chip.c 93.1 KB
Newer Older
1
/*
2 3
 * Marvell 88e6xxx Ethernet switch single-chip support
 *
4 5
 * Copyright (c) 2008 Marvell Semiconductor
 *
6 7 8
 * Copyright (c) 2015 CMC Electronics, Inc.
 *	Added support for VLAN Table Unit operations
 *
9 10
 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
 *
11 12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

17
#include <linux/delay.h>
18
#include <linux/etherdevice.h>
19
#include <linux/ethtool.h>
20
#include <linux/if_bridge.h>
21 22 23
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
24
#include <linux/jiffies.h>
25
#include <linux/list.h>
26
#include <linux/mdio.h>
27
#include <linux/module.h>
28
#include <linux/of_device.h>
29
#include <linux/of_irq.h>
30
#include <linux/of_mdio.h>
31
#include <linux/netdevice.h>
32
#include <linux/gpio/consumer.h>
33
#include <linux/phy.h>
34
#include <net/dsa.h>
35
#include <net/switchdev.h>
36

37
#include "mv88e6xxx.h"
38
#include "global1.h"
39
#include "global2.h"
40
#include "port.h"
41

42
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
43
{
44 45
	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
		dev_err(chip->dev, "Switch registers lock not held!\n");
46 47 48 49
		dump_stack();
	}
}

50 51 52 53 54 55 56 57 58 59
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
 * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
 *
 * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
 * is the only device connected to the SMI master. In this mode it responds to
 * all 32 possible SMI addresses, and thus maps directly the internal devices.
 *
 * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
 * multiple devices to share the SMI interface. In this mode it responds to only
 * 2 registers, used to indirectly access the internal SMI devices.
60
 */
61

62
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
63 64
			      int addr, int reg, u16 *val)
{
65
	if (!chip->smi_ops)
66 67
		return -EOPNOTSUPP;

68
	return chip->smi_ops->read(chip, addr, reg, val);
69 70
}

71
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
72 73
			       int addr, int reg, u16 val)
{
74
	if (!chip->smi_ops)
75 76
		return -EOPNOTSUPP;

77
	return chip->smi_ops->write(chip, addr, reg, val);
78 79
}

80
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
81 82 83 84
					  int addr, int reg, u16 *val)
{
	int ret;

85
	ret = mdiobus_read_nested(chip->bus, addr, reg);
86 87 88 89 90 91 92 93
	if (ret < 0)
		return ret;

	*val = ret & 0xffff;

	return 0;
}

94
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
95 96 97 98
					   int addr, int reg, u16 val)
{
	int ret;

99
	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
100 101 102 103 104 105
	if (ret < 0)
		return ret;

	return 0;
}

106
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_single_chip_ops = {
107 108 109 110
	.read = mv88e6xxx_smi_single_chip_read,
	.write = mv88e6xxx_smi_single_chip_write,
};

111
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
112 113 114 115 116
{
	int ret;
	int i;

	for (i = 0; i < 16; i++) {
117
		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
118 119 120
		if (ret < 0)
			return ret;

121
		if ((ret & SMI_CMD_BUSY) == 0)
122 123 124 125 126 127
			return 0;
	}

	return -ETIMEDOUT;
}

128
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
129
					 int addr, int reg, u16 *val)
130 131 132
{
	int ret;

133
	/* Wait for the bus to become free. */
134
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
135 136 137
	if (ret < 0)
		return ret;

138
	/* Transmit the read command. */
139
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
140
				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
141 142 143
	if (ret < 0)
		return ret;

144
	/* Wait for the read command to complete. */
145
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
146 147 148
	if (ret < 0)
		return ret;

149
	/* Read the data. */
150
	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
151 152 153
	if (ret < 0)
		return ret;

154
	*val = ret & 0xffff;
155

156
	return 0;
157 158
}

159
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
160
					  int addr, int reg, u16 val)
161 162 163
{
	int ret;

164
	/* Wait for the bus to become free. */
165
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
166 167 168
	if (ret < 0)
		return ret;

169
	/* Transmit the data to write. */
170
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
171 172 173
	if (ret < 0)
		return ret;

174
	/* Transmit the write command. */
175
	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
176
				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
177 178 179
	if (ret < 0)
		return ret;

180
	/* Wait for the write command to complete. */
181
	ret = mv88e6xxx_smi_multi_chip_wait(chip);
182 183 184 185 186 187
	if (ret < 0)
		return ret;

	return 0;
}

188
static const struct mv88e6xxx_bus_ops mv88e6xxx_smi_multi_chip_ops = {
189 190 191 192
	.read = mv88e6xxx_smi_multi_chip_read,
	.write = mv88e6xxx_smi_multi_chip_write,
};

193
int mv88e6xxx_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val)
194 195 196
{
	int err;

197
	assert_reg_lock(chip);
198

199
	err = mv88e6xxx_smi_read(chip, addr, reg, val);
200 201 202
	if (err)
		return err;

203
	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
204 205 206 207 208
		addr, reg, *val);

	return 0;
}

209
int mv88e6xxx_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val)
210
{
211 212
	int err;

213
	assert_reg_lock(chip);
214

215
	err = mv88e6xxx_smi_write(chip, addr, reg, val);
216 217 218
	if (err)
		return err;

219
	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
220 221
		addr, reg, val);

222 223 224
	return 0;
}

225 226 227 228 229
static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
			      int reg, u16 *val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

230
	if (!chip->info->ops->phy_read)
231 232
		return -EOPNOTSUPP;

233
	return chip->info->ops->phy_read(chip, addr, reg, val);
234 235 236 237 238 239 240
}

static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
			       int reg, u16 val)
{
	int addr = phy; /* PHY devices addresses start at 0x0 */

241
	if (!chip->info->ops->phy_write)
242 243
		return -EOPNOTSUPP;

244
	return chip->info->ops->phy_write(chip, addr, reg, val);
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
{
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
		return -EOPNOTSUPP;

	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
}

static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
{
	int err;

	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
	if (unlikely(err)) {
		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
			phy, err);
	}
}

static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
				   u8 page, int reg, u16 *val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_read(chip, phy, reg, val);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
				    u8 page, int reg, u16 val)
{
	int err;

	/* There is no paging for registers 22 */
	if (reg == PHY_PAGE)
		return -EINVAL;

	err = mv88e6xxx_phy_page_get(chip, phy, page);
	if (!err) {
		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
		mv88e6xxx_phy_page_put(chip, phy);
	}

	return err;
}

static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
{
	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
				       reg, val);
}

static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
{
	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
					reg, val);
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void mv88e6xxx_g1_irq_mask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked |= (1 << n);
}

static void mv88e6xxx_g1_irq_unmask(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	unsigned int n = d->hwirq;

	chip->g1_irq.masked &= ~(1 << n);
}

static irqreturn_t mv88e6xxx_g1_irq_thread_fn(int irq, void *dev_id)
{
	struct mv88e6xxx_chip *chip = dev_id;
	unsigned int nhandled = 0;
	unsigned int sub_irq;
	unsigned int n;
	u16 reg;
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	mutex_unlock(&chip->reg_lock);

	if (err)
		goto out;

	for (n = 0; n < chip->g1_irq.nirqs; ++n) {
		if (reg & (1 << n)) {
			sub_irq = irq_find_mapping(chip->g1_irq.domain, n);
			handle_nested_irq(sub_irq);
			++nhandled;
		}
	}
out:
	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
}

static void mv88e6xxx_g1_irq_bus_lock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);

	mutex_lock(&chip->reg_lock);
}

static void mv88e6xxx_g1_irq_bus_sync_unlock(struct irq_data *d)
{
	struct mv88e6xxx_chip *chip = irq_data_get_irq_chip_data(d);
	u16 mask = GENMASK(chip->g1_irq.nirqs, 0);
	u16 reg;
	int err;

	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err)
		goto out;

	reg &= ~mask;
	reg |= (~chip->g1_irq.masked & mask);

	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
	if (err)
		goto out;

out:
	mutex_unlock(&chip->reg_lock);
}

static struct irq_chip mv88e6xxx_g1_irq_chip = {
	.name			= "mv88e6xxx-g1",
	.irq_mask		= mv88e6xxx_g1_irq_mask,
	.irq_unmask		= mv88e6xxx_g1_irq_unmask,
	.irq_bus_lock		= mv88e6xxx_g1_irq_bus_lock,
	.irq_bus_sync_unlock	= mv88e6xxx_g1_irq_bus_sync_unlock,
};

static int mv88e6xxx_g1_irq_domain_map(struct irq_domain *d,
				       unsigned int irq,
				       irq_hw_number_t hwirq)
{
	struct mv88e6xxx_chip *chip = d->host_data;

	irq_set_chip_data(irq, d->host_data);
	irq_set_chip_and_handler(irq, &chip->g1_irq.chip, handle_level_irq);
	irq_set_noprobe(irq);

	return 0;
}

static const struct irq_domain_ops mv88e6xxx_g1_irq_domain_ops = {
	.map	= mv88e6xxx_g1_irq_domain_map,
	.xlate	= irq_domain_xlate_twocell,
};

static void mv88e6xxx_g1_irq_free(struct mv88e6xxx_chip *chip)
{
	int irq, virq;

	for (irq = 0; irq < 16; irq++) {
		virq = irq_find_mapping(chip->g2_irq.domain, irq);
		irq_dispose_mapping(virq);
	}

	irq_domain_remove(chip->g2_irq.domain);
}

static int mv88e6xxx_g1_irq_setup(struct mv88e6xxx_chip *chip)
{
	int err, irq;
	u16 reg;

	chip->g1_irq.nirqs = chip->info->g1_irqs;
	chip->g1_irq.domain = irq_domain_add_simple(
		NULL, chip->g1_irq.nirqs, 0,
		&mv88e6xxx_g1_irq_domain_ops, chip);
	if (!chip->g1_irq.domain)
		return -ENOMEM;

	for (irq = 0; irq < chip->g1_irq.nirqs; irq++)
		irq_create_mapping(chip->g1_irq.domain, irq);

	chip->g1_irq.chip = mv88e6xxx_g1_irq_chip;
	chip->g1_irq.masked = ~0;

	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err)
		goto out;

	reg &= ~GENMASK(chip->g1_irq.nirqs, 0);

	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
	if (err)
		goto out;

	/* Reading the interrupt status clears (most of) them */
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &reg);
	if (err)
		goto out;

	err = request_threaded_irq(chip->irq, NULL,
				   mv88e6xxx_g1_irq_thread_fn,
				   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
				   dev_name(chip->dev), chip);
	if (err)
		goto out;

	return 0;

out:
	mv88e6xxx_g1_irq_free(chip);

	return err;
}

473
int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg, u16 mask)
474
{
475
	int i;
476

477
	for (i = 0; i < 16; i++) {
478 479 480 481 482 483 484 485 486 487 488 489 490
		u16 val;
		int err;

		err = mv88e6xxx_read(chip, addr, reg, &val);
		if (err)
			return err;

		if (!(val & mask))
			return 0;

		usleep_range(1000, 2000);
	}

491
	dev_err(chip->dev, "Timeout while waiting for switch\n");
492 493 494
	return -ETIMEDOUT;
}

495
/* Indirect write to single pointer-data register with an Update bit */
496
int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg, u16 update)
497 498
{
	u16 val;
499
	int err;
500 501

	/* Wait until the previous operation is completed */
502 503 504
	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
	if (err)
		return err;
505 506 507 508 509 510 511

	/* Set the Update bit to trigger a write operation */
	val = BIT(15) | update;

	return mv88e6xxx_write(chip, addr, reg, val);
}

512
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
513 514
{
	u16 val;
515
	int i, err;
516

517
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
518 519 520
	if (err)
		return err;

521 522 523 524
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val & ~GLOBAL_CONTROL_PPU_ENABLE);
	if (err)
		return err;
525

526
	for (i = 0; i < 16; i++) {
527 528 529
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
530

531
		usleep_range(1000, 2000);
532
		if ((val & GLOBAL_STATUS_PPU_MASK) != GLOBAL_STATUS_PPU_POLLING)
533
			return 0;
534 535 536 537 538
	}

	return -ETIMEDOUT;
}

539
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
540
{
541 542
	u16 val;
	int i, err;
543

544 545 546
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &val);
	if (err)
		return err;
547

548 549
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL,
				 val | GLOBAL_CONTROL_PPU_ENABLE);
550 551
	if (err)
		return err;
552

553
	for (i = 0; i < 16; i++) {
554 555 556
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATUS, &val);
		if (err)
			return err;
557

558
		usleep_range(1000, 2000);
559
		if ((val & GLOBAL_STATUS_PPU_MASK) == GLOBAL_STATUS_PPU_POLLING)
560
			return 0;
561 562 563 564 565 566 567
	}

	return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
568
	struct mv88e6xxx_chip *chip;
569

570
	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
571

572
	mutex_lock(&chip->reg_lock);
573

574 575 576 577
	if (mutex_trylock(&chip->ppu_mutex)) {
		if (mv88e6xxx_ppu_enable(chip) == 0)
			chip->ppu_disabled = 0;
		mutex_unlock(&chip->ppu_mutex);
578
	}
579

580
	mutex_unlock(&chip->reg_lock);
581 582 583 584
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
585
	struct mv88e6xxx_chip *chip = (void *)_ps;
586

587
	schedule_work(&chip->ppu_work);
588 589
}

590
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
591 592 593
{
	int ret;

594
	mutex_lock(&chip->ppu_mutex);
595

596
	/* If the PHY polling unit is enabled, disable it so that
597 598 599 600
	 * we can access the PHY registers.  If it was already
	 * disabled, cancel the timer that is going to re-enable
	 * it.
	 */
601 602
	if (!chip->ppu_disabled) {
		ret = mv88e6xxx_ppu_disable(chip);
603
		if (ret < 0) {
604
			mutex_unlock(&chip->ppu_mutex);
605 606
			return ret;
		}
607
		chip->ppu_disabled = 1;
608
	} else {
609
		del_timer(&chip->ppu_timer);
610
		ret = 0;
611 612 613 614 615
	}

	return ret;
}

616
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
617
{
618
	/* Schedule a timer to re-enable the PHY polling unit. */
619 620
	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
	mutex_unlock(&chip->ppu_mutex);
621 622
}

623
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
624
{
625 626
	mutex_init(&chip->ppu_mutex);
	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
627 628
	setup_timer(&chip->ppu_timer, mv88e6xxx_ppu_reenable_timer,
		    (unsigned long)chip);
629 630
}

631 632 633 634 635
static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
{
	del_timer_sync(&chip->ppu_timer);
}

636 637
static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
				  int reg, u16 *val)
638
{
639
	int err;
640

641 642 643
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_read(chip, addr, reg, val);
644
		mv88e6xxx_ppu_access_put(chip);
645 646
	}

647
	return err;
648 649
}

650 651
static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
				   int reg, u16 val)
652
{
653
	int err;
654

655 656 657
	err = mv88e6xxx_ppu_access_get(chip);
	if (!err) {
		err = mv88e6xxx_write(chip, addr, reg, val);
658
		mv88e6xxx_ppu_access_put(chip);
659 660
	}

661
	return err;
662 663
}

664
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
665
{
666
	return chip->info->family == MV88E6XXX_FAMILY_6065;
667 668
}

669
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
670
{
671
	return chip->info->family == MV88E6XXX_FAMILY_6095;
672 673
}

674
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
675
{
676
	return chip->info->family == MV88E6XXX_FAMILY_6097;
677 678
}

679
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
680
{
681
	return chip->info->family == MV88E6XXX_FAMILY_6165;
682 683
}

684
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
685
{
686
	return chip->info->family == MV88E6XXX_FAMILY_6185;
687 688
}

689
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
690
{
691
	return chip->info->family == MV88E6XXX_FAMILY_6320;
692 693
}

694
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
695
{
696
	return chip->info->family == MV88E6XXX_FAMILY_6351;
697 698
}

699
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
700
{
701
	return chip->info->family == MV88E6XXX_FAMILY_6352;
702 703
}

704 705 706 707
/* We expect the switch to perform auto negotiation if there is a real
 * phy. However, in the case of a fixed link phy, we force the port
 * settings from the fixed link settings.
 */
708 709
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
				  struct phy_device *phydev)
710
{
V
Vivien Didelot 已提交
711
	struct mv88e6xxx_chip *chip = ds->priv;
712 713
	u16 reg;
	int err;
714 715 716 717

	if (!phy_is_pseudo_fixed_link(phydev))
		return;

718
	mutex_lock(&chip->reg_lock);
719

720 721
	err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
	if (err)
722 723
		goto out;

724 725 726 727 728
	reg &= ~(PORT_PCS_CTRL_LINK_UP |
		 PORT_PCS_CTRL_FORCE_LINK |
		 PORT_PCS_CTRL_DUPLEX_FULL |
		 PORT_PCS_CTRL_FORCE_DUPLEX |
		 PORT_PCS_CTRL_UNFORCED);
729 730 731

	reg |= PORT_PCS_CTRL_FORCE_LINK;
	if (phydev->link)
732
		reg |= PORT_PCS_CTRL_LINK_UP;
733

734
	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		goto out;

	switch (phydev->speed) {
	case SPEED_1000:
		reg |= PORT_PCS_CTRL_1000;
		break;
	case SPEED_100:
		reg |= PORT_PCS_CTRL_100;
		break;
	case SPEED_10:
		reg |= PORT_PCS_CTRL_10;
		break;
	default:
		pr_info("Unknown speed");
		goto out;
	}

	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= PORT_PCS_CTRL_DUPLEX_FULL;

756
	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
757
	    (port >= mv88e6xxx_num_ports(chip) - 2)) {
758 759 760 761 762 763 764 765
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
	}
766
	mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
767 768

out:
769
	mutex_unlock(&chip->reg_lock);
770 771
}

772
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
773
{
774 775
	u16 val;
	int i, err;
776 777

	for (i = 0; i < 10; i++) {
778 779
		err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_OP, &val);
		if ((val & GLOBAL_STATS_OP_BUSY) == 0)
780 781 782 783 784 785
			return 0;
	}

	return -ETIMEDOUT;
}

786
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
787
{
788
	int err;
789

790
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
791 792
		port = (port + 1) << 5;

793
	/* Snapshot the hardware statistics counters for this port. */
794 795 796 797 798
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_CAPTURE_PORT |
				 GLOBAL_STATS_OP_HIST_RX_TX | port);
	if (err)
		return err;
799

800
	/* Wait for the snapshotting to complete. */
801
	return _mv88e6xxx_stats_wait(chip);
802 803
}

804
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
805
				  int stat, u32 *val)
806
{
807 808 809
	u32 value;
	u16 reg;
	int err;
810 811 812

	*val = 0;

813 814 815 816
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_READ_CAPTURED |
				 GLOBAL_STATS_OP_HIST_RX_TX | stat);
	if (err)
817 818
		return;

819 820
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
821 822
		return;

823 824
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_32, &reg);
	if (err)
825 826
		return;

827
	value = reg << 16;
828

829 830
	err = mv88e6xxx_g1_read(chip, GLOBAL_STATS_COUNTER_01, &reg);
	if (err)
831 832
		return;

833
	*val = value | reg;
834 835
}

836
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	{ "in_good_octets",	8, 0x00, BANK0, },
	{ "in_bad_octets",	4, 0x02, BANK0, },
	{ "in_unicast",		4, 0x04, BANK0, },
	{ "in_broadcasts",	4, 0x06, BANK0, },
	{ "in_multicasts",	4, 0x07, BANK0, },
	{ "in_pause",		4, 0x16, BANK0, },
	{ "in_undersize",	4, 0x18, BANK0, },
	{ "in_fragments",	4, 0x19, BANK0, },
	{ "in_oversize",	4, 0x1a, BANK0, },
	{ "in_jabber",		4, 0x1b, BANK0, },
	{ "in_rx_error",	4, 0x1c, BANK0, },
	{ "in_fcs_error",	4, 0x1d, BANK0, },
	{ "out_octets",		8, 0x0e, BANK0, },
	{ "out_unicast",	4, 0x10, BANK0, },
	{ "out_broadcasts",	4, 0x13, BANK0, },
	{ "out_multicasts",	4, 0x12, BANK0, },
	{ "out_pause",		4, 0x15, BANK0, },
	{ "excessive",		4, 0x11, BANK0, },
	{ "collisions",		4, 0x1e, BANK0, },
	{ "deferred",		4, 0x05, BANK0, },
	{ "single",		4, 0x14, BANK0, },
	{ "multiple",		4, 0x17, BANK0, },
	{ "out_fcs_error",	4, 0x03, BANK0, },
	{ "late",		4, 0x1f, BANK0, },
	{ "hist_64bytes",	4, 0x08, BANK0, },
	{ "hist_65_127bytes",	4, 0x09, BANK0, },
	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
	{ "sw_in_discards",	4, 0x10, PORT, },
	{ "sw_in_filtered",	2, 0x12, PORT, },
	{ "sw_out_filtered",	2, 0x13, PORT, },
	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
896 897
};

898
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
899
			       struct mv88e6xxx_hw_stat *stat)
900
{
901 902
	switch (stat->type) {
	case BANK0:
903
		return true;
904
	case BANK1:
905
		return mv88e6xxx_6320_family(chip);
906
	case PORT:
907 908 909 910 911 912
		return mv88e6xxx_6095_family(chip) ||
			mv88e6xxx_6185_family(chip) ||
			mv88e6xxx_6097_family(chip) ||
			mv88e6xxx_6165_family(chip) ||
			mv88e6xxx_6351_family(chip) ||
			mv88e6xxx_6352_family(chip);
913
	}
914
	return false;
915 916
}

917
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
918
					    struct mv88e6xxx_hw_stat *s,
919 920 921 922
					    int port)
{
	u32 low;
	u32 high = 0;
923 924
	int err;
	u16 reg;
925 926
	u64 value;

927 928
	switch (s->type) {
	case PORT:
929 930
		err = mv88e6xxx_port_read(chip, port, s->reg, &reg);
		if (err)
931 932
			return UINT64_MAX;

933
		low = reg;
934
		if (s->sizeof_stat == 4) {
935 936
			err = mv88e6xxx_port_read(chip, port, s->reg + 1, &reg);
			if (err)
937
				return UINT64_MAX;
938
			high = reg;
939
		}
940 941 942
		break;
	case BANK0:
	case BANK1:
943
		_mv88e6xxx_stats_read(chip, s->reg, &low);
944
		if (s->sizeof_stat == 8)
945
			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
946 947 948 949 950
	}
	value = (((u64)high) << 16) | low;
	return value;
}

951 952
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
				  uint8_t *data)
953
{
V
Vivien Didelot 已提交
954
	struct mv88e6xxx_chip *chip = ds->priv;
955 956
	struct mv88e6xxx_hw_stat *stat;
	int i, j;
957

958 959
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
960
		if (mv88e6xxx_has_stat(chip, stat)) {
961 962 963 964
			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
			       ETH_GSTRING_LEN);
			j++;
		}
965
	}
966 967
}

968
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
969
{
V
Vivien Didelot 已提交
970
	struct mv88e6xxx_chip *chip = ds->priv;
971 972 973 974 975
	struct mv88e6xxx_hw_stat *stat;
	int i, j;

	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
976
		if (mv88e6xxx_has_stat(chip, stat))
977 978 979
			j++;
	}
	return j;
980 981
}

982 983
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
					uint64_t *data)
984
{
V
Vivien Didelot 已提交
985
	struct mv88e6xxx_chip *chip = ds->priv;
986 987 988 989
	struct mv88e6xxx_hw_stat *stat;
	int ret;
	int i, j;

990
	mutex_lock(&chip->reg_lock);
991

992
	ret = _mv88e6xxx_stats_snapshot(chip, port);
993
	if (ret < 0) {
994
		mutex_unlock(&chip->reg_lock);
995 996 997 998
		return;
	}
	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
		stat = &mv88e6xxx_hw_stats[i];
999 1000
		if (mv88e6xxx_has_stat(chip, stat)) {
			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
1001 1002 1003 1004
			j++;
		}
	}

1005
	mutex_unlock(&chip->reg_lock);
1006 1007
}

1008
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
1009 1010 1011 1012
{
	return 32 * sizeof(u16);
}

1013 1014
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
			       struct ethtool_regs *regs, void *_p)
1015
{
V
Vivien Didelot 已提交
1016
	struct mv88e6xxx_chip *chip = ds->priv;
1017 1018
	int err;
	u16 reg;
1019 1020 1021 1022 1023 1024 1025
	u16 *p = _p;
	int i;

	regs->version = 0;

	memset(p, 0xff, 32 * sizeof(u16));

1026
	mutex_lock(&chip->reg_lock);
1027

1028 1029
	for (i = 0; i < 32; i++) {

1030 1031 1032
		err = mv88e6xxx_port_read(chip, port, i, &reg);
		if (!err)
			p[i] = reg;
1033
	}
1034

1035
	mutex_unlock(&chip->reg_lock);
1036 1037
}

1038
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
1039
{
1040
	return mv88e6xxx_g1_wait(chip, GLOBAL_ATU_OP, GLOBAL_ATU_OP_BUSY);
1041 1042
}

1043 1044
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
			     struct ethtool_eee *e)
1045
{
V
Vivien Didelot 已提交
1046
	struct mv88e6xxx_chip *chip = ds->priv;
1047 1048
	u16 reg;
	int err;
1049

1050
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1051 1052
		return -EOPNOTSUPP;

1053
	mutex_lock(&chip->reg_lock);
1054

1055 1056
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1057
		goto out;
1058 1059 1060 1061

	e->eee_enabled = !!(reg & 0x0200);
	e->tx_lpi_enabled = !!(reg & 0x0100);

1062
	err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
1063
	if (err)
1064
		goto out;
1065

1066
	e->eee_active = !!(reg & PORT_STATUS_EEE);
1067
out:
1068
	mutex_unlock(&chip->reg_lock);
1069 1070

	return err;
1071 1072
}

1073 1074
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
			     struct phy_device *phydev, struct ethtool_eee *e)
1075
{
V
Vivien Didelot 已提交
1076
	struct mv88e6xxx_chip *chip = ds->priv;
1077 1078
	u16 reg;
	int err;
1079

1080
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
1081 1082
		return -EOPNOTSUPP;

1083
	mutex_lock(&chip->reg_lock);
1084

1085 1086
	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
	if (err)
1087 1088
		goto out;

1089
	reg &= ~0x0300;
1090 1091 1092 1093 1094
	if (e->eee_enabled)
		reg |= 0x0200;
	if (e->tx_lpi_enabled)
		reg |= 0x0100;

1095
	err = mv88e6xxx_phy_write(chip, port, 16, reg);
1096
out:
1097
	mutex_unlock(&chip->reg_lock);
1098

1099
	return err;
1100 1101
}

1102
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
1103
{
1104 1105
	u16 val;
	int err;
1106

1107
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_ATU_FID)) {
1108 1109 1110
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_FID, fid);
		if (err)
			return err;
1111
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1112
		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
1113 1114 1115
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
		if (err)
			return err;
1116

1117 1118 1119 1120
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
					 (val & 0xfff) | ((fid << 8) & 0xf000));
		if (err)
			return err;
1121 1122 1123

		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
		cmd |= fid & 0xf;
1124 1125
	}

1126 1127 1128
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_OP, cmd);
	if (err)
		return err;
1129

1130
	return _mv88e6xxx_atu_wait(chip);
1131 1132
}

1133
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
				     struct mv88e6xxx_atu_entry *entry)
{
	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;

	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

		if (entry->trunk) {
			data |= GLOBAL_ATU_DATA_TRUNK;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

		data |= (entry->portv_trunkid << shift) & mask;
	}

1153
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_DATA, data);
1154 1155
}

1156
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1157 1158
				     struct mv88e6xxx_atu_entry *entry,
				     bool static_too)
1159
{
1160 1161
	int op;
	int err;
1162

1163
	err = _mv88e6xxx_atu_wait(chip);
1164 1165
	if (err)
		return err;
1166

1167
	err = _mv88e6xxx_atu_data_write(chip, entry);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	if (err)
		return err;

	if (entry->fid) {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
	} else {
		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
	}

1179
	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1180 1181
}

1182
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1183
				u16 fid, bool static_too)
1184 1185 1186 1187 1188
{
	struct mv88e6xxx_atu_entry entry = {
		.fid = fid,
		.state = 0, /* EntryState bits must be 0 */
	};
1189

1190
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1191 1192
}

1193
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1194
			       int from_port, int to_port, bool static_too)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct mv88e6xxx_atu_entry entry = {
		.trunk = false,
		.fid = fid,
	};

	/* EntryState bits must be 0xF */
	entry.state = GLOBAL_ATU_DATA_STATE_MASK;

	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
	entry.portv_trunkid = (to_port & 0x0f) << 4;
	entry.portv_trunkid |= from_port & 0x0f;

1208
	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1209 1210
}

1211
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1212
				 int port, bool static_too)
1213 1214
{
	/* Destination port 0xF means remove the entries */
1215
	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1216 1217
}

1218
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1219
{
1220 1221
	struct net_device *bridge = chip->ports[port].bridge_dev;
	struct dsa_switch *ds = chip->ds;
1222 1223 1224 1225 1226
	u16 output_ports = 0;
	int i;

	/* allow CPU port or DSA link(s) to send frames to every port */
	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1227
		output_ports = ~0;
1228
	} else {
1229
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1230
			/* allow sending frames to every group member */
1231
			if (bridge && chip->ports[i].bridge_dev == bridge)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
				output_ports |= BIT(i);

			/* allow sending frames to CPU port and DSA link(s) */
			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
				output_ports |= BIT(i);
		}
	}

	/* prevent frames from going back out of the port they came in on */
	output_ports &= ~BIT(port);
1242

1243
	return mv88e6xxx_port_set_vlan_map(chip, port, output_ports);
1244 1245
}

1246 1247
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
					 u8 state)
1248
{
V
Vivien Didelot 已提交
1249
	struct mv88e6xxx_chip *chip = ds->priv;
1250
	int stp_state;
1251
	int err;
1252 1253 1254

	switch (state) {
	case BR_STATE_DISABLED:
1255
		stp_state = PORT_CONTROL_STATE_DISABLED;
1256 1257 1258
		break;
	case BR_STATE_BLOCKING:
	case BR_STATE_LISTENING:
1259
		stp_state = PORT_CONTROL_STATE_BLOCKING;
1260 1261
		break;
	case BR_STATE_LEARNING:
1262
		stp_state = PORT_CONTROL_STATE_LEARNING;
1263 1264 1265
		break;
	case BR_STATE_FORWARDING:
	default:
1266
		stp_state = PORT_CONTROL_STATE_FORWARDING;
1267 1268 1269
		break;
	}

1270
	mutex_lock(&chip->reg_lock);
1271
	err = mv88e6xxx_port_set_state(chip, port, stp_state);
1272
	mutex_unlock(&chip->reg_lock);
1273 1274

	if (err)
1275
		netdev_err(ds->ports[port].netdev, "failed to update state\n");
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static void mv88e6xxx_port_fast_age(struct dsa_switch *ds, int port)
{
	struct mv88e6xxx_chip *chip = ds->priv;
	int err;

	mutex_lock(&chip->reg_lock);
	err = _mv88e6xxx_atu_remove(chip, 0, port, false);
	mutex_unlock(&chip->reg_lock);

	if (err)
		netdev_err(ds->ports[port].netdev, "failed to flush ATU\n");
}

1291
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1292
{
1293
	return mv88e6xxx_g1_wait(chip, GLOBAL_VTU_OP, GLOBAL_VTU_OP_BUSY);
1294 1295
}

1296
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1297
{
1298
	int err;
1299

1300 1301 1302
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_OP, op);
	if (err)
		return err;
1303

1304
	return _mv88e6xxx_vtu_wait(chip);
1305 1306
}

1307
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1308 1309 1310
{
	int ret;

1311
	ret = _mv88e6xxx_vtu_wait(chip);
1312 1313 1314
	if (ret < 0)
		return ret;

1315
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1316 1317
}

1318
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1319
					struct mv88e6xxx_vtu_entry *entry,
1320 1321 1322
					unsigned int nibble_offset)
{
	u16 regs[3];
1323
	int i, err;
1324 1325

	for (i = 0; i < 3; ++i) {
1326
		u16 *reg = &regs[i];
1327

1328 1329 1330
		err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1331 1332
	}

1333
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1334 1335 1336 1337 1338 1339 1340 1341 1342
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u16 reg = regs[i / 4];

		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
	}

	return 0;
}

1343
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1344
				   struct mv88e6xxx_vtu_entry *entry)
1345
{
1346
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1347 1348
}

1349
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1350
				   struct mv88e6xxx_vtu_entry *entry)
1351
{
1352
	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1353 1354
}

1355
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1356
					 struct mv88e6xxx_vtu_entry *entry,
1357 1358 1359
					 unsigned int nibble_offset)
{
	u16 regs[3] = { 0 };
1360
	int i, err;
1361

1362
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1363 1364 1365 1366 1367 1368 1369
		unsigned int shift = (i % 4) * 4 + nibble_offset;
		u8 data = entry->data[i];

		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
	}

	for (i = 0; i < 3; ++i) {
1370 1371 1372 1373 1374
		u16 reg = regs[i];

		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_DATA_0_3 + i, reg);
		if (err)
			return err;
1375 1376 1377 1378 1379
	}

	return 0;
}

1380
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1381
				    struct mv88e6xxx_vtu_entry *entry)
1382
{
1383
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1384 1385
}

1386
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1387
				    struct mv88e6xxx_vtu_entry *entry)
1388
{
1389
	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1390 1391
}

1392
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1393
{
1394 1395
	return mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID,
				  vid & GLOBAL_VTU_VID_MASK);
1396 1397
}

1398
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1399
				  struct mv88e6xxx_vtu_entry *entry)
1400
{
1401
	struct mv88e6xxx_vtu_entry next = { 0 };
1402 1403
	u16 val;
	int err;
1404

1405 1406 1407
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1408

1409 1410 1411
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
	if (err)
		return err;
1412

1413 1414 1415
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1416

1417 1418
	next.vid = val & GLOBAL_VTU_VID_MASK;
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1419 1420

	if (next.valid) {
1421 1422 1423
		err = mv88e6xxx_vtu_data_read(chip, &next);
		if (err)
			return err;
1424

1425
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1426 1427 1428
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_FID, &val);
			if (err)
				return err;
1429

1430
			next.fid = val & GLOBAL_VTU_FID_MASK;
1431
		} else if (mv88e6xxx_num_databases(chip) == 256) {
1432 1433 1434
			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
			 * VTU DBNum[3:0] are located in VTU Operation 3:0
			 */
1435 1436 1437
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_OP, &val);
			if (err)
				return err;
1438

1439 1440
			next.fid = (val & 0xf00) >> 4;
			next.fid |= val & 0xf;
1441
		}
1442

1443
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1444 1445 1446
			err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
			if (err)
				return err;
1447

1448
			next.sid = val & GLOBAL_VTU_SID_MASK;
1449 1450 1451 1452 1453 1454 1455
		}
	}

	*entry = next;
	return 0;
}

1456 1457 1458
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
				    struct switchdev_obj_port_vlan *vlan,
				    int (*cb)(struct switchdev_obj *obj))
1459
{
V
Vivien Didelot 已提交
1460
	struct mv88e6xxx_chip *chip = ds->priv;
1461
	struct mv88e6xxx_vtu_entry next;
1462 1463 1464
	u16 pvid;
	int err;

1465
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1466 1467
		return -EOPNOTSUPP;

1468
	mutex_lock(&chip->reg_lock);
1469

1470
	err = mv88e6xxx_port_get_pvid(chip, port, &pvid);
1471 1472 1473
	if (err)
		goto unlock;

1474
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1475 1476 1477 1478
	if (err)
		goto unlock;

	do {
1479
		err = _mv88e6xxx_vtu_getnext(chip, &next);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		if (err)
			break;

		if (!next.valid)
			break;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
			continue;

		/* reinit and dump this VLAN obj */
1490 1491
		vlan->vid_begin = next.vid;
		vlan->vid_end = next.vid;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		vlan->flags = 0;

		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;

		if (next.vid == pvid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	} while (next.vid < GLOBAL_VTU_VID_MASK);

unlock:
1506
	mutex_unlock(&chip->reg_lock);
1507 1508 1509 1510

	return err;
}

1511
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1512
				    struct mv88e6xxx_vtu_entry *entry)
1513
{
1514
	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1515
	u16 reg = 0;
1516
	int err;
1517

1518 1519 1520
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1521 1522 1523 1524 1525

	if (!entry->valid)
		goto loadpurge;

	/* Write port member tags */
1526 1527 1528
	err = mv88e6xxx_vtu_data_write(chip, entry);
	if (err)
		return err;
1529

1530
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1531
		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1532 1533 1534
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
		if (err)
			return err;
1535
	}
1536

1537
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G1_VTU_FID)) {
1538
		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1539 1540 1541
		err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_FID, reg);
		if (err)
			return err;
1542
	} else if (mv88e6xxx_num_databases(chip) == 256) {
1543 1544 1545 1546 1547
		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
		 * VTU DBNum[3:0] are located in VTU Operation 3:0
		 */
		op |= (entry->fid & 0xf0) << 8;
		op |= entry->fid & 0xf;
1548 1549 1550 1551 1552
	}

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1553 1554 1555
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1556

1557
	return _mv88e6xxx_vtu_cmd(chip, op);
1558 1559
}

1560
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1561
				  struct mv88e6xxx_vtu_entry *entry)
1562
{
1563
	struct mv88e6xxx_vtu_entry next = { 0 };
1564 1565
	u16 val;
	int err;
1566

1567 1568 1569
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1570

1571 1572 1573 1574
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID,
				 sid & GLOBAL_VTU_SID_MASK);
	if (err)
		return err;
1575

1576 1577 1578
	err = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
	if (err)
		return err;
1579

1580 1581 1582
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_SID, &val);
	if (err)
		return err;
1583

1584
	next.sid = val & GLOBAL_VTU_SID_MASK;
1585

1586 1587 1588
	err = mv88e6xxx_g1_read(chip, GLOBAL_VTU_VID, &val);
	if (err)
		return err;
1589

1590
	next.valid = !!(val & GLOBAL_VTU_VID_VALID);
1591 1592

	if (next.valid) {
1593 1594 1595
		err = mv88e6xxx_stu_data_read(chip, &next);
		if (err)
			return err;
1596 1597 1598 1599 1600 1601
	}

	*entry = next;
	return 0;
}

1602
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1603
				    struct mv88e6xxx_vtu_entry *entry)
1604 1605
{
	u16 reg = 0;
1606
	int err;
1607

1608 1609 1610
	err = _mv88e6xxx_vtu_wait(chip);
	if (err)
		return err;
1611 1612 1613 1614 1615

	if (!entry->valid)
		goto loadpurge;

	/* Write port states */
1616 1617 1618
	err = mv88e6xxx_stu_data_write(chip, entry);
	if (err)
		return err;
1619 1620 1621

	reg = GLOBAL_VTU_VID_VALID;
loadpurge:
1622 1623 1624
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_VID, reg);
	if (err)
		return err;
1625 1626

	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1627 1628 1629
	err = mv88e6xxx_g1_write(chip, GLOBAL_VTU_SID, reg);
	if (err)
		return err;
1630

1631
	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1632 1633
}

1634
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1635 1636
{
	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1637
	struct mv88e6xxx_vtu_entry vlan;
1638
	int i, err;
1639 1640 1641

	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);

1642
	/* Set every FID bit used by the (un)bridged ports */
1643
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1644
		err = mv88e6xxx_port_get_fid(chip, i, fid);
1645 1646 1647 1648 1649 1650
		if (err)
			return err;

		set_bit(*fid, fid_bitmap);
	}

1651
	/* Set every FID bit used by the VLAN entries */
1652
	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1653 1654 1655 1656
	if (err)
		return err;

	do {
1657
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
		if (err)
			return err;

		if (!vlan.valid)
			break;

		set_bit(vlan.fid, fid_bitmap);
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

	/* The reset value 0x000 is used to indicate that multiple address
	 * databases are not needed. Return the next positive available.
	 */
	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1671
	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1672 1673 1674
		return -ENOSPC;

	/* Clear the database */
1675
	return _mv88e6xxx_atu_flush(chip, *fid, true);
1676 1677
}

1678
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1679
			      struct mv88e6xxx_vtu_entry *entry)
1680
{
1681
	struct dsa_switch *ds = chip->ds;
1682
	struct mv88e6xxx_vtu_entry vlan = {
1683 1684 1685
		.valid = true,
		.vid = vid,
	};
1686 1687
	int i, err;

1688
	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1689 1690
	if (err)
		return err;
1691

1692
	/* exclude all ports except the CPU and DSA ports */
1693
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
1694 1695 1696
		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1697

1698 1699
	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1700
		struct mv88e6xxx_vtu_entry vstp;
1701 1702 1703 1704 1705 1706

		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
		 * implemented, only one STU entry is needed to cover all VTU
		 * entries. Thus, validate the SID 0.
		 */
		vlan.sid = 0;
1707
		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1708 1709 1710 1711 1712 1713 1714 1715
		if (err)
			return err;

		if (vstp.sid != vlan.sid || !vstp.valid) {
			memset(&vstp, 0, sizeof(vstp));
			vstp.valid = true;
			vstp.sid = vlan.sid;

1716
			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1717 1718 1719 1720 1721 1722 1723 1724 1725
			if (err)
				return err;
		}
	}

	*entry = vlan;
	return 0;
}

1726
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1727
			      struct mv88e6xxx_vtu_entry *entry, bool creat)
1728 1729 1730 1731 1732 1733
{
	int err;

	if (!vid)
		return -EINVAL;

1734
	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1735 1736 1737
	if (err)
		return err;

1738
	err = _mv88e6xxx_vtu_getnext(chip, entry);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	if (err)
		return err;

	if (entry->vid != vid || !entry->valid) {
		if (!creat)
			return -EOPNOTSUPP;
		/* -ENOENT would've been more appropriate, but switchdev expects
		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
		 */

1749
		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1750 1751 1752 1753 1754
	}

	return err;
}

1755 1756 1757
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
					u16 vid_begin, u16 vid_end)
{
V
Vivien Didelot 已提交
1758
	struct mv88e6xxx_chip *chip = ds->priv;
1759
	struct mv88e6xxx_vtu_entry vlan;
1760 1761 1762 1763 1764
	int i, err;

	if (!vid_begin)
		return -EOPNOTSUPP;

1765
	mutex_lock(&chip->reg_lock);
1766

1767
	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1768 1769 1770 1771
	if (err)
		goto unlock;

	do {
1772
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1773 1774 1775 1776 1777 1778 1779 1780 1781
		if (err)
			goto unlock;

		if (!vlan.valid)
			break;

		if (vlan.vid > vid_end)
			break;

1782
		for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1783 1784 1785 1786 1787 1788 1789
			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
				continue;

			if (vlan.data[i] ==
			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
				continue;

1790 1791
			if (chip->ports[i].bridge_dev ==
			    chip->ports[port].bridge_dev)
1792 1793
				break; /* same bridge, check next VLAN */

1794
			netdev_warn(ds->ports[port].netdev,
1795 1796
				    "hardware VLAN %d already used by %s\n",
				    vlan.vid,
1797
				    netdev_name(chip->ports[i].bridge_dev));
1798 1799 1800 1801 1802 1803
			err = -EOPNOTSUPP;
			goto unlock;
		}
	} while (vlan.vid < vid_end);

unlock:
1804
	mutex_unlock(&chip->reg_lock);
1805 1806 1807 1808

	return err;
}

1809 1810 1811 1812 1813 1814 1815
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};

1816 1817
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
					 bool vlan_filtering)
1818
{
V
Vivien Didelot 已提交
1819
	struct mv88e6xxx_chip *chip = ds->priv;
1820 1821
	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
		PORT_CONTROL_2_8021Q_DISABLED;
1822 1823
	u16 reg;
	int err;
1824

1825
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1826 1827
		return -EOPNOTSUPP;

1828
	mutex_lock(&chip->reg_lock);
1829

1830 1831
	err = mv88e6xxx_port_read(chip, port, PORT_CONTROL_2, &reg);
	if (err)
1832 1833
		goto unlock;

1834
	old = reg & PORT_CONTROL_2_8021Q_MASK;
1835

1836
	if (new != old) {
1837 1838
		reg &= ~PORT_CONTROL_2_8021Q_MASK;
		reg |= new & PORT_CONTROL_2_8021Q_MASK;
1839

1840 1841
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
		if (err)
1842 1843
			goto unlock;

1844
		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1845 1846 1847
			   mv88e6xxx_port_8021q_mode_names[new],
			   mv88e6xxx_port_8021q_mode_names[old]);
	}
1848

1849
	err = 0;
1850
unlock:
1851
	mutex_unlock(&chip->reg_lock);
1852

1853
	return err;
1854 1855
}

1856 1857 1858 1859
static int
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
			    const struct switchdev_obj_port_vlan *vlan,
			    struct switchdev_trans *trans)
1860
{
V
Vivien Didelot 已提交
1861
	struct mv88e6xxx_chip *chip = ds->priv;
1862 1863
	int err;

1864
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1865 1866
		return -EOPNOTSUPP;

1867 1868 1869 1870 1871 1872 1873 1874
	/* If the requested port doesn't belong to the same bridge as the VLAN
	 * members, do not support it (yet) and fallback to software VLAN.
	 */
	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
					   vlan->vid_end);
	if (err)
		return err;

1875 1876 1877 1878 1879 1880
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

1881
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1882
				    u16 vid, bool untagged)
1883
{
1884
	struct mv88e6xxx_vtu_entry vlan;
1885 1886
	int err;

1887
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1888
	if (err)
1889
		return err;
1890 1891 1892 1893 1894

	vlan.data[port] = untagged ?
		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;

1895
	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1896 1897
}

1898 1899 1900
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
				    const struct switchdev_obj_port_vlan *vlan,
				    struct switchdev_trans *trans)
1901
{
V
Vivien Didelot 已提交
1902
	struct mv88e6xxx_chip *chip = ds->priv;
1903 1904 1905 1906
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	u16 vid;

1907
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1908 1909
		return;

1910
	mutex_lock(&chip->reg_lock);
1911

1912
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1913
		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1914 1915
			netdev_err(ds->ports[port].netdev,
				   "failed to add VLAN %d%c\n",
1916
				   vid, untagged ? 'u' : 't');
1917

1918
	if (pvid && mv88e6xxx_port_set_pvid(chip, port, vlan->vid_end))
1919
		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1920
			   vlan->vid_end);
1921

1922
	mutex_unlock(&chip->reg_lock);
1923 1924
}

1925
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1926
				    int port, u16 vid)
1927
{
1928
	struct dsa_switch *ds = chip->ds;
1929
	struct mv88e6xxx_vtu_entry vlan;
1930 1931
	int i, err;

1932
	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1933
	if (err)
1934
		return err;
1935

1936 1937
	/* Tell switchdev if this VLAN is handled in software */
	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1938
		return -EOPNOTSUPP;
1939 1940 1941 1942

	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;

	/* keep the VLAN unless all ports are excluded */
1943
	vlan.valid = false;
1944
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
1945
		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1946 1947 1948
			continue;

		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1949
			vlan.valid = true;
1950 1951 1952 1953
			break;
		}
	}

1954
	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1955 1956 1957
	if (err)
		return err;

1958
	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
1959 1960
}

1961 1962
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan)
1963
{
V
Vivien Didelot 已提交
1964
	struct mv88e6xxx_chip *chip = ds->priv;
1965 1966 1967
	u16 pvid, vid;
	int err = 0;

1968
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1969 1970
		return -EOPNOTSUPP;

1971
	mutex_lock(&chip->reg_lock);
1972

1973
	err = mv88e6xxx_port_get_pvid(chip, port, &pvid);
1974 1975 1976
	if (err)
		goto unlock;

1977
	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1978
		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
1979 1980 1981 1982
		if (err)
			goto unlock;

		if (vid == pvid) {
1983
			err = mv88e6xxx_port_set_pvid(chip, port, 0);
1984 1985 1986 1987 1988
			if (err)
				goto unlock;
		}
	}

1989
unlock:
1990
	mutex_unlock(&chip->reg_lock);
1991 1992 1993 1994

	return err;
}

1995
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
1996
				    const unsigned char *addr)
1997
{
1998
	int i, err;
1999 2000

	for (i = 0; i < 3; i++) {
2001 2002 2003 2004
		err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_MAC_01 + i,
					 (addr[i * 2] << 8) | addr[i * 2 + 1]);
		if (err)
			return err;
2005 2006 2007 2008 2009
	}

	return 0;
}

2010
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2011
				   unsigned char *addr)
2012
{
2013 2014
	u16 val;
	int i, err;
2015 2016

	for (i = 0; i < 3; i++) {
2017 2018 2019 2020 2021 2022
		err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_MAC_01 + i, &val);
		if (err)
			return err;

		addr[i * 2] = val >> 8;
		addr[i * 2 + 1] = val & 0xff;
2023 2024 2025 2026 2027
	}

	return 0;
}

2028
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2029
			       struct mv88e6xxx_atu_entry *entry)
2030
{
2031 2032
	int ret;

2033
	ret = _mv88e6xxx_atu_wait(chip);
2034 2035 2036
	if (ret < 0)
		return ret;

2037
	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2038 2039 2040
	if (ret < 0)
		return ret;

2041
	ret = _mv88e6xxx_atu_data_write(chip, entry);
2042
	if (ret < 0)
2043 2044
		return ret;

2045
	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2046
}
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
				  struct mv88e6xxx_atu_entry *entry);

static int mv88e6xxx_atu_get(struct mv88e6xxx_chip *chip, int fid,
			     const u8 *addr, struct mv88e6xxx_atu_entry *entry)
{
	struct mv88e6xxx_atu_entry next;
	int err;

	eth_broadcast_addr(next.mac);

	err = _mv88e6xxx_atu_mac_write(chip, next.mac);
	if (err)
		return err;

	do {
		err = _mv88e6xxx_atu_getnext(chip, fid, &next);
		if (err)
			return err;

		if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

		if (ether_addr_equal(next.mac, addr)) {
			*entry = next;
			return 0;
		}
	} while (!is_broadcast_ether_addr(next.mac));

	memset(entry, 0, sizeof(*entry));
	entry->fid = fid;
	ether_addr_copy(entry->mac, addr);

	return 0;
}

2084 2085 2086
static int mv88e6xxx_port_db_load_purge(struct mv88e6xxx_chip *chip, int port,
					const unsigned char *addr, u16 vid,
					u8 state)
2087
{
2088
	struct mv88e6xxx_vtu_entry vlan;
2089
	struct mv88e6xxx_atu_entry entry;
2090 2091
	int err;

2092 2093
	/* Null VLAN ID corresponds to the port private database */
	if (vid == 0)
2094
		err = mv88e6xxx_port_get_fid(chip, port, &vlan.fid);
2095
	else
2096
		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2097 2098
	if (err)
		return err;
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	err = mv88e6xxx_atu_get(chip, vlan.fid, addr, &entry);
	if (err)
		return err;

	/* Purge the ATU entry only if no port is using it anymore */
	if (state == GLOBAL_ATU_DATA_STATE_UNUSED) {
		entry.portv_trunkid &= ~BIT(port);
		if (!entry.portv_trunkid)
			entry.state = GLOBAL_ATU_DATA_STATE_UNUSED;
	} else {
		entry.portv_trunkid |= BIT(port);
		entry.state = state;
2112 2113
	}

2114
	return _mv88e6xxx_atu_load(chip, &entry);
2115 2116
}

2117 2118 2119
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_fdb *fdb,
				      struct switchdev_trans *trans)
V
Vivien Didelot 已提交
2120 2121 2122 2123 2124 2125 2126
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */
	return 0;
}

2127 2128 2129
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_fdb *fdb,
				   struct switchdev_trans *trans)
2130
{
V
Vivien Didelot 已提交
2131
	struct mv88e6xxx_chip *chip = ds->priv;
2132

2133
	mutex_lock(&chip->reg_lock);
2134 2135 2136
	if (mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					 GLOBAL_ATU_DATA_STATE_UC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load unicast MAC address\n");
2137
	mutex_unlock(&chip->reg_lock);
2138 2139
}

2140 2141
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb)
2142
{
V
Vivien Didelot 已提交
2143
	struct mv88e6xxx_chip *chip = ds->priv;
2144
	int err;
2145

2146
	mutex_lock(&chip->reg_lock);
2147 2148
	err = mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
2149
	mutex_unlock(&chip->reg_lock);
2150

2151
	return err;
2152 2153
}

2154
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2155
				  struct mv88e6xxx_atu_entry *entry)
2156
{
2157
	struct mv88e6xxx_atu_entry next = { 0 };
2158 2159
	u16 val;
	int err;
2160 2161

	next.fid = fid;
2162

2163 2164 2165
	err = _mv88e6xxx_atu_wait(chip);
	if (err)
		return err;
2166

2167 2168 2169
	err = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
	if (err)
		return err;
2170

2171 2172 2173
	err = _mv88e6xxx_atu_mac_read(chip, next.mac);
	if (err)
		return err;
2174

2175 2176 2177
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_DATA, &val);
	if (err)
		return err;
2178

2179
	next.state = val & GLOBAL_ATU_DATA_STATE_MASK;
2180 2181 2182
	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
		unsigned int mask, shift;

2183
		if (val & GLOBAL_ATU_DATA_TRUNK) {
2184 2185 2186 2187 2188 2189 2190 2191 2192
			next.trunk = true;
			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
		} else {
			next.trunk = false;
			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
		}

2193
		next.portv_trunkid = (val & mask) >> shift;
2194
	}
2195

2196
	*entry = next;
2197 2198 2199
	return 0;
}

2200 2201 2202 2203
static int mv88e6xxx_port_db_dump_fid(struct mv88e6xxx_chip *chip,
				      u16 fid, u16 vid, int port,
				      struct switchdev_obj *obj,
				      int (*cb)(struct switchdev_obj *obj))
2204 2205 2206 2207 2208 2209
{
	struct mv88e6xxx_atu_entry addr = {
		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
	};
	int err;

2210
	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2211 2212 2213 2214
	if (err)
		return err;

	do {
2215
		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2216
		if (err)
2217
			return err;
2218 2219 2220 2221

		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
			break;

2222 2223 2224 2225 2226
		if (addr.trunk || (addr.portv_trunkid & BIT(port)) == 0)
			continue;

		if (obj->id == SWITCHDEV_OBJ_ID_PORT_FDB) {
			struct switchdev_obj_port_fdb *fdb;
2227

2228 2229 2230 2231
			if (!is_unicast_ether_addr(addr.mac))
				continue;

			fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
2232 2233
			fdb->vid = vid;
			ether_addr_copy(fdb->addr, addr.mac);
2234 2235 2236 2237
			if (addr.state == GLOBAL_ATU_DATA_STATE_UC_STATIC)
				fdb->ndm_state = NUD_NOARP;
			else
				fdb->ndm_state = NUD_REACHABLE;
2238 2239 2240 2241 2242 2243 2244 2245 2246
		} else if (obj->id == SWITCHDEV_OBJ_ID_PORT_MDB) {
			struct switchdev_obj_port_mdb *mdb;

			if (!is_multicast_ether_addr(addr.mac))
				continue;

			mdb = SWITCHDEV_OBJ_PORT_MDB(obj);
			mdb->vid = vid;
			ether_addr_copy(mdb->addr, addr.mac);
2247 2248
		} else {
			return -EOPNOTSUPP;
2249
		}
2250 2251 2252 2253

		err = cb(obj);
		if (err)
			return err;
2254 2255 2256 2257 2258
	} while (!is_broadcast_ether_addr(addr.mac));

	return err;
}

2259 2260 2261
static int mv88e6xxx_port_db_dump(struct mv88e6xxx_chip *chip, int port,
				  struct switchdev_obj *obj,
				  int (*cb)(struct switchdev_obj *obj))
2262
{
2263
	struct mv88e6xxx_vtu_entry vlan = {
2264 2265
		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
	};
2266
	u16 fid;
2267 2268
	int err;

2269
	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2270
	err = mv88e6xxx_port_get_fid(chip, port, &fid);
2271
	if (err)
2272
		return err;
2273

2274
	err = mv88e6xxx_port_db_dump_fid(chip, fid, 0, port, obj, cb);
2275
	if (err)
2276
		return err;
2277

2278
	/* Dump VLANs' Filtering Information Databases */
2279
	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2280
	if (err)
2281
		return err;
2282 2283

	do {
2284
		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2285
		if (err)
2286
			return err;
2287 2288 2289 2290

		if (!vlan.valid)
			break;

2291 2292
		err = mv88e6xxx_port_db_dump_fid(chip, vlan.fid, vlan.vid, port,
						 obj, cb);
2293
		if (err)
2294
			return err;
2295 2296
	} while (vlan.vid < GLOBAL_VTU_VID_MASK);

2297 2298 2299 2300 2301 2302 2303
	return err;
}

static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_fdb *fdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
2304
	struct mv88e6xxx_chip *chip = ds->priv;
2305 2306 2307 2308
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &fdb->obj, cb);
2309
	mutex_unlock(&chip->reg_lock);
2310 2311 2312 2313

	return err;
}

2314 2315
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
				      struct net_device *bridge)
2316
{
V
Vivien Didelot 已提交
2317
	struct mv88e6xxx_chip *chip = ds->priv;
2318
	int i, err = 0;
2319

2320
	mutex_lock(&chip->reg_lock);
2321

2322
	/* Assign the bridge and remap each port's VLANTable */
2323
	chip->ports[port].bridge_dev = bridge;
2324

2325
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) {
2326 2327
		if (chip->ports[i].bridge_dev == bridge) {
			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2328 2329 2330 2331 2332
			if (err)
				break;
		}
	}

2333
	mutex_unlock(&chip->reg_lock);
2334

2335
	return err;
2336 2337
}

2338
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2339
{
V
Vivien Didelot 已提交
2340
	struct mv88e6xxx_chip *chip = ds->priv;
2341
	struct net_device *bridge = chip->ports[port].bridge_dev;
2342
	int i;
2343

2344
	mutex_lock(&chip->reg_lock);
2345

2346
	/* Unassign the bridge and remap each port's VLANTable */
2347
	chip->ports[port].bridge_dev = NULL;
2348

2349
	for (i = 0; i < mv88e6xxx_num_ports(chip); ++i)
2350 2351
		if (i == port || chip->ports[i].bridge_dev == bridge)
			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2352 2353
				netdev_warn(ds->ports[i].netdev,
					    "failed to remap\n");
2354

2355
	mutex_unlock(&chip->reg_lock);
2356 2357
}

2358
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2359
{
2360
	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2361
	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2362
	struct gpio_desc *gpiod = chip->reset;
2363
	unsigned long timeout;
2364
	u16 reg;
2365
	int err;
2366 2367 2368
	int i;

	/* Set all ports to the disabled state. */
2369
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2370 2371
		err = mv88e6xxx_port_set_state(chip, i,
					       PORT_CONTROL_STATE_DISABLED);
2372 2373
		if (err)
			return err;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	}

	/* Wait for transmit queues to drain. */
	usleep_range(2000, 4000);

	/* If there is a gpio connected to the reset pin, toggle it */
	if (gpiod) {
		gpiod_set_value_cansleep(gpiod, 1);
		usleep_range(10000, 20000);
		gpiod_set_value_cansleep(gpiod, 0);
		usleep_range(10000, 20000);
	}

	/* Reset the switch. Keep the PPU active if requested. The PPU
	 * needs to be active to support indirect phy register access
	 * through global registers 0x18 and 0x19.
	 */
	if (ppu_active)
2392
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc000);
2393
	else
2394
		err = mv88e6xxx_g1_write(chip, 0x04, 0xc400);
2395 2396
	if (err)
		return err;
2397 2398 2399 2400

	/* Wait up to one second for reset to complete. */
	timeout = jiffies + 1 * HZ;
	while (time_before(jiffies, timeout)) {
2401 2402 2403
		err = mv88e6xxx_g1_read(chip, 0x00, &reg);
		if (err)
			return err;
2404

2405
		if ((reg & is_reset) == is_reset)
2406 2407 2408 2409
			break;
		usleep_range(1000, 2000);
	}
	if (time_after(jiffies, timeout))
2410
		err = -ETIMEDOUT;
2411
	else
2412
		err = 0;
2413

2414
	return err;
2415 2416
}

2417
static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2418
{
2419 2420
	u16 val;
	int err;
2421

2422 2423 2424 2425
	/* Clear Power Down bit */
	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
	if (err)
		return err;
2426

2427 2428 2429
	if (val & BMCR_PDOWN) {
		val &= ~BMCR_PDOWN;
		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2430 2431
	}

2432
	return err;
2433 2434
}

2435
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2436
{
2437
	struct dsa_switch *ds = chip->ds;
2438
	int err;
2439
	u16 reg;
2440

2441 2442 2443 2444
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2445 2446 2447 2448 2449 2450
		/* MAC Forcing register: don't force link, speed,
		 * duplex or flow control state to any particular
		 * values on physical ports, but force the CPU port
		 * and all DSA ports to their maximum bandwidth and
		 * full duplex.
		 */
2451
		err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
2452
		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2453
			reg &= ~PORT_PCS_CTRL_UNFORCED;
2454 2455 2456 2457
			reg |= PORT_PCS_CTRL_FORCE_LINK |
				PORT_PCS_CTRL_LINK_UP |
				PORT_PCS_CTRL_DUPLEX_FULL |
				PORT_PCS_CTRL_FORCE_DUPLEX;
2458
			if (mv88e6xxx_6065_family(chip))
2459 2460 2461 2462 2463 2464 2465
				reg |= PORT_PCS_CTRL_100;
			else
				reg |= PORT_PCS_CTRL_1000;
		} else {
			reg |= PORT_PCS_CTRL_UNFORCED;
		}

2466 2467 2468
		err = mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
		if (err)
			return err;
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	}

	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
	 * tunneling, determine priority by looking at 802.1p and IP
	 * priority fields (IP prio has precedence), and set STP state
	 * to Forwarding.
	 *
	 * If this is the CPU link, use DSA or EDSA tagging depending
	 * on which tagging mode was configured.
	 *
	 * If this is a link to another switch, use DSA tagging mode.
	 *
	 * If this is the upstream port for this switch, enable
	 * forwarding of unknown unicasts and multicasts.
	 */
	reg = 0;
2486 2487 2488 2489
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2490 2491 2492 2493
		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
		PORT_CONTROL_STATE_FORWARDING;
	if (dsa_is_cpu_port(ds, port)) {
2494
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2495
			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2496
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2497 2498
		else
			reg |= PORT_CONTROL_DSA_TAG;
2499 2500
		reg |= PORT_CONTROL_EGRESS_ADD_TAG |
			PORT_CONTROL_FORWARD_UNKNOWN;
2501
	}
2502
	if (dsa_is_dsa_port(ds, port)) {
2503 2504
		if (mv88e6xxx_6095_family(chip) ||
		    mv88e6xxx_6185_family(chip))
2505
			reg |= PORT_CONTROL_DSA_TAG;
2506 2507 2508 2509 2510
		if (mv88e6xxx_6352_family(chip) ||
		    mv88e6xxx_6351_family(chip) ||
		    mv88e6xxx_6165_family(chip) ||
		    mv88e6xxx_6097_family(chip) ||
		    mv88e6xxx_6320_family(chip)) {
2511
			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2512 2513
		}

2514 2515 2516 2517 2518
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
				PORT_CONTROL_FORWARD_UNKNOWN_MC;
	}
	if (reg) {
2519 2520 2521
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL, reg);
		if (err)
			return err;
2522 2523
	}

2524 2525 2526
	/* If this port is connected to a SerDes, make sure the SerDes is not
	 * powered down.
	 */
2527
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
		err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
		if (err)
			return err;
		reg &= PORT_STATUS_CMODE_MASK;
		if ((reg == PORT_STATUS_CMODE_100BASE_X) ||
		    (reg == PORT_STATUS_CMODE_1000BASE_X) ||
		    (reg == PORT_STATUS_CMODE_SGMII)) {
			err = mv88e6xxx_serdes_power_on(chip);
			if (err < 0)
				return err;
2538 2539 2540
		}
	}

2541
	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2542
	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2543 2544 2545
	 * untagged frames on this port, do a destination address lookup on all
	 * received packets as usual, disable ARP mirroring and don't send a
	 * copy of all transmitted/received frames on this port to the CPU.
2546 2547
	 */
	reg = 0;
2548 2549 2550 2551
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
	    mv88e6xxx_6185_family(chip))
2552 2553
		reg = PORT_CONTROL_2_MAP_DA;

2554 2555
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2556 2557
		reg |= PORT_CONTROL_2_JUMBO_10240;

2558
	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2559 2560 2561 2562 2563 2564 2565 2566 2567
		/* Set the upstream port this port should use */
		reg |= dsa_upstream_port(ds);
		/* enable forwarding of unknown multicast addresses to
		 * the upstream port
		 */
		if (port == dsa_upstream_port(ds))
			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
	}

2568
	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2569

2570
	if (reg) {
2571 2572 2573
		err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
		if (err)
			return err;
2574 2575 2576 2577 2578 2579 2580
	}

	/* Port Association Vector: when learning source addresses
	 * of packets, add the address to the address database using
	 * a port bitmap that has only the bit for this port set and
	 * the other bits clear.
	 */
2581
	reg = 1 << port;
2582 2583
	/* Disable learning for CPU port */
	if (dsa_is_cpu_port(ds, port))
2584
		reg = 0;
2585

2586 2587 2588
	err = mv88e6xxx_port_write(chip, port, PORT_ASSOC_VECTOR, reg);
	if (err)
		return err;
2589 2590

	/* Egress rate control 2: disable egress rate control. */
2591 2592 2593
	err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL_2, 0x0000);
	if (err)
		return err;
2594

2595 2596 2597
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2598 2599 2600 2601
		/* Do not limit the period of time that this port can
		 * be paused for by the remote end or the period of
		 * time that this port can pause the remote end.
		 */
2602 2603 2604
		err = mv88e6xxx_port_write(chip, port, PORT_PAUSE_CTRL, 0x0000);
		if (err)
			return err;
2605 2606 2607 2608 2609

		/* Port ATU control: disable limiting the number of
		 * address database entries that this port is allowed
		 * to use.
		 */
2610 2611
		err = mv88e6xxx_port_write(chip, port, PORT_ATU_CONTROL,
					   0x0000);
2612 2613 2614
		/* Priority Override: disable DA, SA and VTU priority
		 * override.
		 */
2615 2616 2617 2618
		err = mv88e6xxx_port_write(chip, port, PORT_PRI_OVERRIDE,
					   0x0000);
		if (err)
			return err;
2619 2620 2621 2622

		/* Port Ethertype: use the Ethertype DSA Ethertype
		 * value.
		 */
2623
		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
2624 2625 2626 2627
			err = mv88e6xxx_port_write(chip, port, PORT_ETH_TYPE,
						   ETH_P_EDSA);
			if (err)
				return err;
2628 2629
		}

2630 2631 2632
		/* Tag Remap: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2633 2634 2635 2636
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_0123,
					   0x3210);
		if (err)
			return err;
2637 2638 2639 2640

		/* Tag Remap 2: use an identity 802.1p prio -> switch
		 * prio mapping.
		 */
2641 2642 2643 2644
		err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_4567,
					   0x7654);
		if (err)
			return err;
2645 2646
	}

2647
	/* Rate Control: disable ingress rate limiting. */
2648 2649 2650
	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
	    mv88e6xxx_6320_family(chip)) {
2651 2652 2653 2654
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0001);
		if (err)
			return err;
2655
	} else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
2656 2657 2658 2659
		err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
					   0x0000);
		if (err)
			return err;
2660 2661
	}

2662 2663
	/* Port Control 1: disable trunking, disable sending
	 * learning messages to this port.
2664
	 */
2665 2666 2667
	err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, 0x0000);
	if (err)
		return err;
2668

2669
	/* Port based VLAN map: give each port the same default address
2670 2671
	 * database, and allow bidirectional communication between the
	 * CPU and DSA port(s), and the other ports.
2672
	 */
2673
	err = mv88e6xxx_port_set_fid(chip, port, 0);
2674 2675
	if (err)
		return err;
2676

2677 2678 2679
	err = _mv88e6xxx_port_based_vlan_map(chip, port);
	if (err)
		return err;
2680 2681 2682 2683

	/* Default VLAN ID and priority: don't set a default VLAN
	 * ID, and set the default packet priority to zero.
	 */
2684
	return mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, 0x0000);
2685 2686
}

2687
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2688 2689 2690
{
	int err;

2691
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
2692 2693 2694
	if (err)
		return err;

2695
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
2696 2697 2698
	if (err)
		return err;

2699 2700 2701 2702 2703
	err = mv88e6xxx_g1_write(chip, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
	if (err)
		return err;

	return 0;
2704 2705
}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
				     unsigned int msecs)
{
	const unsigned int coeff = chip->info->age_time_coeff;
	const unsigned int min = 0x01 * coeff;
	const unsigned int max = 0xff * coeff;
	u8 age_time;
	u16 val;
	int err;

	if (msecs < min || msecs > max)
		return -ERANGE;

	/* Round to nearest multiple of coeff */
	age_time = (msecs + coeff / 2) / coeff;

2722
	err = mv88e6xxx_g1_read(chip, GLOBAL_ATU_CONTROL, &val);
2723 2724 2725 2726 2727 2728 2729
	if (err)
		return err;

	/* AgeTime is 11:4 bits */
	val &= ~0xff0;
	val |= age_time << 4;

2730
	return mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL, val);
2731 2732
}

2733 2734 2735
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
				     unsigned int ageing_time)
{
V
Vivien Didelot 已提交
2736
	struct mv88e6xxx_chip *chip = ds->priv;
2737 2738 2739 2740 2741 2742 2743 2744 2745
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
	mutex_unlock(&chip->reg_lock);

	return err;
}

2746
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2747
{
2748
	struct dsa_switch *ds = chip->ds;
2749
	u32 upstream_port = dsa_upstream_port(ds);
2750
	u16 reg;
2751
	int err;
2752

2753 2754 2755
	/* Enable the PHY Polling Unit if present, don't discard any packets,
	 * and mask all interrupt sources.
	 */
2756 2757 2758 2759 2760
	err = mv88e6xxx_g1_read(chip, GLOBAL_CONTROL, &reg);
	if (err < 0)
		return err;

	reg &= ~GLOBAL_CONTROL_PPU_ENABLE;
2761 2762
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2763 2764
		reg |= GLOBAL_CONTROL_PPU_ENABLE;

2765
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL, reg);
2766 2767 2768
	if (err)
		return err;

2769 2770 2771 2772 2773 2774
	/* Configure the upstream port, and configure it as the port to which
	 * ingress and egress and ARP monitor frames are to be sent.
	 */
	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2775
	err = mv88e6xxx_g1_write(chip, GLOBAL_MONITOR_CONTROL, reg);
2776 2777 2778
	if (err)
		return err;

2779
	/* Disable remote management, and set the switch's DSA device number. */
2780 2781 2782
	err = mv88e6xxx_g1_write(chip, GLOBAL_CONTROL_2,
				 GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
				 (ds->index & 0x1f));
2783 2784 2785
	if (err)
		return err;

2786 2787 2788 2789 2790
	/* Clear all the VTU and STU entries */
	err = _mv88e6xxx_vtu_stu_flush(chip);
	if (err < 0)
		return err;

2791 2792 2793 2794
	/* Set the default address aging time to 5 minutes, and
	 * enable address learn messages to be sent to all message
	 * ports.
	 */
2795 2796
	err = mv88e6xxx_g1_write(chip, GLOBAL_ATU_CONTROL,
				 GLOBAL_ATU_CONTROL_LEARN2ALL);
2797
	if (err)
2798
		return err;
2799

2800 2801
	err = mv88e6xxx_g1_set_age_time(chip, 300000);
	if (err)
2802 2803 2804 2805 2806 2807 2808
		return err;

	/* Clear all ATU entries */
	err = _mv88e6xxx_atu_flush(chip, 0, true);
	if (err)
		return err;

2809
	/* Configure the IP ToS mapping registers. */
2810
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_0, 0x0000);
2811
	if (err)
2812
		return err;
2813
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_1, 0x0000);
2814
	if (err)
2815
		return err;
2816
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_2, 0x5555);
2817
	if (err)
2818
		return err;
2819
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_3, 0x5555);
2820
	if (err)
2821
		return err;
2822
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_4, 0xaaaa);
2823
	if (err)
2824
		return err;
2825
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_5, 0xaaaa);
2826
	if (err)
2827
		return err;
2828
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_6, 0xffff);
2829
	if (err)
2830
		return err;
2831
	err = mv88e6xxx_g1_write(chip, GLOBAL_IP_PRI_7, 0xffff);
2832
	if (err)
2833
		return err;
2834 2835

	/* Configure the IEEE 802.1p priority mapping register. */
2836
	err = mv88e6xxx_g1_write(chip, GLOBAL_IEEE_PRI, 0xfa41);
2837
	if (err)
2838
		return err;
2839

2840
	/* Clear the statistics counters for all ports */
2841 2842
	err = mv88e6xxx_g1_write(chip, GLOBAL_STATS_OP,
				 GLOBAL_STATS_OP_FLUSH_ALL);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	if (err)
		return err;

	/* Wait for the flush to complete. */
	err = _mv88e6xxx_stats_wait(chip);
	if (err)
		return err;

	return 0;
}

2854
static int mv88e6xxx_setup(struct dsa_switch *ds)
2855
{
V
Vivien Didelot 已提交
2856
	struct mv88e6xxx_chip *chip = ds->priv;
2857
	int err;
2858 2859
	int i;

2860 2861
	chip->ds = ds;
	ds->slave_mii_bus = chip->mdio_bus;
2862

2863
	mutex_lock(&chip->reg_lock);
2864

2865
	/* Setup Switch Port Registers */
2866
	for (i = 0; i < mv88e6xxx_num_ports(chip); i++) {
2867 2868 2869 2870 2871 2872 2873
		err = mv88e6xxx_setup_port(chip, i);
		if (err)
			goto unlock;
	}

	/* Setup Switch Global 1 Registers */
	err = mv88e6xxx_g1_setup(chip);
2874 2875 2876
	if (err)
		goto unlock;

2877 2878 2879
	/* Setup Switch Global 2 Registers */
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
		err = mv88e6xxx_g2_setup(chip);
2880 2881 2882
		if (err)
			goto unlock;
	}
2883

2884
unlock:
2885
	mutex_unlock(&chip->reg_lock);
2886

2887
	return err;
2888 2889
}

2890 2891
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
V
Vivien Didelot 已提交
2892
	struct mv88e6xxx_chip *chip = ds->priv;
2893 2894
	int err;

2895 2896
	if (!chip->info->ops->set_switch_mac)
		return -EOPNOTSUPP;
2897

2898 2899
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->set_switch_mac(chip, addr);
2900 2901 2902 2903 2904
	mutex_unlock(&chip->reg_lock);

	return err;
}

2905
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
2906
{
2907
	struct mv88e6xxx_chip *chip = bus->priv;
2908 2909
	u16 val;
	int err;
2910

2911
	if (phy >= mv88e6xxx_num_ports(chip))
2912
		return 0xffff;
2913

2914
	mutex_lock(&chip->reg_lock);
2915
	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
2916
	mutex_unlock(&chip->reg_lock);
2917 2918

	return err ? err : val;
2919 2920
}

2921
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
2922
{
2923
	struct mv88e6xxx_chip *chip = bus->priv;
2924
	int err;
2925

2926
	if (phy >= mv88e6xxx_num_ports(chip))
2927
		return 0xffff;
2928

2929
	mutex_lock(&chip->reg_lock);
2930
	err = mv88e6xxx_phy_write(chip, phy, reg, val);
2931
	mutex_unlock(&chip->reg_lock);
2932 2933

	return err;
2934 2935
}

2936
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
2937 2938 2939 2940 2941 2942 2943
				   struct device_node *np)
{
	static int index;
	struct mii_bus *bus;
	int err;

	if (np)
2944
		chip->mdio_np = of_get_child_by_name(np, "mdio");
2945

2946
	bus = devm_mdiobus_alloc(chip->dev);
2947 2948 2949
	if (!bus)
		return -ENOMEM;

2950
	bus->priv = (void *)chip;
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	if (np) {
		bus->name = np->full_name;
		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
	} else {
		bus->name = "mv88e6xxx SMI";
		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
	}

	bus->read = mv88e6xxx_mdio_read;
	bus->write = mv88e6xxx_mdio_write;
2961
	bus->parent = chip->dev;
2962

2963 2964
	if (chip->mdio_np)
		err = of_mdiobus_register(bus, chip->mdio_np);
2965 2966 2967
	else
		err = mdiobus_register(bus);
	if (err) {
2968
		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
2969 2970
		goto out;
	}
2971
	chip->mdio_bus = bus;
2972 2973 2974 2975

	return 0;

out:
2976 2977
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
2978 2979 2980 2981

	return err;
}

2982
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
2983 2984

{
2985
	struct mii_bus *bus = chip->mdio_bus;
2986 2987 2988

	mdiobus_unregister(bus);

2989 2990
	if (chip->mdio_np)
		of_node_put(chip->mdio_np);
2991 2992
}

2993 2994 2995 2996
#ifdef CONFIG_NET_DSA_HWMON

static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
2997
	struct mv88e6xxx_chip *chip = ds->priv;
2998
	u16 val;
2999 3000 3001 3002
	int ret;

	*temp = 0;

3003
	mutex_lock(&chip->reg_lock);
3004

3005
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3006 3007 3008 3009
	if (ret < 0)
		goto error;

	/* Enable temperature sensor */
3010
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3011 3012 3013
	if (ret < 0)
		goto error;

3014
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3015 3016 3017 3018 3019 3020
	if (ret < 0)
		goto error;

	/* Wait for temperature to stabilize */
	usleep_range(10000, 12000);

3021 3022
	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
	if (ret < 0)
3023 3024 3025
		goto error;

	/* Disable temperature sensor */
3026
	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3027 3028 3029 3030 3031 3032
	if (ret < 0)
		goto error;

	*temp = ((val & 0x1f) - 5) * 5;

error:
3033
	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3034
	mutex_unlock(&chip->reg_lock);
3035 3036 3037 3038 3039
	return ret;
}

static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
V
Vivien Didelot 已提交
3040
	struct mv88e6xxx_chip *chip = ds->priv;
3041
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3042
	u16 val;
3043 3044 3045 3046
	int ret;

	*temp = 0;

3047 3048 3049
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
	mutex_unlock(&chip->reg_lock);
3050 3051 3052
	if (ret < 0)
		return ret;

3053
	*temp = (val & 0xff) - 25;
3054 3055 3056 3057

	return 0;
}

3058
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3059
{
V
Vivien Didelot 已提交
3060
	struct mv88e6xxx_chip *chip = ds->priv;
3061

3062
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3063 3064
		return -EOPNOTSUPP;

3065
	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3066 3067 3068 3069 3070
		return mv88e63xx_get_temp(ds, temp);

	return mv88e61xx_get_temp(ds, temp);
}

3071
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3072
{
V
Vivien Didelot 已提交
3073
	struct mv88e6xxx_chip *chip = ds->priv;
3074
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3075
	u16 val;
3076 3077
	int ret;

3078
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3079 3080 3081 3082
		return -EOPNOTSUPP;

	*temp = 0;

3083 3084 3085
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3086 3087 3088
	if (ret < 0)
		return ret;

3089
	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3090 3091 3092 3093

	return 0;
}

3094
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3095
{
V
Vivien Didelot 已提交
3096
	struct mv88e6xxx_chip *chip = ds->priv;
3097
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3098 3099
	u16 val;
	int err;
3100

3101
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3102 3103
		return -EOPNOTSUPP;

3104 3105 3106 3107
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	if (err)
		goto unlock;
3108
	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3109 3110 3111 3112 3113 3114
	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
				       (val & 0xe0ff) | (temp << 8));
unlock:
	mutex_unlock(&chip->reg_lock);

	return err;
3115 3116
}

3117
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3118
{
V
Vivien Didelot 已提交
3119
	struct mv88e6xxx_chip *chip = ds->priv;
3120
	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3121
	u16 val;
3122 3123
	int ret;

3124
	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3125 3126 3127 3128
		return -EOPNOTSUPP;

	*alarm = false;

3129 3130 3131
	mutex_lock(&chip->reg_lock);
	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
	mutex_unlock(&chip->reg_lock);
3132 3133 3134
	if (ret < 0)
		return ret;

3135
	*alarm = !!(val & 0x40);
3136 3137 3138 3139 3140

	return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */

3141 3142
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3143
	struct mv88e6xxx_chip *chip = ds->priv;
3144 3145 3146 3147 3148 3149 3150

	return chip->eeprom_len;
}

static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3151
	struct mv88e6xxx_chip *chip = ds->priv;
3152 3153
	int err;

3154 3155
	if (!chip->info->ops->get_eeprom)
		return -EOPNOTSUPP;
3156

3157 3158
	mutex_lock(&chip->reg_lock);
	err = chip->info->ops->get_eeprom(chip, eeprom, data);
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	mutex_unlock(&chip->reg_lock);

	if (err)
		return err;

	eeprom->magic = 0xc3ec4951;

	return 0;
}

static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
				struct ethtool_eeprom *eeprom, u8 *data)
{
V
Vivien Didelot 已提交
3172
	struct mv88e6xxx_chip *chip = ds->priv;
3173 3174
	int err;

3175 3176 3177
	if (!chip->info->ops->set_eeprom)
		return -EOPNOTSUPP;

3178 3179 3180 3181
	if (eeprom->magic != 0xc3ec4951)
		return -EINVAL;

	mutex_lock(&chip->reg_lock);
3182
	err = chip->info->ops->set_eeprom(chip, eeprom, data);
3183 3184 3185 3186 3187
	mutex_unlock(&chip->reg_lock);

	return err;
}

3188
static const struct mv88e6xxx_ops mv88e6085_ops = {
3189
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3190 3191 3192 3193 3194
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6095_ops = {
3195
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3196 3197 3198 3199 3200
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6123_ops = {
3201
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3202 3203 3204 3205 3206
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6131_ops = {
3207
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3208 3209 3210 3211 3212
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6161_ops = {
3213
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3214 3215 3216 3217 3218
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6165_ops = {
3219
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3220 3221 3222 3223 3224
	.phy_read = mv88e6xxx_read,
	.phy_write = mv88e6xxx_write,
};

static const struct mv88e6xxx_ops mv88e6171_ops = {
3225
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3226 3227 3228 3229 3230
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6172_ops = {
3231 3232
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3233
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3234 3235 3236 3237 3238
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6175_ops = {
3239
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3240 3241 3242 3243 3244
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6176_ops = {
3245 3246
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3247
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3248 3249 3250 3251 3252
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6185_ops = {
3253
	.set_switch_mac = mv88e6xxx_g1_set_switch_mac,
3254 3255 3256 3257 3258
	.phy_read = mv88e6xxx_phy_ppu_read,
	.phy_write = mv88e6xxx_phy_ppu_write,
};

static const struct mv88e6xxx_ops mv88e6240_ops = {
3259 3260
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3261
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3262 3263 3264 3265 3266
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6320_ops = {
3267 3268
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3269
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3270 3271 3272 3273 3274
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6321_ops = {
3275 3276
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3277
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3278 3279 3280 3281 3282
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6350_ops = {
3283
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3284 3285 3286 3287 3288
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6351_ops = {
3289
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3290 3291 3292 3293 3294
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

static const struct mv88e6xxx_ops mv88e6352_ops = {
3295 3296
	.get_eeprom = mv88e6xxx_g2_get_eeprom16,
	.set_eeprom = mv88e6xxx_g2_set_eeprom16,
3297
	.set_switch_mac = mv88e6xxx_g2_set_switch_mac,
3298 3299 3300 3301
	.phy_read = mv88e6xxx_g2_smi_phy_read,
	.phy_write = mv88e6xxx_g2_smi_phy_write,
};

3302 3303 3304 3305 3306 3307 3308
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
	[MV88E6085] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
		.family = MV88E6XXX_FAMILY_6097,
		.name = "Marvell 88E6085",
		.num_databases = 4096,
		.num_ports = 10,
3309
		.port_base_addr = 0x10,
3310
		.global1_addr = 0x1b,
3311
		.age_time_coeff = 15000,
3312
		.g1_irqs = 8,
3313
		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
3314
		.ops = &mv88e6085_ops,
3315 3316 3317 3318 3319 3320 3321 3322
	},

	[MV88E6095] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
		.family = MV88E6XXX_FAMILY_6095,
		.name = "Marvell 88E6095/88E6095F",
		.num_databases = 256,
		.num_ports = 11,
3323
		.port_base_addr = 0x10,
3324
		.global1_addr = 0x1b,
3325
		.age_time_coeff = 15000,
3326
		.g1_irqs = 8,
3327
		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
3328
		.ops = &mv88e6095_ops,
3329 3330 3331 3332 3333 3334 3335 3336
	},

	[MV88E6123] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6123",
		.num_databases = 4096,
		.num_ports = 3,
3337
		.port_base_addr = 0x10,
3338
		.global1_addr = 0x1b,
3339
		.age_time_coeff = 15000,
3340
		.g1_irqs = 9,
3341
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3342
		.ops = &mv88e6123_ops,
3343 3344 3345 3346 3347 3348 3349 3350
	},

	[MV88E6131] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6131",
		.num_databases = 256,
		.num_ports = 8,
3351
		.port_base_addr = 0x10,
3352
		.global1_addr = 0x1b,
3353
		.age_time_coeff = 15000,
3354
		.g1_irqs = 9,
3355
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3356
		.ops = &mv88e6131_ops,
3357 3358 3359 3360 3361 3362 3363 3364
	},

	[MV88E6161] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6161",
		.num_databases = 4096,
		.num_ports = 6,
3365
		.port_base_addr = 0x10,
3366
		.global1_addr = 0x1b,
3367
		.age_time_coeff = 15000,
3368
		.g1_irqs = 9,
3369
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3370
		.ops = &mv88e6161_ops,
3371 3372 3373 3374 3375 3376 3377 3378
	},

	[MV88E6165] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
		.family = MV88E6XXX_FAMILY_6165,
		.name = "Marvell 88E6165",
		.num_databases = 4096,
		.num_ports = 6,
3379
		.port_base_addr = 0x10,
3380
		.global1_addr = 0x1b,
3381
		.age_time_coeff = 15000,
3382
		.g1_irqs = 9,
3383
		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3384
		.ops = &mv88e6165_ops,
3385 3386 3387 3388 3389 3390 3391 3392
	},

	[MV88E6171] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6171",
		.num_databases = 4096,
		.num_ports = 7,
3393
		.port_base_addr = 0x10,
3394
		.global1_addr = 0x1b,
3395
		.age_time_coeff = 15000,
3396
		.g1_irqs = 9,
3397
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3398
		.ops = &mv88e6171_ops,
3399 3400 3401 3402 3403 3404 3405 3406
	},

	[MV88E6172] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6172",
		.num_databases = 4096,
		.num_ports = 7,
3407
		.port_base_addr = 0x10,
3408
		.global1_addr = 0x1b,
3409
		.age_time_coeff = 15000,
3410
		.g1_irqs = 9,
3411
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3412
		.ops = &mv88e6172_ops,
3413 3414 3415 3416 3417 3418 3419 3420
	},

	[MV88E6175] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6175",
		.num_databases = 4096,
		.num_ports = 7,
3421
		.port_base_addr = 0x10,
3422
		.global1_addr = 0x1b,
3423
		.age_time_coeff = 15000,
3424
		.g1_irqs = 9,
3425
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3426
		.ops = &mv88e6175_ops,
3427 3428 3429 3430 3431 3432 3433 3434
	},

	[MV88E6176] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6176",
		.num_databases = 4096,
		.num_ports = 7,
3435
		.port_base_addr = 0x10,
3436
		.global1_addr = 0x1b,
3437
		.age_time_coeff = 15000,
3438
		.g1_irqs = 9,
3439
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3440
		.ops = &mv88e6176_ops,
3441 3442 3443 3444 3445 3446 3447 3448
	},

	[MV88E6185] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
		.family = MV88E6XXX_FAMILY_6185,
		.name = "Marvell 88E6185",
		.num_databases = 256,
		.num_ports = 10,
3449
		.port_base_addr = 0x10,
3450
		.global1_addr = 0x1b,
3451
		.age_time_coeff = 15000,
3452
		.g1_irqs = 8,
3453
		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3454
		.ops = &mv88e6185_ops,
3455 3456 3457 3458 3459 3460 3461 3462
	},

	[MV88E6240] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6240",
		.num_databases = 4096,
		.num_ports = 7,
3463
		.port_base_addr = 0x10,
3464
		.global1_addr = 0x1b,
3465
		.age_time_coeff = 15000,
3466
		.g1_irqs = 9,
3467
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3468
		.ops = &mv88e6240_ops,
3469 3470 3471 3472 3473 3474 3475 3476
	},

	[MV88E6320] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6320",
		.num_databases = 4096,
		.num_ports = 7,
3477
		.port_base_addr = 0x10,
3478
		.global1_addr = 0x1b,
3479
		.age_time_coeff = 15000,
3480
		.g1_irqs = 8,
3481
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3482
		.ops = &mv88e6320_ops,
3483 3484 3485 3486 3487 3488 3489 3490
	},

	[MV88E6321] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
		.family = MV88E6XXX_FAMILY_6320,
		.name = "Marvell 88E6321",
		.num_databases = 4096,
		.num_ports = 7,
3491
		.port_base_addr = 0x10,
3492
		.global1_addr = 0x1b,
3493
		.age_time_coeff = 15000,
3494
		.g1_irqs = 8,
3495
		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3496
		.ops = &mv88e6321_ops,
3497 3498 3499 3500 3501 3502 3503 3504
	},

	[MV88E6350] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6350",
		.num_databases = 4096,
		.num_ports = 7,
3505
		.port_base_addr = 0x10,
3506
		.global1_addr = 0x1b,
3507
		.age_time_coeff = 15000,
3508
		.g1_irqs = 9,
3509
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3510
		.ops = &mv88e6350_ops,
3511 3512 3513 3514 3515 3516 3517 3518
	},

	[MV88E6351] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
		.family = MV88E6XXX_FAMILY_6351,
		.name = "Marvell 88E6351",
		.num_databases = 4096,
		.num_ports = 7,
3519
		.port_base_addr = 0x10,
3520
		.global1_addr = 0x1b,
3521
		.age_time_coeff = 15000,
3522
		.g1_irqs = 9,
3523
		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3524
		.ops = &mv88e6351_ops,
3525 3526 3527 3528 3529 3530 3531 3532
	},

	[MV88E6352] = {
		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
		.family = MV88E6XXX_FAMILY_6352,
		.name = "Marvell 88E6352",
		.num_databases = 4096,
		.num_ports = 7,
3533
		.port_base_addr = 0x10,
3534
		.global1_addr = 0x1b,
3535
		.age_time_coeff = 15000,
3536
		.g1_irqs = 9,
3537
		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3538
		.ops = &mv88e6352_ops,
3539 3540 3541
	},
};

3542
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3543
{
3544
	int i;
3545

3546 3547 3548
	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
		if (mv88e6xxx_table[i].prod_num == prod_num)
			return &mv88e6xxx_table[i];
3549 3550 3551 3552

	return NULL;
}

3553
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3554 3555
{
	const struct mv88e6xxx_info *info;
3556 3557 3558
	unsigned int prod_num, rev;
	u16 id;
	int err;
3559

3560 3561 3562 3563 3564
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
	mutex_unlock(&chip->reg_lock);
	if (err)
		return err;
3565 3566 3567 3568 3569 3570 3571 3572

	prod_num = (id & 0xfff0) >> 4;
	rev = id & 0x000f;

	info = mv88e6xxx_lookup_info(prod_num);
	if (!info)
		return -ENODEV;

3573
	/* Update the compatible info with the probed one */
3574
	chip->info = info;
3575

3576 3577 3578 3579
	err = mv88e6xxx_g2_require(chip);
	if (err)
		return err;

3580 3581
	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
		 chip->info->prod_num, chip->info->name, rev);
3582 3583 3584 3585

	return 0;
}

3586
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3587
{
3588
	struct mv88e6xxx_chip *chip;
3589

3590 3591
	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
3592 3593
		return NULL;

3594
	chip->dev = dev;
3595

3596
	mutex_init(&chip->reg_lock);
3597

3598
	return chip;
3599 3600
}

3601 3602
static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
{
3603
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3604 3605 3606
		mv88e6xxx_ppu_state_init(chip);
}

3607 3608
static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
{
3609
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
3610 3611 3612
		mv88e6xxx_ppu_state_destroy(chip);
}

3613
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3614 3615 3616 3617 3618 3619
			      struct mii_bus *bus, int sw_addr)
{
	/* ADDR[0] pin is unavailable externally and considered zero */
	if (sw_addr & 0x1)
		return -EINVAL;

3620
	if (sw_addr == 0)
3621
		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3622
	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3623
		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3624 3625 3626
	else
		return -EINVAL;

3627 3628
	chip->bus = bus;
	chip->sw_addr = sw_addr;
3629 3630 3631 3632

	return 0;
}

3633 3634
static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
{
V
Vivien Didelot 已提交
3635
	struct mv88e6xxx_chip *chip = ds->priv;
3636 3637 3638 3639 3640

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
		return DSA_TAG_PROTO_EDSA;

	return DSA_TAG_PROTO_DSA;
3641 3642
}

3643 3644 3645
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
				       struct device *host_dev, int sw_addr,
				       void **priv)
3646
{
3647
	struct mv88e6xxx_chip *chip;
3648
	struct mii_bus *bus;
3649
	int err;
3650

3651
	bus = dsa_host_dev_to_mii_bus(host_dev);
3652 3653 3654
	if (!bus)
		return NULL;

3655 3656
	chip = mv88e6xxx_alloc_chip(dsa_dev);
	if (!chip)
3657 3658
		return NULL;

3659
	/* Legacy SMI probing will only support chips similar to 88E6085 */
3660
	chip->info = &mv88e6xxx_table[MV88E6085];
3661

3662
	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3663 3664 3665
	if (err)
		goto free;

3666
	err = mv88e6xxx_detect(chip);
3667
	if (err)
3668
		goto free;
3669

3670 3671 3672 3673 3674 3675
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto free;

3676 3677
	mv88e6xxx_phy_init(chip);

3678
	err = mv88e6xxx_mdio_register(chip, NULL);
3679
	if (err)
3680
		goto free;
3681

3682
	*priv = chip;
3683

3684
	return chip->info->name;
3685
free:
3686
	devm_kfree(dsa_dev, chip);
3687 3688

	return NULL;
3689 3690
}

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
static int mv88e6xxx_port_mdb_prepare(struct dsa_switch *ds, int port,
				      const struct switchdev_obj_port_mdb *mdb,
				      struct switchdev_trans *trans)
{
	/* We don't need any dynamic resource from the kernel (yet),
	 * so skip the prepare phase.
	 */

	return 0;
}

static void mv88e6xxx_port_mdb_add(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_mdb *mdb,
				   struct switchdev_trans *trans)
{
V
Vivien Didelot 已提交
3706
	struct mv88e6xxx_chip *chip = ds->priv;
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

	mutex_lock(&chip->reg_lock);
	if (mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					 GLOBAL_ATU_DATA_STATE_MC_STATIC))
		netdev_err(ds->ports[port].netdev, "failed to load multicast MAC address\n");
	mutex_unlock(&chip->reg_lock);
}

static int mv88e6xxx_port_mdb_del(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_mdb *mdb)
{
V
Vivien Didelot 已提交
3718
	struct mv88e6xxx_chip *chip = ds->priv;
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
					   GLOBAL_ATU_DATA_STATE_UNUSED);
	mutex_unlock(&chip->reg_lock);

	return err;
}

static int mv88e6xxx_port_mdb_dump(struct dsa_switch *ds, int port,
				   struct switchdev_obj_port_mdb *mdb,
				   int (*cb)(struct switchdev_obj *obj))
{
V
Vivien Didelot 已提交
3733
	struct mv88e6xxx_chip *chip = ds->priv;
3734 3735 3736 3737 3738 3739 3740 3741 3742
	int err;

	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_port_db_dump(chip, port, &mdb->obj, cb);
	mutex_unlock(&chip->reg_lock);

	return err;
}

3743
static struct dsa_switch_ops mv88e6xxx_switch_ops = {
3744
	.probe			= mv88e6xxx_drv_probe,
3745
	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	.setup			= mv88e6xxx_setup,
	.set_addr		= mv88e6xxx_set_addr,
	.adjust_link		= mv88e6xxx_adjust_link,
	.get_strings		= mv88e6xxx_get_strings,
	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
	.get_sset_count		= mv88e6xxx_get_sset_count,
	.set_eee		= mv88e6xxx_set_eee,
	.get_eee		= mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
	.get_temp		= mv88e6xxx_get_temp,
	.get_temp_limit		= mv88e6xxx_get_temp_limit,
	.set_temp_limit		= mv88e6xxx_set_temp_limit,
	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
#endif
3760
	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3761 3762 3763 3764
	.get_eeprom		= mv88e6xxx_get_eeprom,
	.set_eeprom		= mv88e6xxx_set_eeprom,
	.get_regs_len		= mv88e6xxx_get_regs_len,
	.get_regs		= mv88e6xxx_get_regs,
3765
	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3766 3767 3768
	.port_bridge_join	= mv88e6xxx_port_bridge_join,
	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
3769
	.port_fast_age		= mv88e6xxx_port_fast_age,
3770 3771 3772 3773 3774 3775 3776 3777 3778
	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
	.port_vlan_add		= mv88e6xxx_port_vlan_add,
	.port_vlan_del		= mv88e6xxx_port_vlan_del,
	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
	.port_fdb_add           = mv88e6xxx_port_fdb_add,
	.port_fdb_del           = mv88e6xxx_port_fdb_del,
	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
3779 3780 3781 3782
	.port_mdb_prepare       = mv88e6xxx_port_mdb_prepare,
	.port_mdb_add           = mv88e6xxx_port_mdb_add,
	.port_mdb_del           = mv88e6xxx_port_mdb_del,
	.port_mdb_dump          = mv88e6xxx_port_mdb_dump,
3783 3784
};

3785
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3786 3787
				     struct device_node *np)
{
3788
	struct device *dev = chip->dev;
3789 3790 3791 3792 3793 3794 3795
	struct dsa_switch *ds;

	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	ds->dev = dev;
3796
	ds->priv = chip;
3797
	ds->ops = &mv88e6xxx_switch_ops;
3798 3799 3800 3801 3802 3803

	dev_set_drvdata(dev, ds);

	return dsa_register_switch(ds, np);
}

3804
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
3805
{
3806
	dsa_unregister_switch(chip->ds);
3807 3808
}

3809
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
3810
{
3811
	struct device *dev = &mdiodev->dev;
3812
	struct device_node *np = dev->of_node;
3813
	const struct mv88e6xxx_info *compat_info;
3814
	struct mv88e6xxx_chip *chip;
3815
	u32 eeprom_len;
3816
	int err;
3817

3818 3819 3820 3821
	compat_info = of_device_get_match_data(dev);
	if (!compat_info)
		return -EINVAL;

3822 3823
	chip = mv88e6xxx_alloc_chip(dev);
	if (!chip)
3824 3825
		return -ENOMEM;

3826
	chip->info = compat_info;
3827

3828
	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
3829 3830
	if (err)
		return err;
3831

3832
	err = mv88e6xxx_detect(chip);
3833 3834
	if (err)
		return err;
3835

3836 3837
	mv88e6xxx_phy_init(chip);

3838 3839 3840
	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
	if (IS_ERR(chip->reset))
		return PTR_ERR(chip->reset);
3841

3842
	if (chip->info->ops->get_eeprom &&
3843
	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
3844
		chip->eeprom_len = eeprom_len;
3845

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	mutex_lock(&chip->reg_lock);
	err = mv88e6xxx_switch_reset(chip);
	mutex_unlock(&chip->reg_lock);
	if (err)
		goto out;

	chip->irq = of_irq_get(np, 0);
	if (chip->irq == -EPROBE_DEFER) {
		err = chip->irq;
		goto out;
	}

	if (chip->irq > 0) {
		/* Has to be performed before the MDIO bus is created,
		 * because the PHYs will link there interrupts to these
		 * interrupt controllers
		 */
		mutex_lock(&chip->reg_lock);
		err = mv88e6xxx_g1_irq_setup(chip);
		mutex_unlock(&chip->reg_lock);

		if (err)
			goto out;

		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT)) {
			err = mv88e6xxx_g2_irq_setup(chip);
			if (err)
				goto out_g1_irq;
		}
	}

3877
	err = mv88e6xxx_mdio_register(chip, np);
3878
	if (err)
3879
		goto out_g2_irq;
3880

3881
	err = mv88e6xxx_register_switch(chip, np);
3882 3883
	if (err)
		goto out_mdio;
3884

3885
	return 0;
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895

out_mdio:
	mv88e6xxx_mdio_unregister(chip);
out_g2_irq:
	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT))
		mv88e6xxx_g2_irq_free(chip);
out_g1_irq:
	mv88e6xxx_g1_irq_free(chip);
out:
	return err;
3896
}
3897 3898 3899 3900

static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
V
Vivien Didelot 已提交
3901
	struct mv88e6xxx_chip *chip = ds->priv;
3902

3903
	mv88e6xxx_phy_destroy(chip);
3904 3905
	mv88e6xxx_unregister_switch(chip);
	mv88e6xxx_mdio_unregister(chip);
3906 3907 3908 3909

	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_INT))
		mv88e6xxx_g2_irq_free(chip);
	mv88e6xxx_g1_irq_free(chip);
3910 3911 3912
}

static const struct of_device_id mv88e6xxx_of_match[] = {
3913 3914 3915 3916
	{
		.compatible = "marvell,mv88e6085",
		.data = &mv88e6xxx_table[MV88E6085],
	},
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	{ /* sentinel */ },
};

MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);

static struct mdio_driver mv88e6xxx_driver = {
	.probe	= mv88e6xxx_probe,
	.remove = mv88e6xxx_remove,
	.mdiodrv.driver = {
		.name = "mv88e6085",
		.of_match_table = mv88e6xxx_of_match,
	},
};

static int __init mv88e6xxx_init(void)
{
3933
	register_switch_driver(&mv88e6xxx_switch_ops);
3934 3935
	return mdio_driver_register(&mv88e6xxx_driver);
}
3936 3937 3938 3939
module_init(mv88e6xxx_init);

static void __exit mv88e6xxx_cleanup(void)
{
3940
	mdio_driver_unregister(&mv88e6xxx_driver);
3941
	unregister_switch_driver(&mv88e6xxx_switch_ops);
3942 3943
}
module_exit(mv88e6xxx_cleanup);
3944 3945 3946 3947

MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");