

	*alarm = false;

3251 3252 3253
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3254 3255 3256
	if (ret < 0)
		return ret;

3257
	*alarm = !!(val & 0x40);
3258 3259 3260 3261 3262

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3263 3264
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3265
	struct mv88e6xxx_chip *chip = ds->priv;
3266 3267 3268 3269 3270 3271 3272

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3273
	struct mv88e6xxx_chip *chip = ds->priv;
3274 3275
	int err;

3276 3277
	if (!chip->info->ops->get_eeprom)
		return -EOPNOTSUPP;
3278

3279 3280
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->get_eeprom(chip, eeprom, data);
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3294
	struct mv88e6xxx_chip *chip = ds->priv;
3295 3296
	int err;

3297 3298 3299
	if (!chip->info->ops->set_eeprom)
		return -EOPNOTSUPP;

3300 3301 3302 3303
	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);
3304
	err = chip->info->ops->set_eeprom(chip, eeprom, data);
3305 3306 3307 3308 3309
	mutex_unlock(&chip->reg_lock);

	return err;
}

3310
static const struct mv88e6xxx_ops mv88e6085_ops = {
3311
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3312 3313 3314 3315 3316
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6095_ops = {
3317
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3318 3319 3320 3321 3322
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6123_ops = {
3323
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3324 3325 3326 3327 3328
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6131_ops = {
3329
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3330 3331 3332 3333 3334
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6161_ops = {
3335
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3336 3337 3338 3339 3340
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6165_ops = {
3341
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3342 3343 3344 3345 3346
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6171_ops = {
3347
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3348 3349 3350 3351 3352
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6172_ops = {
3353 3354
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3355
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3356 3357 3358 3359 3360
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6175_ops = {
3361
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3362 3363 3364 3365 3366
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6176_ops = {
3367 3368
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3369
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3370 3371 3372 3373 3374
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6185_ops = {
3375
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3376 3377 3378 3379 3380
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6240_ops = {
3381 3382
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3383
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3384 3385 3386 3387 3388
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6320_ops = {
3389 3390
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3391
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3392 3393 3394 3395 3396
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6321_ops = {
3397 3398
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3399
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3400 3401 3402 3403 3404
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6350_ops = {
3405
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3406 3407 3408 3409 3410
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6351_ops = {
3411
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3412 3413 3414 3415 3416
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6352_ops = {
3417 3418
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3419
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3420 3421 3422 3423
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

3424 3425 3426 3427 3428 3429 3430
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3431
		.port_base_addr = 0x10,
3432
		.global1_addr = 0x1b,
3433
		.age_time_coeff = 15000,
3434
		.g1_irqs = 8,
3435
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
3436
		.ops = &mv88e6085_ops,
3437 3438 3439 3440 3441 3442 3443 3444
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3445
		.port_base_addr = 0x10,
3446
		.global1_addr = 0x1b,
3447
		.age_time_coeff = 15000,
3448
		.g1_irqs = 8,
3449
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
3450
		.ops = &mv88e6095_ops,
3451 3452 3453 3454 3455 3456 3457 3458
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3459
		.port_base_addr = 0x10,
3460
		.global1_addr = 0x1b,
3461
		.age_time_coeff = 15000,
3462
		.g1_irqs = 9,
3463
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3464
		.ops = &mv88e6123_ops,
3465 3466 3467 3468 3469 3470 3471 3472
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3473
		.port_base_addr = 0x10,
3474
		.global1_addr = 0x1b,
3475
		.age_time_coeff = 15000,
3476
		.g1_irqs = 9,
3477
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3478
		.ops = &mv88e6131_ops,
3479 3480 3481 3482 3483 3484 3485 3486
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3487
		.port_base_addr = 0x10,
3488
		.global1_addr = 0x1b,
3489
		.age_time_coeff = 15000,
3490
		.g1_irqs = 9,
3491
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3492
		.ops = &mv88e6161_ops,
3493 3494 3495 3496 3497 3498 3499 3500
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3501
		.port_base_addr = 0x10,
3502
		.global1_addr = 0x1b,
3503
		.age_time_coeff = 15000,
3504
		.g1_irqs = 9,
3505
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3506
		.ops = &mv88e6165_ops,
3507 3508 3509 3510 3511 3512 3513 3514
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3515
		.port_base_addr = 0x10,
3516
		.global1_addr = 0x1b,
3517
		.age_time_coeff = 15000,
3518
		.g1_irqs = 9,
3519
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3520
		.ops = &mv88e6171_ops,
3521 3522 3523 3524 3525 3526 3527 3528
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3529
		.port_base_addr = 0x10,
3530
		.global1_addr = 0x1b,
3531
		.age_time_coeff = 15000,
3532
		.g1_irqs = 9,
3533
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3534
		.ops = &mv88e6172_ops,
3535 3536 3537 3538 3539 3540 3541 3542
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3543
		.port_base_addr = 0x10,
3544
		.global1_addr = 0x1b,
3545
		.age_time_coeff = 15000,
3546
		.g1_irqs = 9,
3547
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3548
		.ops = &mv88e6175_ops,
3549 3550 3551 3552 3553 3554 3555 3556
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3557
		.port_base_addr = 0x10,
3558
		.global1_addr = 0x1b,
3559
		.age_time_coeff = 15000,
3560
		.g1_irqs = 9,
3561
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3562
		.ops = &mv88e6176_ops,
3563 3564 3565 3566 3567 3568 3569 3570
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3571
		.port_base_addr = 0x10,
3572
		.global1_addr = 0x1b,
3573
		.age_time_coeff = 15000,
3574
		.g1_irqs = 8,
3575
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3576
		.ops = &mv88e6185_ops,
3577 3578 3579 3580 3581 3582 3583 3584
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3585
		.port_base_addr = 0x10,
3586
		.global1_addr = 0x1b,
3587
		.age_time_coeff = 15000,
3588
		.g1_irqs = 9,
3589
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3590
		.ops = &mv88e6240_ops,
3591 3592 3593 3594 3595 3596 3597 3598
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3599
		.port_base_addr = 0x10,
3600
		.global1_addr = 0x1b,
3601
		.age_time_coeff = 15000,
3602
		.g1_irqs = 8,
3603
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3604
		.ops = &mv88e6320_ops,
3605 3606 3607 3608 3609 3610 3611 3612
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3613
		.port_base_addr = 0x10,
3614
		.global1_addr = 0x1b,
3615
		.age_time_coeff = 15000,
3616
		.g1_irqs = 8,
3617
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3618
		.ops = &mv88e6321_ops,
3619 3620 3621 3622 3623 3624 3625 3626
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3627
		.port_base_addr = 0x10,
3628
		.global1_addr = 0x1b,
3629
		.age_time_coeff = 15000,
3630
		.g1_irqs = 9,
3631
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3632
		.ops = &mv88e6350_ops,
3633 3634 3635 3636 3637 3638 3639 3640
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3641
		.port_base_addr = 0x10,
3642
		.global1_addr = 0x1b,
3643
		.age_time_coeff = 15000,
3644
		.g1_irqs = 9,
3645
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3646
		.ops = &mv88e6351_ops,
3647 3648 3649 3650 3651 3652 3653 3654
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3655
		.port_base_addr = 0x10,
3656
		.global1_addr = 0x1b,
3657
		.age_time_coeff = 15000,
3658
		.g1_irqs = 9,
3659
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3660
		.ops = &mv88e6352_ops,
3661 3662 3663
	},
};

3664
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3665
{
3666
	int i;
3667

3668 3669 3670
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3671 3672 3673 3674

	return NULL;
}

3675
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3676 3677
{
	const struct mv88e6xxx_info *info;
3678 3679 3680
	unsigned int prod_num, rev;
	u16 id;
	int err;
3681

3682 3683 3684 3685 3686
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3687 3688 3689 3690 3691 3692 3693 3694

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3695
	/* Update the compatible info with the probed one */
3696
	chip->info = info;
3697

3698 3699 3700 3701
	err = mv88e6xxx_g2_require(chip);
	if (err)
		return err;

3702 3703
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3704 3705 3706 3707

	return 0;
}

3708
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3709
{
3710
	struct mv88e6xxx_chip *chip;
3711

3712 3713
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3714 3715
		return NULL;

3716
	chip->dev = dev;
3717

3718
	mutex_init(&chip->reg_lock);
3719

3720
	return chip;
3721 3722
}

3723 3724
static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
3725
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3726 3727 3728
		mv88e6xxx_ppu_state_init(chip);
}

3729 3730
static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
{
3731
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3732 3733 3734
		mv88e6xxx_ppu_state_destroy(chip);
}

3735
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3736 3737 3738 3739 3740 3741
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3742
	if (sw_addr == 0)
3743
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3744
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3745
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3746 3747 3748
	else
		return -EINVAL;

3749 3750
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3751 3752 3753 3754

	return 0;
}

3755 3756
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3757
	struct mv88e6xxx_chip *chip = ds->priv;
3758 3759 3760 3761 3762

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
		return DSA_TAG_PROTO_EDSA;

	return DSA_TAG_PROTO_DSA;
3763 3764
}

3765 3766 3767
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3768
{
3769
	struct mv88e6xxx_chip *chip;
3770
	struct mii_bus *bus;
3771
	int err;
3772

3773
	bus = dsa_host_dev_to_mii_bus(host_dev);
3774 3775 3776
	if (!bus)
		return NULL;

3777 3778
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3779 3780
		return NULL;

3781
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3782
	chip->info = &mv88e6xxx_table[MV88E6085];
3783

3784
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3785 3786 3787
	if (err)
		goto free;

3788
	err = mv88e6xxx_detect(chip);
3789
	if (err)
3790
		goto free;
3791

3792 3793 3794 3795 3796 3797
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto free;

3798 3799
	mv88e6xxx_phy_init(chip);

3800
	err = mv88e6xxx_mdio_register(chip, NULL);
3801
	if (err)
3802
		goto free;
3803

3804
	*priv = chip;
3805

3806
	return chip->info->name;
3807
free:
3808
	devm_kfree(dsa_dev, chip);
3809 3810

	return NULL;
3811 3812
}

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
static int mv88e6xxx_port_mdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_mdb *mdb,
				      struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */

	return 0;
}

static void mv88e6xxx_port_mdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_mdb *mdb,
				   struct switchdev_trans *trans)
{
V
Vivien Didelot 已提交
3828
	struct mv88e6xxx_chip *chip = ds->priv;
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

	mutex_lock(&chip->reg_lock);
	if (mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					 GLOBAL_ATU_DATA_STATE_MC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load multicast MAC address\n");
	mutex_unlock(&chip->reg_lock);
}

static int mv88e6xxx_port_mdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_mdb *mdb)
{
V
Vivien Didelot 已提交
3840
	struct mv88e6xxx_chip *chip = ds->priv;
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
	mutex_unlock(&chip->reg_lock);

	return err;
}

static int mv88e6xxx_port_mdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_mdb *mdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
3855
	struct mv88e6xxx_chip *chip = ds->priv;
3856 3857 3858 3859 3860 3861 3862 3863 3864
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &mdb->obj, cb);
	mutex_unlock(&chip->reg_lock);

	return err;
}

3865
static struct dsa_switch_ops mv88e6xxx_switch_ops = {
3866
	.probe			= mv88e6xxx_drv_probe,
3867
	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
3882
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3883 3884 3885 3886
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
3887
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3888 3889 3890
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
3891
	.port_fast_age		= mv88e6xxx_port_fast_age,
3892 3893 3894 3895 3896 3897 3898 3899 3900
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
3901 3902 3903 3904
	.port_mdb_prepare       = mv88e6xxx_port_mdb_prepare,
	.port_mdb_add           = mv88e6xxx_port_mdb_add,
	.port_mdb_del           = mv88e6xxx_port_mdb_del,
	.port_mdb_dump          = mv88e6xxx_port_mdb_dump,
3905 3906
};

3907
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3908 3909
				     struct device_node *np)
{
3910
	struct device *dev = chip->dev;
3911 3912 3913 3914 3915 3916 3917
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
3918
	ds->priv = chip;
3919
	ds->ops = &mv88e6xxx_switch_ops;
3920 3921 3922 3923 3924 3925

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

3926
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
3927
{
3928
	dsa_unregister_switch(chip->ds);
3929 3930
}

3931
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
3932
{
3933
	struct device *dev = &mdiodev->dev;
3934
	struct device_node *np = dev->of_node;
3935
	const struct mv88e6xxx_info *compat_info;
3936
	struct mv88e6xxx_chip *chip;
3937
	u32 eeprom_len;
3938
	int err;
3939

3940 3941 3942 3943
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

3944 3945
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
3946 3947
		return -ENOMEM;

3948
	chip->info = compat_info;
3949

3950
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
3951 3952
	if (err)
		return err;
3953

3954
	err = mv88e6xxx_detect(chip);
3955 3956
	if (err)
		return err;
3957

3958 3959
	mv88e6xxx_phy_init(chip);

3960 3961 3962
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
3963

3964
	if (chip->info->ops->get_eeprom &&
3965
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
3966
		chip->eeprom_len = eeprom_len;
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto out;

	chip->irq = of_irq_get(np, 0);
	if (chip->irq == -EPROBE_DEFER) {
		err = chip->irq;
		goto out;
	}

	if (chip->irq > 0) {
		/* Has to be performed before the MDIO bus is created,
		 * because the PHYs will link there interrupts to these
		 * interrupt controllers
		 */
		mutex_lock(&chip->reg_lock);
		err = mv88e6xxx_g1_irq_setup(chip);
		mutex_unlock(&chip->reg_lock);

		if (err)
			goto out;

		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT)) {
			err = mv88e6xxx_g2_irq_setup(chip);
			if (err)
				goto out_g1_irq;
		}
	}

3999
	err = mv88e6xxx_mdio_register(chip, np);
4000
	if (err)
4001
		goto out_g2_irq;
4002

4003
	err = mv88e6xxx_register_switch(chip, np);
4004 4005
	if (err)
		goto out_mdio;
4006

4007
	return 0;
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017

out_mdio:
	mv88e6xxx_mdio_unregister(chip);
out_g2_irq:
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT))
		mv88e6xxx_g2_irq_free(chip);
out_g1_irq:
	mv88e6xxx_g1_irq_free(chip);
out:
	return err;
4018
}
4019 4020 4021 4022

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
V
Vivien Didelot 已提交
4023
	struct mv88e6xxx_chip *chip = ds->priv;
4024

4025
	mv88e6xxx_phy_destroy(chip);
4026 4027
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
4028 4029 4030 4031

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT))
		mv88e6xxx_g2_irq_free(chip);
	mv88e6xxx_g1_irq_free(chip);
4032 4033 4034
}

static const struct of_device_id mv88e6xxx_of_match[] = {
4035 4036 4037 4038
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
4055
	register_switch_driver(&mv88e6xxx_switch_ops);
4056 4057
	return mdio_driver_register(&mv88e6xxx_driver);
}
4058 4059 4060 4061
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
4062
	mdio_driver_unregister(&mv88e6xxx_driver);
4063
	unregister_switch_driver(&mv88e6xxx_switch_ops);
4064 4065
}
module_exit(mv88e6xxx_cleanup);
4066 4067 4068 4069

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");