fair.c 188.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
238

239 240 241 242
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

243
#ifdef CONFIG_FAIR_GROUP_SCHED
244

245
/* cpu runqueue to which this cfs_rq is attached */
246 247
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
248
	return cfs_rq->rq;
249 250
}

251 252
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
253

254 255 256 257 258 259 260 261
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

283 284
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
285

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304

		cfs_rq->on_list = 1;
305
		/* We should have no load, but we need to update last_decay. */
306
		update_cfs_rq_blocked_load(cfs_rq, 0);
307 308 309 310 311 312 313 314 315 316 317
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

380 381 382 383 384 385
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
386

387 388 389
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
390 391 392 393
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
394 395
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
396

P
Peter Zijlstra 已提交
397
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398
{
P
Peter Zijlstra 已提交
399
	return &task_rq(p)->cfs;
400 401
}

P
Peter Zijlstra 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

416 417 418 419 420 421 422 423
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

438 439 440 441 442
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
443 444
#endif	/* CONFIG_FAIR_GROUP_SCHED */

445 446
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447 448 449 450 451

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

452
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453
{
454
	s64 delta = (s64)(vruntime - max_vruntime);
455
	if (delta > 0)
456
		max_vruntime = vruntime;
457

458
	return max_vruntime;
459 460
}

461
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
462 463 464 465 466 467 468 469
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

470 471 472 473 474 475
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

476 477 478 479 480 481 482 483 484 485 486 487
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
488
		if (!cfs_rq->curr)
489 490 491 492 493
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

494
	/* ensure we never gain time by being placed backwards. */
495
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 497 498 499
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
500 501
}

502 503 504
/*
 * Enqueue an entity into the rb-tree:
 */
505
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
522
		if (entity_before(se, entry)) {
523 524 525 526 527 528 529 530 531 532 533
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
534
	if (leftmost)
I
Ingo Molnar 已提交
535
		cfs_rq->rb_leftmost = &se->run_node;
536 537 538 539 540

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

541
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542
{
P
Peter Zijlstra 已提交
543 544 545 546 547 548
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
549

550 551 552
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

553
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554
{
555 556 557 558 559 560
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
561 562
}

563 564 565 566 567 568 569 570 571 572 573
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
574
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575
{
576
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577

578 579
	if (!last)
		return NULL;
580 581

	return rb_entry(last, struct sched_entity, run_node);
582 583
}

584 585 586 587
/**************************************************************
 * Scheduling class statistics methods:
 */

588
int sched_proc_update_handler(struct ctl_table *table, int write,
589
		void __user *buffer, size_t *lenp,
590 591
		loff_t *ppos)
{
592
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593
	int factor = get_update_sysctl_factor();
594 595 596 597 598 599 600

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

601 602 603 604 605 606 607
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

608 609 610
	return 0;
}
#endif
611

612
/*
613
 * delta /= w
614 615 616 617
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
618 619
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620 621 622 623

	return delta;
}

624 625 626
/*
 * The idea is to set a period in which each task runs once.
 *
627
 * When there are too many tasks (sched_nr_latency) we have to stretch
628 629 630 631
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
632 633 634
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
635
	unsigned long nr_latency = sched_nr_latency;
636 637

	if (unlikely(nr_running > nr_latency)) {
638
		period = sysctl_sched_min_granularity;
639 640 641 642 643 644
		period *= nr_running;
	}

	return period;
}

645 646 647 648
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
649
 * s = p*P[w/rw]
650
 */
P
Peter Zijlstra 已提交
651
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652
{
M
Mike Galbraith 已提交
653
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654

M
Mike Galbraith 已提交
655
	for_each_sched_entity(se) {
L
Lin Ming 已提交
656
		struct load_weight *load;
657
		struct load_weight lw;
L
Lin Ming 已提交
658 659 660

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
661

M
Mike Galbraith 已提交
662
		if (unlikely(!se->on_rq)) {
663
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
664 665 666 667 668 669 670

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
671 672
}

673
/*
A
Andrei Epure 已提交
674
 * We calculate the vruntime slice of a to-be-inserted task.
675
 *
676
 * vs = s/w
677
 */
678
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
679
{
680
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 682
}

683
#ifdef CONFIG_SMP
684 685
static unsigned long task_h_load(struct task_struct *p);

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

705 706 707 708 709
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
710 711
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
712
{
713
	unsigned long delta_exec_weighted;
714

715 716
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
717 718

	curr->sum_exec_runtime += delta_exec;
719
	schedstat_add(cfs_rq, exec_clock, delta_exec);
720
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
721

I
Ingo Molnar 已提交
722
	curr->vruntime += delta_exec_weighted;
723
	update_min_vruntime(cfs_rq);
724 725
}

726
static void update_curr(struct cfs_rq *cfs_rq)
727
{
728
	struct sched_entity *curr = cfs_rq->curr;
729
	u64 now = rq_clock_task(rq_of(cfs_rq));
730 731 732 733 734 735 736 737 738 739
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
740
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
741 742
	if (!delta_exec)
		return;
743

I
Ingo Molnar 已提交
744 745
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
746 747 748 749

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

750
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751
		cpuacct_charge(curtask, delta_exec);
752
		account_group_exec_runtime(curtask, delta_exec);
753
	}
754 755

	account_cfs_rq_runtime(cfs_rq, delta_exec);
756 757 758
}

static inline void
759
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
760
{
761
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
762 763 764 765 766
}

/*
 * Task is being enqueued - update stats:
 */
767
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 769 770 771 772
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
773
	if (se != cfs_rq->curr)
774
		update_stats_wait_start(cfs_rq, se);
775 776 777
}

static void
778
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
779
{
780
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 783
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 786 787
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
788
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 790
	}
#endif
791
	schedstat_set(se->statistics.wait_start, 0);
792 793 794
}

static inline void
795
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 797 798 799 800
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
801
	if (se != cfs_rq->curr)
802
		update_stats_wait_end(cfs_rq, se);
803 804 805 806 807 808
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
809
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 811 812 813
{
	/*
	 * We are starting a new run period:
	 */
814
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 816 817 818 819 820
}

/**************************************************
 * Scheduling class queueing methods:
 */

821 822
#ifdef CONFIG_NUMA_BALANCING
/*
823 824 825
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
826
 */
827 828
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829 830 831

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
832

833 834 835
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

836 837 838 839 840 841 842 843
/*
 * After skipping a page migration on a shared page, skip N more numa page
 * migrations unconditionally. This reduces the number of NUMA migrations
 * in shared memory workloads, and has the effect of pulling tasks towards
 * where their memory lives, over pulling the memory towards the task.
 */
unsigned int sysctl_numa_balancing_migrate_deferred = 16;

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

889 890 891 892 893 894 895
/*
 * Once a preferred node is selected the scheduler balancer will prefer moving
 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
 * scans. This will give the process the chance to accumulate more faults on
 * the preferred node but still allow the scheduler to move the task again if
 * the nodes CPUs are overloaded.
 */
896
unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
897

898 899 900 901 902 903 904 905 906 907 908 909
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

910 911 912 913 914
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
915
	pid_t gid;
916 917 918
	struct list_head task_list;

	struct rcu_head rcu;
919 920
	unsigned long total_faults;
	unsigned long faults[0];
921 922
};

923 924 925 926 927
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941
static inline int task_faults_idx(int nid, int priv)
{
	return 2 * nid + priv;
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
	if (!p->numa_faults)
		return 0;

	return p->numa_faults[task_faults_idx(nid, 0)] +
		p->numa_faults[task_faults_idx(nid, 1)];
}

942 943 944 945 946
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

947
	return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
}

/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

	if (!p->numa_faults)
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
973
	if (!p->numa_group || !p->numa_group->total_faults)
974 975
		return 0;

976
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
977 978
}

979
static unsigned long weighted_cpuload(const int cpu);
980 981 982 983 984
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

985
/* Cached statistics for all CPUs within a node */
986
struct numa_stats {
987
	unsigned long nr_running;
988
	unsigned long load;
989 990 991 992 993 994 995

	/* Total compute capacity of CPUs on a node */
	unsigned long power;

	/* Approximate capacity in terms of runnable tasks on a node */
	unsigned long capacity;
	int has_capacity;
996
};
997

998 999 1000 1001 1002
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1003
	int cpu, cpus = 0;
1004 1005 1006 1007 1008 1009 1010 1011

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
		ns->power += power_of(cpu);
1012 1013

		cpus++;
1014 1015
	}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
	 * and bail there.
	 */
	if (!cpus)
		return;

1027 1028 1029 1030 1031
	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
	ns->has_capacity = (ns->nr_running < ns->capacity);
}

1032 1033
struct task_numa_env {
	struct task_struct *p;
1034

1035 1036
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1037

1038
	struct numa_stats src_stats, dst_stats;
1039

1040 1041 1042 1043
	int imbalance_pct, idx;

	struct task_struct *best_task;
	long best_imp;
1044 1045 1046
	int best_cpu;
};

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1066 1067
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1068 1069 1070 1071 1072 1073
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
	long dst_load, src_load;
	long load;
1074
	long imp = (groupimp > 0) ? groupimp : taskimp;
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1093 1094
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1095
		 * in any group then look only at task weights.
1096
		 */
1097
		if (cur->numa_group == env->p->numa_group) {
1098 1099
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1100 1101 1102 1103 1104 1105
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1106
		} else {
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (env->p->numa_group)
				imp = groupimp;
			else
				imp = taskimp;

			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1123
		}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
		if (env->src_stats.has_capacity &&
		    !env->dst_stats.has_capacity)
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
	dst_load = env->dst_stats.load;
	src_load = env->src_stats.load;

	/* XXX missing power terms */
	load = task_h_load(env->p);
	dst_load += load;
	src_load -= load;

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

	/* make src_load the smaller */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	if (src_load * env->imbalance_pct < dst_load * 100)
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1173 1174
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1175 1176 1177 1178 1179 1180 1181 1182 1183
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1184
		task_numa_compare(env, taskimp, groupimp);
1185 1186 1187
	}
}

1188 1189 1190 1191
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1192

1193
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1194
		.src_nid = task_node(p),
1195 1196 1197 1198 1199 1200

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1201 1202
	};
	struct sched_domain *sd;
1203
	unsigned long taskweight, groupweight;
1204
	int nid, ret;
1205
	long taskimp, groupimp;
1206

1207
	/*
1208 1209 1210 1211 1212 1213
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1214 1215
	 */
	rcu_read_lock();
1216
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1217 1218
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1219 1220
	rcu_read_unlock();

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
		p->numa_preferred_nid = cpu_to_node(task_cpu(p));
		return -EINVAL;
	}

1232 1233
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1234
	update_numa_stats(&env.src_stats, env.src_nid);
1235
	env.dst_nid = p->numa_preferred_nid;
1236 1237
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1238
	update_numa_stats(&env.dst_stats, env.dst_nid);
1239

1240 1241
	/* If the preferred nid has capacity, try to use it. */
	if (env.dst_stats.has_capacity)
1242
		task_numa_find_cpu(&env, taskimp, groupimp);
1243 1244 1245

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1246 1247 1248
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1249

1250
			/* Only consider nodes where both task and groups benefit */
1251 1252 1253
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1254 1255
				continue;

1256 1257
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1258
			task_numa_find_cpu(&env, taskimp, groupimp);
1259 1260 1261
		}
	}

1262 1263 1264 1265
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

1266 1267
	sched_setnuma(p, env.dst_nid);

1268 1269 1270 1271 1272 1273
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1274 1275 1276 1277 1278 1279 1280 1281
	if (env.best_task == NULL) {
		int ret = migrate_task_to(p, env.best_cpu);
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
	put_task_struct(env.best_task);
	return ret;
1282 1283
}

1284 1285 1286
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1287 1288
	/* This task has no NUMA fault statistics yet */
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1289 1290
		return;

1291 1292 1293 1294 1295
	/* Periodically retry migrating the task to the preferred node */
	p->numa_migrate_retry = jiffies + HZ;

	/* Success if task is already running on preferred CPU */
	if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
1296 1297 1298
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1299
	task_numa_migrate(p);
1300 1301
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/remote ratio is below
 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
 * scan period will decrease
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 3

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1377 1378
static void task_numa_placement(struct task_struct *p)
{
1379 1380
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1381
	unsigned long fault_types[2] = { 0, 0 };
1382
	spinlock_t *group_lock = NULL;
1383

1384
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1385 1386 1387
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1388
	p->numa_scan_period_max = task_scan_max(p);
1389

1390 1391 1392 1393 1394 1395
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
		spin_lock(group_lock);
	}

1396 1397
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1398
		unsigned long faults = 0, group_faults = 0;
1399
		int priv, i;
1400

1401
		for (priv = 0; priv < 2; priv++) {
1402 1403
			long diff;

1404
			i = task_faults_idx(nid, priv);
1405
			diff = -p->numa_faults[i];
1406

1407 1408 1409
			/* Decay existing window, copy faults since last scan */
			p->numa_faults[i] >>= 1;
			p->numa_faults[i] += p->numa_faults_buffer[i];
1410
			fault_types[priv] += p->numa_faults_buffer[i];
1411
			p->numa_faults_buffer[i] = 0;
1412 1413

			faults += p->numa_faults[i];
1414
			diff += p->numa_faults[i];
1415
			p->total_numa_faults += diff;
1416 1417
			if (p->numa_group) {
				/* safe because we can only change our own group */
1418 1419 1420
				p->numa_group->faults[i] += diff;
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1421
			}
1422 1423
		}

1424 1425 1426 1427
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1428 1429 1430 1431 1432 1433 1434

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1435 1436
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	if (p->numa_group) {
		/*
		 * If the preferred task and group nids are different,
		 * iterate over the nodes again to find the best place.
		 */
		if (max_nid != max_group_nid) {
			unsigned long weight, max_weight = 0;

			for_each_online_node(nid) {
				weight = task_weight(p, nid) + group_weight(p, nid);
				if (weight > max_weight) {
					max_weight = weight;
					max_nid = nid;
				}
1451 1452
			}
		}
1453 1454

		spin_unlock(group_lock);
1455 1456
	}

1457
	/* Preferred node as the node with the most faults */
1458
	if (max_faults && max_nid != p->numa_preferred_nid) {
1459
		/* Update the preferred nid and migrate task if possible */
1460
		sched_setnuma(p, max_nid);
1461
		numa_migrate_preferred(p);
1462
	}
1463 1464
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1476 1477
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1478 1479 1480 1481 1482 1483 1484 1485 1486
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1487
				    2*nr_node_ids*sizeof(unsigned long);
1488 1489 1490 1491 1492 1493 1494 1495

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1496
		grp->gid = p->pid;
1497 1498

		for (i = 0; i < 2*nr_node_ids; i++)
1499
			grp->faults[i] = p->numa_faults[i];
1500

1501
		grp->total_faults = p->total_numa_faults;
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1512
		goto no_join;
1513 1514 1515

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1516
		goto no_join;
1517 1518 1519

	my_grp = p->numa_group;
	if (grp == my_grp)
1520
		goto no_join;
1521 1522 1523 1524 1525 1526

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1527
		goto no_join;
1528 1529 1530 1531 1532

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1533
		goto no_join;
1534

1535 1536 1537 1538 1539 1540 1541
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1542

1543 1544 1545
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1546
	if (join && !get_numa_group(grp))
1547
		goto no_join;
1548 1549 1550 1551 1552 1553

	rcu_read_unlock();

	if (!join)
		return;

1554 1555
	double_lock(&my_grp->lock, &grp->lock);

1556
	for (i = 0; i < 2*nr_node_ids; i++) {
1557 1558
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
1559
	}
1560 1561
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
	spin_unlock(&grp->lock);

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1573 1574 1575 1576 1577
	return;

no_join:
	rcu_read_unlock();
	return;
1578 1579 1580 1581 1582 1583
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	int i;
1584
	void *numa_faults = p->numa_faults;
1585 1586

	if (grp) {
1587
		spin_lock(&grp->lock);
1588
		for (i = 0; i < 2*nr_node_ids; i++)
1589 1590
			grp->faults[i] -= p->numa_faults[i];
		grp->total_faults -= p->total_numa_faults;
1591

1592 1593 1594 1595 1596 1597 1598
		list_del(&p->numa_entry);
		grp->nr_tasks--;
		spin_unlock(&grp->lock);
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1599 1600 1601
	p->numa_faults = NULL;
	p->numa_faults_buffer = NULL;
	kfree(numa_faults);
1602 1603
}

1604 1605 1606
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1607
void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1608 1609
{
	struct task_struct *p = current;
1610
	bool migrated = flags & TNF_MIGRATED;
1611
	int priv;
1612

1613
	if (!numabalancing_enabled)
1614 1615
		return;

1616 1617 1618 1619
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1620 1621 1622 1623
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1624 1625
	/* Allocate buffer to track faults on a per-node basis */
	if (unlikely(!p->numa_faults)) {
1626
		int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1627

1628 1629
		/* numa_faults and numa_faults_buffer share the allocation */
		p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1630 1631
		if (!p->numa_faults)
			return;
1632 1633

		BUG_ON(p->numa_faults_buffer);
1634
		p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1635
		p->total_numa_faults = 0;
1636
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1637
	}
1638

1639 1640 1641 1642 1643 1644 1645 1646
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1647
		if (!priv && !(flags & TNF_NO_GROUP))
1648
			task_numa_group(p, last_cpupid, flags, &priv);
1649 1650
	}

1651
	task_numa_placement(p);
1652

1653 1654 1655 1656 1657
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1658 1659
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1660 1661 1662
	if (migrated)
		p->numa_pages_migrated += pages;

1663
	p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1664
	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1665 1666
}

1667 1668 1669 1670 1671 1672
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1673 1674 1675 1676 1677 1678 1679 1680 1681
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1682
	struct vm_area_struct *vma;
1683
	unsigned long start, end;
1684
	unsigned long nr_pte_updates = 0;
1685
	long pages;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1701
	if (!mm->numa_next_scan) {
1702 1703
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1704 1705
	}

1706 1707 1708 1709 1710 1711 1712
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1713 1714 1715 1716
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1717

1718
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1719 1720 1721
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1722 1723 1724 1725 1726 1727
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1728 1729 1730 1731 1732
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1733

1734
	down_read(&mm->mmap_sem);
1735
	vma = find_vma(mm, start);
1736 1737
	if (!vma) {
		reset_ptenuma_scan(p);
1738
		start = 0;
1739 1740
		vma = mm->mmap;
	}
1741
	for (; vma; vma = vma->vm_next) {
1742
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1743 1744
			continue;

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

1755 1756 1757 1758
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1759 1760 1761 1762 1763 1764 1765 1766 1767
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1768

1769 1770 1771 1772
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
1773
	}
1774

1775
out:
1776
	/*
P
Peter Zijlstra 已提交
1777 1778 1779 1780
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1781 1782
	 */
	if (vma)
1783
		mm->numa_scan_offset = start;
1784 1785 1786
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1813
		if (!curr->node_stamp)
1814
			curr->numa_scan_period = task_scan_min(curr);
1815
		curr->node_stamp += period;
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
1827 1828 1829 1830 1831 1832 1833 1834

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
1835 1836
#endif /* CONFIG_NUMA_BALANCING */

1837 1838 1839 1840
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
1841
	if (!parent_entity(se))
1842
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1843
#ifdef CONFIG_SMP
1844 1845 1846 1847 1848 1849
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
1850
#endif
1851 1852 1853 1854 1855 1856 1857
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
1858
	if (!parent_entity(se))
1859
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1860 1861
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1862
		list_del_init(&se->group_node);
1863
	}
1864 1865 1866
	cfs_rq->nr_running--;
}

1867 1868
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
1869 1870 1871 1872 1873 1874 1875 1876 1877
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
1878
	tg_weight = atomic_long_read(&tg->load_avg);
1879
	tg_weight -= cfs_rq->tg_load_contrib;
1880 1881 1882 1883 1884
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1885
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1886
{
1887
	long tg_weight, load, shares;
1888

1889
	tg_weight = calc_tg_weight(tg, cfs_rq);
1890
	load = cfs_rq->load.weight;
1891 1892

	shares = (tg->shares * load);
1893 1894
	if (tg_weight)
		shares /= tg_weight;
1895 1896 1897 1898 1899 1900 1901 1902 1903

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
1904
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1905 1906 1907 1908
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1909 1910 1911
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1912 1913 1914 1915
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1916
		account_entity_dequeue(cfs_rq, se);
1917
	}
P
Peter Zijlstra 已提交
1918 1919 1920 1921 1922 1923 1924

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1925 1926
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

1927
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1928 1929 1930
{
	struct task_group *tg;
	struct sched_entity *se;
1931
	long shares;
P
Peter Zijlstra 已提交
1932 1933 1934

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1935
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1936
		return;
1937 1938 1939 1940
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1941
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1942 1943 1944 1945

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1946
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1947 1948 1949 1950
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

1951
#ifdef CONFIG_SMP
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

1980 1981 1982 1983 1984 1985
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2006 2007
	}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2073 2074
	u64 delta, periods;
	u32 runnable_contrib;
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2138
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2139
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2140 2141 2142 2143 2144 2145
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2146
		return 0;
2147 2148 2149

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2150 2151

	return decays;
2152 2153
}

2154 2155 2156 2157 2158
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2159
	long tg_contrib;
2160 2161 2162 2163

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2164 2165
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2166 2167 2168
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2169

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2181
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2182 2183 2184 2185 2186 2187 2188 2189 2190
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2191 2192 2193 2194
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2195 2196
	int runnable_avg;

2197 2198 2199
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2200 2201
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2231
}
2232 2233 2234
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2235 2236
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2237
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2238 2239
#endif

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2250 2251 2252 2253 2254
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2255 2256 2257
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2258
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2259 2260
		__update_group_entity_contrib(se);
	}
2261 2262 2263 2264

	return se->avg.load_avg_contrib - old_contrib;
}

2265 2266 2267 2268 2269 2270 2271 2272 2273
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2274 2275
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2276
/* Update a sched_entity's runnable average */
2277 2278
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2279
{
2280 2281
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2282
	u64 now;
2283

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2294 2295 2296
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2297 2298 2299 2300

	if (!update_cfs_rq)
		return;

2301 2302
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2303 2304 2305 2306 2307 2308 2309 2310
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2311
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2312
{
2313
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2314 2315 2316
	u64 decays;

	decays = now - cfs_rq->last_decay;
2317
	if (!decays && !force_update)
2318 2319
		return;

2320 2321 2322
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2323 2324
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2325

2326 2327 2328 2329 2330 2331
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2332 2333

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2334
}
2335 2336 2337

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
2338
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2339
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2340
}
2341 2342 2343

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2344 2345
						  struct sched_entity *se,
						  int wakeup)
2346
{
2347 2348 2349 2350
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2351 2352 2353 2354
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2355 2356
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2357
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2373 2374
		wakeup = 0;
	} else {
2375 2376 2377 2378 2379 2380 2381
		/*
		 * Task re-woke on same cpu (or else migrate_task_rq_fair()
		 * would have made count negative); we must be careful to avoid
		 * double-accounting blocked time after synchronizing decays.
		 */
		se->avg.last_runnable_update += __synchronize_entity_decay(se)
							<< 20;
2382 2383
	}

2384 2385
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2386
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2387 2388
		update_entity_load_avg(se, 0);
	}
2389

2390
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2391 2392
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2393 2394
}

2395 2396 2397 2398 2399
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2400
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2401 2402
						  struct sched_entity *se,
						  int sleep)
2403
{
2404
	update_entity_load_avg(se, 1);
2405 2406
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2407

2408
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2409 2410 2411 2412
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2413
}
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2435
#else
2436 2437
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2438
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2439
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2440 2441
					   struct sched_entity *se,
					   int wakeup) {}
2442
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2443 2444
					   struct sched_entity *se,
					   int sleep) {}
2445 2446
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2447 2448
#endif

2449
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2450 2451
{
#ifdef CONFIG_SCHEDSTATS
2452 2453 2454 2455 2456
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2457
	if (se->statistics.sleep_start) {
2458
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2459 2460 2461 2462

		if ((s64)delta < 0)
			delta = 0;

2463 2464
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2465

2466
		se->statistics.sleep_start = 0;
2467
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2468

2469
		if (tsk) {
2470
			account_scheduler_latency(tsk, delta >> 10, 1);
2471 2472
			trace_sched_stat_sleep(tsk, delta);
		}
2473
	}
2474
	if (se->statistics.block_start) {
2475
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2476 2477 2478 2479

		if ((s64)delta < 0)
			delta = 0;

2480 2481
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2482

2483
		se->statistics.block_start = 0;
2484
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2485

2486
		if (tsk) {
2487
			if (tsk->in_iowait) {
2488 2489
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2490
				trace_sched_stat_iowait(tsk, delta);
2491 2492
			}

2493 2494
			trace_sched_stat_blocked(tsk, delta);

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2506
		}
2507 2508 2509 2510
	}
#endif
}

P
Peter Zijlstra 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2524 2525 2526
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2527
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2528

2529 2530 2531 2532 2533 2534
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2535
	if (initial && sched_feat(START_DEBIT))
2536
		vruntime += sched_vslice(cfs_rq, se);
2537

2538
	/* sleeps up to a single latency don't count. */
2539
	if (!initial) {
2540
		unsigned long thresh = sysctl_sched_latency;
2541

2542 2543 2544 2545 2546 2547
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2548

2549
		vruntime -= thresh;
2550 2551
	}

2552
	/* ensure we never gain time by being placed backwards. */
2553
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2554 2555
}

2556 2557
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2558
static void
2559
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2560
{
2561 2562
	/*
	 * Update the normalized vruntime before updating min_vruntime
2563
	 * through calling update_curr().
2564
	 */
2565
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2566 2567
		se->vruntime += cfs_rq->min_vruntime;

2568
	/*
2569
	 * Update run-time statistics of the 'current'.
2570
	 */
2571
	update_curr(cfs_rq);
2572
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2573 2574
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2575

2576
	if (flags & ENQUEUE_WAKEUP) {
2577
		place_entity(cfs_rq, se, 0);
2578
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2579
	}
2580

2581
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2582
	check_spread(cfs_rq, se);
2583 2584
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2585
	se->on_rq = 1;
2586

2587
	if (cfs_rq->nr_running == 1) {
2588
		list_add_leaf_cfs_rq(cfs_rq);
2589 2590
		check_enqueue_throttle(cfs_rq);
	}
2591 2592
}

2593
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2594
{
2595 2596 2597 2598 2599 2600 2601 2602
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
2603

2604 2605 2606 2607 2608 2609 2610 2611 2612
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
2613 2614
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
2626 2627
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2628 2629 2630 2631 2632
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2633 2634 2635

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2636 2637
}

2638
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2639

2640
static void
2641
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2642
{
2643 2644 2645 2646
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2647
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2648

2649
	update_stats_dequeue(cfs_rq, se);
2650
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2651
#ifdef CONFIG_SCHEDSTATS
2652 2653 2654 2655
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2656
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2657
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2658
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2659
		}
2660
#endif
P
Peter Zijlstra 已提交
2661 2662
	}

P
Peter Zijlstra 已提交
2663
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2664

2665
	if (se != cfs_rq->curr)
2666
		__dequeue_entity(cfs_rq, se);
2667
	se->on_rq = 0;
2668
	account_entity_dequeue(cfs_rq, se);
2669 2670 2671 2672 2673 2674

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2675
	if (!(flags & DEQUEUE_SLEEP))
2676
		se->vruntime -= cfs_rq->min_vruntime;
2677

2678 2679 2680
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2681
	update_min_vruntime(cfs_rq);
2682
	update_cfs_shares(cfs_rq);
2683 2684 2685 2686 2687
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2688
static void
I
Ingo Molnar 已提交
2689
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2690
{
2691
	unsigned long ideal_runtime, delta_exec;
2692 2693
	struct sched_entity *se;
	s64 delta;
2694

P
Peter Zijlstra 已提交
2695
	ideal_runtime = sched_slice(cfs_rq, curr);
2696
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2697
	if (delta_exec > ideal_runtime) {
2698
		resched_task(rq_of(cfs_rq)->curr);
2699 2700 2701 2702 2703
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2715 2716
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2717

2718 2719
	if (delta < 0)
		return;
2720

2721 2722
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2723 2724
}

2725
static void
2726
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2727
{
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2739
	update_stats_curr_start(cfs_rq, se);
2740
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2741 2742 2743 2744 2745 2746
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2747
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2748
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2749 2750 2751
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2752
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2753 2754
}

2755 2756 2757
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2758 2759 2760 2761 2762 2763 2764
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2765
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2766
{
2767
	struct sched_entity *se = __pick_first_entity(cfs_rq);
2768
	struct sched_entity *left = se;
2769

2770 2771 2772 2773 2774 2775 2776 2777 2778
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
2779

2780 2781 2782 2783 2784 2785
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

2786 2787 2788 2789 2790 2791
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

2792
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2793 2794

	return se;
2795 2796
}

2797 2798
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

2799
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2800 2801 2802 2803 2804 2805
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
2806
		update_curr(cfs_rq);
2807

2808 2809 2810
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
2811
	check_spread(cfs_rq, prev);
2812
	if (prev->on_rq) {
2813
		update_stats_wait_start(cfs_rq, prev);
2814 2815
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
2816
		/* in !on_rq case, update occurred at dequeue */
2817
		update_entity_load_avg(prev, 1);
2818
	}
2819
	cfs_rq->curr = NULL;
2820 2821
}

P
Peter Zijlstra 已提交
2822 2823
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2824 2825
{
	/*
2826
	 * Update run-time statistics of the 'current'.
2827
	 */
2828
	update_curr(cfs_rq);
2829

2830 2831 2832
	/*
	 * Ensure that runnable average is periodically updated.
	 */
2833
	update_entity_load_avg(curr, 1);
2834
	update_cfs_rq_blocked_load(cfs_rq, 1);
2835
	update_cfs_shares(cfs_rq);
2836

P
Peter Zijlstra 已提交
2837 2838 2839 2840 2841
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
2842 2843 2844 2845
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
2846 2847 2848 2849 2850 2851 2852 2853
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
2854
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
2855
		check_preempt_tick(cfs_rq, curr);
2856 2857
}

2858 2859 2860 2861 2862 2863

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
2864 2865

#ifdef HAVE_JUMP_LABEL
2866
static struct static_key __cfs_bandwidth_used;
2867 2868 2869

static inline bool cfs_bandwidth_used(void)
{
2870
	return static_key_false(&__cfs_bandwidth_used);
2871 2872
}

2873
void cfs_bandwidth_usage_inc(void)
2874
{
2875 2876 2877 2878 2879 2880
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
2881 2882 2883 2884 2885 2886 2887
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

2888 2889
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
2890 2891
#endif /* HAVE_JUMP_LABEL */

2892 2893 2894 2895 2896 2897 2898 2899
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
2900 2901 2902 2903 2904 2905

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
2906 2907 2908 2909 2910 2911 2912
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
2913
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

2925 2926 2927 2928 2929
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

2930 2931 2932 2933 2934 2935
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

2936
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2937 2938
}

2939 2940
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2941 2942 2943
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
2944
	u64 amount = 0, min_amount, expires;
2945 2946 2947 2948 2949 2950 2951

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
2952
	else {
P
Paul Turner 已提交
2953 2954 2955 2956 2957 2958 2959 2960
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
2961
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
2962
		}
2963 2964 2965 2966 2967 2968

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
2969
	}
P
Paul Turner 已提交
2970
	expires = cfs_b->runtime_expires;
2971 2972 2973
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
2974 2975 2976 2977 2978 2979 2980
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
2981 2982

	return cfs_rq->runtime_remaining > 0;
2983 2984
}

P
Paul Turner 已提交
2985 2986 2987 2988 2989
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2990
{
P
Paul Turner 已提交
2991 2992 2993
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
2994
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2995 2996
		return;

P
Paul Turner 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3022
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3023 3024 3025
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3026 3027
		return;

3028 3029 3030 3031 3032 3033
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
3034 3035
}

3036 3037
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
3038
{
3039
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3040 3041 3042 3043 3044
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3045 3046
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3047
	return cfs_bandwidth_used() && cfs_rq->throttled;
3048 3049
}

3050 3051 3052
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3053
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3082
		/* adjust cfs_rq_clock_task() */
3083
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3084
					     cfs_rq->throttled_clock_task;
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3096 3097
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3098
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3099 3100 3101 3102 3103
	cfs_rq->throttle_count++;

	return 0;
}

3104
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3105 3106 3107 3108 3109 3110 3111 3112
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3113
	/* freeze hierarchy runnable averages while throttled */
3114 3115 3116
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
3137
	cfs_rq->throttled_clock = rq_clock(rq);
3138 3139
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3140 3141
	if (!cfs_b->timer_active)
		__start_cfs_bandwidth(cfs_b);
3142 3143 3144
	raw_spin_unlock(&cfs_b->lock);
}

3145
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3146 3147 3148 3149 3150 3151 3152
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3153
	se = cfs_rq->tg->se[cpu_of(rq)];
3154 3155

	cfs_rq->throttled = 0;
3156 3157 3158

	update_rq_clock(rq);

3159
	raw_spin_lock(&cfs_b->lock);
3160
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3161 3162 3163
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3164 3165 3166
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

3230 3231 3232 3233 3234 3235 3236 3237
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3238 3239
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
3240 3241 3242 3243 3244 3245

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

3246 3247 3248
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
3249
	cfs_b->nr_periods += overrun;
3250

P
Paul Turner 已提交
3251 3252 3253 3254
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

3255 3256 3257 3258 3259 3260 3261
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3262 3263
	__refill_cfs_bandwidth_runtime(cfs_b);

3264 3265 3266 3267 3268 3269
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

3270 3271 3272
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
3297

3298 3299 3300 3301 3302 3303 3304 3305 3306
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3307 3308 3309 3310 3311 3312 3313
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
3314

3315 3316 3317 3318 3319 3320 3321
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3322 3323 3324 3325 3326 3327 3328
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3385 3386 3387
	if (!cfs_bandwidth_used())
		return;

3388
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3404 3405 3406
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3407
		return;
3408
	}
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

3428 3429 3430 3431 3432 3433 3434
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3435 3436 3437
	if (!cfs_bandwidth_used())
		return;

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3455 3456 3457
	if (!cfs_bandwidth_used())
		return;

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3530 3531 3532
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3533
		raw_spin_unlock(&cfs_b->lock);
3534
		cpu_relax();
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3551
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3572 3573
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3574
	return rq_clock_task(rq_of(cfs_rq));
3575 3576 3577 3578
}

static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec) {}
3579 3580
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3581
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3582 3583 3584 3585 3586

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3598 3599 3600 3601 3602

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3603 3604
#endif

3605 3606 3607 3608 3609
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3610
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3611 3612 3613

#endif /* CONFIG_CFS_BANDWIDTH */

3614 3615 3616 3617
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3618 3619 3620 3621 3622 3623 3624 3625
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3626
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3641
		if (rq->curr != p)
3642
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3643

3644
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3645 3646
	}
}
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3657
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3658 3659 3660 3661 3662
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3663
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3664 3665 3666 3667
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3668 3669 3670 3671

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3672 3673
#endif

3674 3675 3676 3677 3678
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3679
static void
3680
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3681 3682
{
	struct cfs_rq *cfs_rq;
3683
	struct sched_entity *se = &p->se;
3684 3685

	for_each_sched_entity(se) {
3686
		if (se->on_rq)
3687 3688
			break;
		cfs_rq = cfs_rq_of(se);
3689
		enqueue_entity(cfs_rq, se, flags);
3690 3691 3692 3693 3694 3695 3696 3697 3698

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3699
		cfs_rq->h_nr_running++;
3700

3701
		flags = ENQUEUE_WAKEUP;
3702
	}
P
Peter Zijlstra 已提交
3703

P
Peter Zijlstra 已提交
3704
	for_each_sched_entity(se) {
3705
		cfs_rq = cfs_rq_of(se);
3706
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3707

3708 3709 3710
		if (cfs_rq_throttled(cfs_rq))
			break;

3711
		update_cfs_shares(cfs_rq);
3712
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3713 3714
	}

3715 3716
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3717
		inc_nr_running(rq);
3718
	}
3719
	hrtick_update(rq);
3720 3721
}

3722 3723
static void set_next_buddy(struct sched_entity *se);

3724 3725 3726 3727 3728
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3729
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3730 3731
{
	struct cfs_rq *cfs_rq;
3732
	struct sched_entity *se = &p->se;
3733
	int task_sleep = flags & DEQUEUE_SLEEP;
3734 3735 3736

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3737
		dequeue_entity(cfs_rq, se, flags);
3738 3739 3740 3741 3742 3743 3744 3745 3746

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3747
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3748

3749
		/* Don't dequeue parent if it has other entities besides us */
3750 3751 3752 3753 3754 3755 3756
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3757 3758 3759

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3760
			break;
3761
		}
3762
		flags |= DEQUEUE_SLEEP;
3763
	}
P
Peter Zijlstra 已提交
3764

P
Peter Zijlstra 已提交
3765
	for_each_sched_entity(se) {
3766
		cfs_rq = cfs_rq_of(se);
3767
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3768

3769 3770 3771
		if (cfs_rq_throttled(cfs_rq))
			break;

3772
		update_cfs_shares(cfs_rq);
3773
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3774 3775
	}

3776
	if (!se) {
3777
		dec_nr_running(rq);
3778 3779
		update_rq_runnable_avg(rq, 1);
	}
3780
	hrtick_update(rq);
3781 3782
}

3783
#ifdef CONFIG_SMP
3784 3785 3786
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
3787
	return cpu_rq(cpu)->cfs.runnable_load_avg;
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3832
	unsigned long load_avg = rq->cfs.runnable_load_avg;
3833 3834

	if (nr_running)
3835
		return load_avg / nr_running;
3836 3837 3838 3839

	return 0;
}

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
3857

3858
static void task_waking_fair(struct task_struct *p)
3859 3860 3861
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3862 3863 3864 3865
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
3866

3867 3868 3869 3870 3871 3872 3873 3874
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
3875

3876
	se->vruntime -= min_vruntime;
3877
	record_wakee(p);
3878 3879
}

3880
#ifdef CONFIG_FAIR_GROUP_SCHED
3881 3882 3883 3884 3885 3886
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
3930
 */
P
Peter Zijlstra 已提交
3931
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3932
{
P
Peter Zijlstra 已提交
3933
	struct sched_entity *se = tg->se[cpu];
3934

3935
	if (!tg->parent || !wl)	/* the trivial, non-cgroup case */
3936 3937
		return wl;

P
Peter Zijlstra 已提交
3938
	for_each_sched_entity(se) {
3939
		long w, W;
P
Peter Zijlstra 已提交
3940

3941
		tg = se->my_q->tg;
3942

3943 3944 3945 3946
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
3947

3948 3949 3950 3951
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
3952

3953 3954 3955 3956 3957
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
3958 3959
		else
			wl = tg->shares;
3960

3961 3962 3963 3964 3965
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
3966 3967
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
3968 3969 3970 3971

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
3972
		wl -= se->load.weight;
3973 3974 3975 3976 3977 3978 3979 3980

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
3981 3982
		wg = 0;
	}
3983

P
Peter Zijlstra 已提交
3984
	return wl;
3985 3986
}
#else
P
Peter Zijlstra 已提交
3987

3988
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
3989
{
3990
	return wl;
3991
}
P
Peter Zijlstra 已提交
3992

3993 3994
#endif

3995 3996
static int wake_wide(struct task_struct *p)
{
3997
	int factor = this_cpu_read(sd_llc_size);
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4017
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4018
{
4019
	s64 this_load, load;
4020
	int idx, this_cpu, prev_cpu;
4021
	unsigned long tl_per_task;
4022
	struct task_group *tg;
4023
	unsigned long weight;
4024
	int balanced;
4025

4026 4027 4028 4029 4030 4031 4032
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4033 4034 4035 4036 4037
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4038

4039 4040 4041 4042 4043
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4044 4045 4046 4047
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4048
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4049 4050
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4051

4052 4053
	tg = task_group(p);
	weight = p->se.load.weight;
4054

4055 4056
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4057 4058 4059
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4060 4061 4062 4063
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4064 4065
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4079

4080
	/*
I
Ingo Molnar 已提交
4081 4082 4083
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4084
	 */
4085 4086
	if (sync && balanced)
		return 1;
4087

4088
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4089 4090
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4091 4092 4093
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4094 4095 4096 4097 4098
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4099
		schedstat_inc(sd, ttwu_move_affine);
4100
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4101 4102 4103 4104 4105 4106

		return 1;
	}
	return 0;
}

4107 4108 4109 4110 4111
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4112
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4113
		  int this_cpu, int sd_flag)
4114
{
4115
	struct sched_group *idlest = NULL, *group = sd->groups;
4116
	unsigned long min_load = ULONG_MAX, this_load = 0;
4117
	int load_idx = sd->forkexec_idx;
4118
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4119

4120 4121 4122
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4123 4124 4125 4126
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4127

4128 4129
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4130
					tsk_cpus_allowed(p)))
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
4150
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4176
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4177 4178 4179 4180 4181
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4182 4183 4184
		}
	}

4185 4186
	return idlest;
}
4187

4188 4189 4190
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4191
static int select_idle_sibling(struct task_struct *p, int target)
4192
{
4193
	struct sched_domain *sd;
4194
	struct sched_group *sg;
4195
	int i = task_cpu(p);
4196

4197 4198
	if (idle_cpu(target))
		return target;
4199 4200

	/*
4201
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4202
	 */
4203 4204
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4205 4206

	/*
4207
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4208
	 */
4209
	sd = rcu_dereference(per_cpu(sd_llc, target));
4210
	for_each_lower_domain(sd) {
4211 4212 4213 4214 4215 4216 4217
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4218
				if (i == target || !idle_cpu(i))
4219 4220
					goto next;
			}
4221

4222 4223 4224 4225 4226 4227 4228 4229
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4230 4231 4232
	return target;
}

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
4244
static int
4245
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4246
{
4247
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4248 4249
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4250
	int want_affine = 0;
4251
	int sync = wake_flags & WF_SYNC;
4252

4253
	if (p->nr_cpus_allowed == 1)
4254 4255
		return prev_cpu;

4256
	if (sd_flag & SD_BALANCE_WAKE) {
4257
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4258 4259 4260
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4261

4262
	rcu_read_lock();
4263
	for_each_domain(cpu, tmp) {
4264 4265 4266
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4267
		/*
4268 4269
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4270
		 */
4271 4272 4273
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4274
			break;
4275
		}
4276

4277
		if (tmp->flags & sd_flag)
4278 4279 4280
			sd = tmp;
	}

4281
	if (affine_sd) {
4282
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4283 4284 4285 4286
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4287
	}
4288

4289 4290
	while (sd) {
		struct sched_group *group;
4291
		int weight;
4292

4293
		if (!(sd->flags & sd_flag)) {
4294 4295 4296
			sd = sd->child;
			continue;
		}
4297

4298
		group = find_idlest_group(sd, p, cpu, sd_flag);
4299 4300 4301 4302
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4303

4304
		new_cpu = find_idlest_cpu(group, p, cpu);
4305 4306 4307 4308
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4309
		}
4310 4311 4312

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4313
		weight = sd->span_weight;
4314 4315
		sd = NULL;
		for_each_domain(cpu, tmp) {
4316
			if (weight <= tmp->span_weight)
4317
				break;
4318
			if (tmp->flags & sd_flag)
4319 4320 4321
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4322
	}
4323 4324
unlock:
	rcu_read_unlock();
4325

4326
	return new_cpu;
4327
}
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4349 4350
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4351
	}
4352
}
4353 4354
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4355 4356
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4357 4358 4359 4360
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4361 4362
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4363 4364 4365 4366 4367 4368 4369 4370 4371
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4372
	 */
4373
	return calc_delta_fair(gran, se);
4374 4375
}

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4398
	gran = wakeup_gran(curr, se);
4399 4400 4401 4402 4403 4404
	if (vdiff > gran)
		return 1;

	return 0;
}

4405 4406
static void set_last_buddy(struct sched_entity *se)
{
4407 4408 4409 4410 4411
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4412 4413 4414 4415
}

static void set_next_buddy(struct sched_entity *se)
{
4416 4417 4418 4419 4420
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4421 4422
}

4423 4424
static void set_skip_buddy(struct sched_entity *se)
{
4425 4426
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4427 4428
}

4429 4430 4431
/*
 * Preempt the current task with a newly woken task if needed:
 */
4432
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4433 4434
{
	struct task_struct *curr = rq->curr;
4435
	struct sched_entity *se = &curr->se, *pse = &p->se;
4436
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4437
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4438
	int next_buddy_marked = 0;
4439

I
Ingo Molnar 已提交
4440 4441 4442
	if (unlikely(se == pse))
		return;

4443
	/*
4444
	 * This is possible from callers such as move_task(), in which we
4445 4446 4447 4448 4449 4450 4451
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4452
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4453
		set_next_buddy(pse);
4454 4455
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4456

4457 4458 4459
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4460 4461 4462 4463 4464 4465
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4466 4467 4468 4469
	 */
	if (test_tsk_need_resched(curr))
		return;

4470 4471 4472 4473 4474
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4475
	/*
4476 4477
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4478
	 */
4479
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4480
		return;
4481

4482
	find_matching_se(&se, &pse);
4483
	update_curr(cfs_rq_of(se));
4484
	BUG_ON(!pse);
4485 4486 4487 4488 4489 4490 4491
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4492
		goto preempt;
4493
	}
4494

4495
	return;
4496

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4513 4514
}

4515
static struct task_struct *pick_next_task_fair(struct rq *rq)
4516
{
P
Peter Zijlstra 已提交
4517
	struct task_struct *p;
4518 4519 4520
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

4521
	if (!cfs_rq->nr_running)
4522 4523 4524
		return NULL;

	do {
4525
		se = pick_next_entity(cfs_rq);
4526
		set_next_entity(cfs_rq, se);
4527 4528 4529
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4530
	p = task_of(se);
4531 4532
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4533 4534

	return p;
4535 4536 4537 4538 4539
}

/*
 * Account for a descheduled task:
 */
4540
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4541 4542 4543 4544 4545 4546
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4547
		put_prev_entity(cfs_rq, se);
4548 4549 4550
	}
}

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4576 4577 4578 4579 4580 4581
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4582 4583 4584 4585 4586
	}

	set_skip_buddy(se);
}

4587 4588 4589 4590
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4591 4592
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4603
#ifdef CONFIG_SMP
4604
/**************************************************
P
Peter Zijlstra 已提交
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
4721

4722 4723
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

4724 4725
enum fbq_type { regular, remote, all };

4726
#define LBF_ALL_PINNED	0x01
4727
#define LBF_NEED_BREAK	0x02
4728 4729
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
4730 4731 4732 4733 4734

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
4735
	int			src_cpu;
4736 4737 4738 4739

	int			dst_cpu;
	struct rq		*dst_rq;

4740 4741
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
4742
	enum cpu_idle_type	idle;
4743
	long			imbalance;
4744 4745 4746
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

4747
	unsigned int		flags;
4748 4749 4750 4751

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
4752 4753

	enum fbq_type		fbq_type;
4754 4755
};

4756
/*
4757
 * move_task - move a task from one runqueue to another runqueue.
4758 4759
 * Both runqueues must be locked.
 */
4760
static void move_task(struct task_struct *p, struct lb_env *env)
4761
{
4762 4763 4764 4765
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
4766 4767
}

4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4814
	if (src_nid == dst_nid)
4815 4816
		return false;

4817 4818 4819 4820
	/* Always encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
		return true;

4821 4822 4823
	/* If both task and group weight improve, this move is a winner. */
	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
	    group_weight(p, dst_nid) > group_weight(p, src_nid))
4824 4825 4826 4827
		return true;

	return false;
}
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4843
	if (src_nid == dst_nid)
4844 4845
		return false;

4846 4847 4848 4849
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

4850 4851 4852
	/* If either task or group weight get worse, don't do it. */
	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
	    group_weight(p, dst_nid) < group_weight(p, src_nid))
4853 4854 4855 4856 4857
		return true;

	return false;
}

4858 4859 4860 4861 4862 4863
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4864 4865 4866 4867 4868 4869

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4870 4871
#endif

4872 4873 4874 4875
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
4876
int can_migrate_task(struct task_struct *p, struct lb_env *env)
4877 4878 4879 4880
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
4881
	 * 1) throttled_lb_pair, or
4882
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4883 4884
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
4885
	 */
4886 4887 4888
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

4889
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4890
		int cpu;
4891

4892
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4893

4894 4895
		env->flags |= LBF_SOME_PINNED;

4896 4897 4898 4899 4900 4901 4902 4903
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
4904
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4905 4906
			return 0;

4907 4908 4909
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4910
				env->flags |= LBF_DST_PINNED;
4911 4912 4913
				env->new_dst_cpu = cpu;
				break;
			}
4914
		}
4915

4916 4917
		return 0;
	}
4918 4919

	/* Record that we found atleast one task that could run on dst_cpu */
4920
	env->flags &= ~LBF_ALL_PINNED;
4921

4922
	if (task_running(env->src_rq, p)) {
4923
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4924 4925 4926 4927 4928
		return 0;
	}

	/*
	 * Aggressive migration if:
4929 4930 4931
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
4932
	 */
4933
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4934 4935
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

4947
	if (!tsk_cache_hot ||
4948
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
4949

4950
		if (tsk_cache_hot) {
4951
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4952
			schedstat_inc(p, se.statistics.nr_forced_migrations);
4953
		}
Z
Zhang Hang 已提交
4954

4955 4956 4957
		return 1;
	}

Z
Zhang Hang 已提交
4958 4959
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
4960 4961
}

4962 4963 4964 4965 4966 4967 4968
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
4969
static int move_one_task(struct lb_env *env)
4970 4971 4972
{
	struct task_struct *p, *n;

4973 4974 4975
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
4976

4977 4978 4979 4980 4981 4982 4983 4984
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
4985 4986 4987 4988
	}
	return 0;
}

4989 4990
static const unsigned int sched_nr_migrate_break = 32;

4991
/*
4992
 * move_tasks tries to move up to imbalance weighted load from busiest to
4993 4994 4995 4996 4997 4998
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
4999
{
5000 5001
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5002 5003
	unsigned long load;
	int pulled = 0;
5004

5005
	if (env->imbalance <= 0)
5006
		return 0;
5007

5008 5009
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5010

5011 5012
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5013
		if (env->loop > env->loop_max)
5014
			break;
5015 5016

		/* take a breather every nr_migrate tasks */
5017
		if (env->loop > env->loop_break) {
5018
			env->loop_break += sched_nr_migrate_break;
5019
			env->flags |= LBF_NEED_BREAK;
5020
			break;
5021
		}
5022

5023
		if (!can_migrate_task(p, env))
5024 5025 5026
			goto next;

		load = task_h_load(p);
5027

5028
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5029 5030
			goto next;

5031
		if ((load / 2) > env->imbalance)
5032
			goto next;
5033

5034
		move_task(p, env);
5035
		pulled++;
5036
		env->imbalance -= load;
5037 5038

#ifdef CONFIG_PREEMPT
5039 5040 5041 5042 5043
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5044
		if (env->idle == CPU_NEWLY_IDLE)
5045
			break;
5046 5047
#endif

5048 5049 5050 5051
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5052
		if (env->imbalance <= 0)
5053
			break;
5054 5055 5056

		continue;
next:
5057
		list_move_tail(&p->se.group_node, tasks);
5058
	}
5059

5060
	/*
5061 5062 5063
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5064
	 */
5065
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5066

5067
	return pulled;
5068 5069
}

P
Peter Zijlstra 已提交
5070
#ifdef CONFIG_FAIR_GROUP_SCHED
5071 5072 5073
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5074
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5075
{
5076 5077
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5078

5079 5080 5081
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5082

5083
	update_cfs_rq_blocked_load(cfs_rq, 1);
5084

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5099
		struct rq *rq = rq_of(cfs_rq);
5100 5101
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5102 5103
}

5104
static void update_blocked_averages(int cpu)
5105 5106
{
	struct rq *rq = cpu_rq(cpu);
5107 5108
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5109

5110 5111
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5112 5113 5114 5115
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5116
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5117 5118 5119 5120 5121 5122
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5123
	}
5124 5125

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5126 5127
}

5128
/*
5129
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5130 5131 5132
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5133
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5134
{
5135 5136
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5137
	unsigned long now = jiffies;
5138
	unsigned long load;
5139

5140
	if (cfs_rq->last_h_load_update == now)
5141 5142
		return;

5143 5144 5145 5146 5147 5148 5149
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5150

5151
	if (!se) {
5152
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5164 5165
}

5166
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5167
{
5168
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5169

5170
	update_cfs_rq_h_load(cfs_rq);
5171 5172
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5173 5174
}
#else
5175
static inline void update_blocked_averages(int cpu)
5176 5177 5178
{
}

5179
static unsigned long task_h_load(struct task_struct *p)
5180
{
5181
	return p->se.avg.load_avg_contrib;
5182
}
P
Peter Zijlstra 已提交
5183
#endif
5184 5185 5186 5187 5188 5189 5190 5191 5192

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5193
	unsigned long load_per_task;
5194
	unsigned long group_power;
5195 5196 5197 5198
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
5199
	int group_imb; /* Is there an imbalance in the group ? */
5200
	int group_has_capacity; /* Is there extra capacity in the group? */
5201 5202 5203 5204
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5205 5206
};

J
Joonsoo Kim 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5219
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5220 5221
};

5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5241 5242 5243
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5244
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5245 5246
 *
 * Return: The load index.
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5269
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5270
{
5271
	return SCHED_POWER_SCALE;
5272 5273 5274 5275 5276 5277 5278
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

5279
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5280
{
5281
	unsigned long weight = sd->span_weight;
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

5294
static unsigned long scale_rt_power(int cpu)
5295 5296
{
	struct rq *rq = cpu_rq(cpu);
5297
	u64 total, available, age_stamp, avg;
5298

5299 5300 5301 5302 5303 5304 5305
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5306
	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5307

5308
	if (unlikely(total < avg)) {
5309 5310 5311
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
5312
		available = total - avg;
5313
	}
5314

5315 5316
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
5317

5318
	total >>= SCHED_POWER_SHIFT;
5319 5320 5321 5322 5323 5324

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
5325
	unsigned long weight = sd->span_weight;
5326
	unsigned long power = SCHED_POWER_SCALE;
5327 5328 5329 5330 5331 5332 5333 5334
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

5335
		power >>= SCHED_POWER_SHIFT;
5336 5337
	}

5338
	sdg->sgp->power_orig = power;
5339 5340 5341 5342 5343 5344

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

5345
	power >>= SCHED_POWER_SHIFT;
5346

5347
	power *= scale_rt_power(cpu);
5348
	power >>= SCHED_POWER_SHIFT;
5349 5350 5351 5352

	if (!power)
		power = 1;

5353
	cpu_rq(cpu)->cpu_power = power;
5354
	sdg->sgp->power = power;
5355 5356
}

5357
void update_group_power(struct sched_domain *sd, int cpu)
5358 5359 5360
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5361
	unsigned long power, power_orig;
5362 5363 5364 5365 5366
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
5367 5368 5369 5370 5371 5372

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

5373
	power_orig = power = 0;
5374

P
Peter Zijlstra 已提交
5375 5376 5377 5378 5379 5380
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5381 5382 5383 5384 5385 5386
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
			struct sched_group *sg = cpu_rq(cpu)->sd->groups;

			power_orig += sg->sgp->power_orig;
			power += sg->sgp->power;
		}
P
Peter Zijlstra 已提交
5387 5388 5389 5390 5391 5392 5393 5394
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5395
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
5396 5397 5398 5399
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
5400

5401 5402
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
5403 5404
}

5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5416
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5417
	 */
P
Peter Zijlstra 已提交
5418
	if (!(sd->flags & SD_SHARE_CPUPOWER))
5419 5420 5421 5422 5423
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
5424
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5425 5426 5427 5428 5429
		return 1;

	return 0;
}

5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5446 5447
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5448 5449
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5450
 * update_sd_pick_busiest(). And calculate_imbalance() and
5451
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5452 5453 5454 5455 5456 5457 5458
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5459
static inline int sg_imbalanced(struct sched_group *group)
5460
{
5461
	return group->sgp->imbalance;
5462 5463
}

5464 5465 5466
/*
 * Compute the group capacity.
 *
5467 5468 5469
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
5470 5471 5472
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
5473 5474 5475 5476 5477 5478
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
5479

5480 5481 5482
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
5483

5484
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5485 5486 5487 5488 5489 5490
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

5491 5492
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5493
 * @env: The load balancing environment.
5494 5495 5496 5497 5498
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5499 5500
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5501
			int local_group, struct sg_lb_stats *sgs)
5502
{
5503
	unsigned long load;
5504
	int i;
5505

5506 5507
	memset(sgs, 0, sizeof(*sgs));

5508
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5509 5510 5511
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5512
		if (local_group)
5513
			load = target_load(i, load_idx);
5514
		else
5515 5516 5517
			load = source_load(i, load_idx);

		sgs->group_load += load;
5518
		sgs->sum_nr_running += rq->nr_running;
5519 5520 5521 5522
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5523
		sgs->sum_weighted_load += weighted_cpuload(i);
5524 5525
		if (idle_cpu(i))
			sgs->idle_cpus++;
5526 5527 5528
	}

	/* Adjust by relative CPU power of the group */
5529 5530
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5531

5532
	if (sgs->sum_nr_running)
5533
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5534

5535
	sgs->group_weight = group->group_weight;
5536

5537 5538 5539
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

5540 5541
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
5542 5543
}

5544 5545
/**
 * update_sd_pick_busiest - return 1 on busiest group
5546
 * @env: The load balancing environment.
5547 5548
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5549
 * @sgs: sched_group statistics
5550 5551 5552
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5553 5554 5555
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5556
 */
5557
static bool update_sd_pick_busiest(struct lb_env *env,
5558 5559
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5560
				   struct sg_lb_stats *sgs)
5561
{
J
Joonsoo Kim 已提交
5562
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5576 5577
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

5618
/**
5619
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5620
 * @env: The load balancing environment.
5621 5622
 * @sds: variable to hold the statistics for this sched_domain.
 */
5623
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5624
{
5625 5626
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5627
	struct sg_lb_stats tmp_sgs;
5628 5629 5630 5631 5632
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5633
	load_idx = get_sd_load_idx(env->sd, env->idle);
5634 5635

	do {
J
Joonsoo Kim 已提交
5636
		struct sg_lb_stats *sgs = &tmp_sgs;
5637 5638
		int local_group;

5639
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
5640 5641 5642
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
5643 5644 5645 5646

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
5647
		}
5648

J
Joonsoo Kim 已提交
5649
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5650

5651 5652 5653
		if (local_group)
			goto next_group;

5654 5655
		/*
		 * In case the child domain prefers tasks go to siblings
5656
		 * first, lower the sg capacity to one so that we'll try
5657 5658 5659 5660 5661 5662
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
5663
		 */
5664 5665
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
5666
			sgs->group_capacity = min(sgs->group_capacity, 1U);
5667

5668
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5669
			sds->busiest = sg;
J
Joonsoo Kim 已提交
5670
			sds->busiest_stat = *sgs;
5671 5672
		}

5673 5674 5675 5676 5677
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

5678
		sg = sg->next;
5679
	} while (sg != env->sd->groups);
5680 5681 5682

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
5702
 * Return: 1 when packing is required and a task should be moved to
5703 5704
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
5705
 * @env: The load balancing environment.
5706 5707
 * @sds: Statistics of the sched_domain which is to be packed
 */
5708
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5709 5710 5711
{
	int busiest_cpu;

5712
	if (!(env->sd->flags & SD_ASYM_PACKING))
5713 5714 5715 5716 5717 5718
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
5719
	if (env->dst_cpu > busiest_cpu)
5720 5721
		return 0;

5722
	env->imbalance = DIV_ROUND_CLOSEST(
5723 5724
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
5725

5726
	return 1;
5727 5728 5729 5730 5731 5732
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
5733
 * @env: The load balancing environment.
5734 5735
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
5736 5737
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5738 5739 5740
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
5741
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
5742
	struct sg_lb_stats *local, *busiest;
5743

J
Joonsoo Kim 已提交
5744 5745
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5746

J
Joonsoo Kim 已提交
5747 5748 5749 5750
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
5751

J
Joonsoo Kim 已提交
5752 5753
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
5754
		busiest->group_power;
J
Joonsoo Kim 已提交
5755

5756 5757
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
5758
		env->imbalance = busiest->load_per_task;
5759 5760 5761 5762 5763 5764 5765 5766 5767
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

5768
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
5769
			min(busiest->load_per_task, busiest->avg_load);
5770
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
5771
			min(local->load_per_task, local->avg_load);
5772
	pwr_now /= SCHED_POWER_SCALE;
5773 5774

	/* Amount of load we'd subtract */
J
Joonsoo Kim 已提交
5775
	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5776
		busiest->group_power;
J
Joonsoo Kim 已提交
5777
	if (busiest->avg_load > tmp) {
5778
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
5779 5780 5781
			    min(busiest->load_per_task,
				busiest->avg_load - tmp);
	}
5782 5783

	/* Amount of load we'd add */
5784
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
5785
	    busiest->load_per_task * SCHED_POWER_SCALE) {
5786 5787
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
5788 5789
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5790
		      local->group_power;
J
Joonsoo Kim 已提交
5791
	}
5792 5793
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
5794
	pwr_move /= SCHED_POWER_SCALE;
5795 5796 5797

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
5798
		env->imbalance = busiest->load_per_task;
5799 5800 5801 5802 5803
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
5804
 * @env: load balance environment
5805 5806
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
5807
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5808
{
5809
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
5810 5811 5812 5813
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5814

J
Joonsoo Kim 已提交
5815
	if (busiest->group_imb) {
5816 5817 5818 5819
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
5820 5821
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
5822 5823
	}

5824 5825 5826 5827 5828
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
5829 5830
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
5831 5832
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
5833 5834
	}

J
Joonsoo Kim 已提交
5835
	if (!busiest->group_imb) {
5836 5837
		/*
		 * Don't want to pull so many tasks that a group would go idle.
5838 5839
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
5840
		 */
J
Joonsoo Kim 已提交
5841 5842
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
5843

5844
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5845
		load_above_capacity /= busiest->group_power;
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
5856
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5857 5858

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
5859
	env->imbalance = min(
5860 5861
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
5862
	) / SCHED_POWER_SCALE;
5863 5864 5865

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
5866
	 * there is no guarantee that any tasks will be moved so we'll have
5867 5868 5869
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
5870
	if (env->imbalance < busiest->load_per_task)
5871
		return fix_small_imbalance(env, sds);
5872
}
5873

5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
5886
 * @env: The load balancing environment.
5887
 *
5888
 * Return:	- The busiest group if imbalance exists.
5889 5890 5891 5892
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
5893
static struct sched_group *find_busiest_group(struct lb_env *env)
5894
{
J
Joonsoo Kim 已提交
5895
	struct sg_lb_stats *local, *busiest;
5896 5897
	struct sd_lb_stats sds;

5898
	init_sd_lb_stats(&sds);
5899 5900 5901 5902 5903

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
5904
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
5905 5906
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
5907

5908 5909
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
5910 5911
		return sds.busiest;

5912
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
5913
	if (!sds.busiest || busiest->sum_nr_running == 0)
5914 5915
		goto out_balanced;

5916
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5917

P
Peter Zijlstra 已提交
5918 5919
	/*
	 * If the busiest group is imbalanced the below checks don't
5920
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
5921 5922
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
5923
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
5924 5925
		goto force_balance;

5926
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
5927 5928
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
5929 5930
		goto force_balance;

5931 5932 5933 5934
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
5935
	if (local->avg_load >= busiest->avg_load)
5936 5937
		goto out_balanced;

5938 5939 5940 5941
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
5942
	if (local->avg_load >= sds.avg_load)
5943 5944
		goto out_balanced;

5945
	if (env->idle == CPU_IDLE) {
5946 5947 5948 5949 5950 5951
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
5952 5953
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
5954
			goto out_balanced;
5955 5956 5957 5958 5959
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
5960 5961
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
5962
			goto out_balanced;
5963
	}
5964

5965
force_balance:
5966
	/* Looks like there is an imbalance. Compute it */
5967
	calculate_imbalance(env, &sds);
5968 5969 5970
	return sds.busiest;

out_balanced:
5971
	env->imbalance = 0;
5972 5973 5974 5975 5976 5977
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
5978
static struct rq *find_busiest_queue(struct lb_env *env,
5979
				     struct sched_group *group)
5980 5981
{
	struct rq *busiest = NULL, *rq;
5982
	unsigned long busiest_load = 0, busiest_power = 1;
5983 5984
	int i;

5985
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5986 5987 5988 5989 5990
		unsigned long power, capacity, wl;
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
5991

5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

		power = power_of(i);
		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6016
		if (!capacity)
6017
			capacity = fix_small_capacity(env->sd, group);
6018

6019
		wl = weighted_cpuload(i);
6020

6021 6022 6023 6024
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
6025
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6026 6027
			continue;

6028 6029 6030 6031 6032
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
6033 6034 6035 6036 6037
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
6038
		 */
6039 6040 6041
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6056
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6057

6058
static int need_active_balance(struct lb_env *env)
6059
{
6060 6061 6062
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6063 6064 6065 6066 6067 6068

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6069
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6070
			return 1;
6071 6072 6073 6074 6075
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6076 6077
static int active_load_balance_cpu_stop(void *data);

6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6109
	return balance_cpu == env->dst_cpu;
6110 6111
}

6112 6113 6114 6115 6116 6117
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6118
			int *continue_balancing)
6119
{
6120
	int ld_moved, cur_ld_moved, active_balance = 0;
6121
	struct sched_domain *sd_parent = sd->parent;
6122 6123 6124
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6125
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6126

6127 6128
	struct lb_env env = {
		.sd		= sd,
6129 6130
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6131
		.dst_grpmask    = sched_group_cpus(sd->groups),
6132
		.idle		= idle,
6133
		.loop_break	= sched_nr_migrate_break,
6134
		.cpus		= cpus,
6135
		.fbq_type	= all,
6136 6137
	};

6138 6139 6140 6141
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6142
	if (idle == CPU_NEWLY_IDLE)
6143 6144
		env.dst_grpmask = NULL;

6145 6146 6147 6148 6149
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6150 6151
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6152
		goto out_balanced;
6153
	}
6154

6155
	group = find_busiest_group(&env);
6156 6157 6158 6159 6160
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6161
	busiest = find_busiest_queue(&env, group);
6162 6163 6164 6165 6166
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6167
	BUG_ON(busiest == env.dst_rq);
6168

6169
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6170 6171 6172 6173 6174 6175 6176 6177 6178

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6179
		env.flags |= LBF_ALL_PINNED;
6180 6181 6182
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6183

6184
more_balance:
6185
		local_irq_save(flags);
6186
		double_rq_lock(env.dst_rq, busiest);
6187 6188 6189 6190 6191 6192 6193

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6194
		double_rq_unlock(env.dst_rq, busiest);
6195 6196 6197 6198 6199
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6200 6201 6202
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6203 6204 6205 6206 6207
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6227
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6228

6229 6230 6231
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6232
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6233
			env.dst_cpu	 = env.new_dst_cpu;
6234
			env.flags	&= ~LBF_DST_PINNED;
6235 6236
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6237

6238 6239 6240 6241 6242 6243
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6244

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6257
		/* All tasks on this runqueue were pinned by CPU affinity */
6258
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6259
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6260 6261 6262
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6263
				goto redo;
6264
			}
6265 6266 6267 6268 6269 6270
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6271 6272 6273 6274 6275 6276 6277 6278
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6279

6280
		if (need_active_balance(&env)) {
6281 6282
			raw_spin_lock_irqsave(&busiest->lock, flags);

6283 6284 6285
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6286 6287
			 */
			if (!cpumask_test_cpu(this_cpu,
6288
					tsk_cpus_allowed(busiest->curr))) {
6289 6290
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6291
				env.flags |= LBF_ALL_PINNED;
6292 6293 6294
				goto out_one_pinned;
			}

6295 6296 6297 6298 6299
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6300 6301 6302 6303 6304 6305
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6306

6307
			if (active_balance) {
6308 6309 6310
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6311
			}
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6345
	if (((env.flags & LBF_ALL_PINNED) &&
6346
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6347 6348 6349
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6350
	ld_moved = 0;
6351 6352 6353 6354 6355 6356 6357 6358
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6359
void idle_balance(int this_cpu, struct rq *this_rq)
6360 6361 6362 6363
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
6364
	u64 curr_cost = 0;
6365

6366
	this_rq->idle_stamp = rq_clock(this_rq);
6367 6368 6369 6370

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

6371 6372 6373 6374 6375
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6376
	update_blocked_averages(this_cpu);
6377
	rcu_read_lock();
6378 6379
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
6380
		int continue_balancing = 1;
6381
		u64 t0, domain_cost;
6382 6383 6384 6385

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6386 6387 6388
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

6389
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6390 6391
			t0 = sched_clock_cpu(this_cpu);

6392
			/* If we've pulled tasks over stop searching: */
6393
			pulled_task = load_balance(this_cpu, this_rq,
6394 6395
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6396 6397 6398 6399 6400 6401

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6402
		}
6403 6404 6405 6406

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
6407 6408
		if (pulled_task) {
			this_rq->idle_stamp = 0;
6409
			break;
N
Nikhil Rao 已提交
6410
		}
6411
	}
6412
	rcu_read_unlock();
6413 6414 6415

	raw_spin_lock(&this_rq->lock);

6416 6417 6418 6419 6420 6421 6422
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
6423 6424 6425

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;
6426 6427 6428
}

/*
6429 6430 6431 6432
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6433
 */
6434
static int active_load_balance_cpu_stop(void *data)
6435
{
6436 6437
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6438
	int target_cpu = busiest_rq->push_cpu;
6439
	struct rq *target_rq = cpu_rq(target_cpu);
6440
	struct sched_domain *sd;
6441 6442 6443 6444 6445 6446 6447

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6448 6449 6450

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6451
		goto out_unlock;
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6464
	rcu_read_lock();
6465 6466 6467 6468 6469 6470 6471
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6472 6473
		struct lb_env env = {
			.sd		= sd,
6474 6475 6476 6477
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6478 6479 6480
			.idle		= CPU_IDLE,
		};

6481 6482
		schedstat_inc(sd, alb_count);

6483
		if (move_one_task(&env))
6484 6485 6486 6487
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6488
	rcu_read_unlock();
6489
	double_unlock_balance(busiest_rq, target_rq);
6490 6491 6492 6493
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6494 6495
}

6496
#ifdef CONFIG_NO_HZ_COMMON
6497 6498 6499 6500 6501 6502
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6503
static struct {
6504
	cpumask_var_t idle_cpus_mask;
6505
	atomic_t nr_cpus;
6506 6507
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6508

6509
static inline int find_new_ilb(int call_cpu)
6510
{
6511
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6512

6513 6514 6515 6516
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6517 6518
}

6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

6530
	ilb_cpu = find_new_ilb(cpu);
6531

6532 6533
	if (ilb_cpu >= nr_cpu_ids)
		return;
6534

6535
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6536 6537 6538 6539 6540 6541 6542 6543
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6544 6545 6546
	return;
}

6547
static inline void nohz_balance_exit_idle(int cpu)
6548 6549 6550 6551 6552 6553 6554 6555
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6556 6557 6558
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
6559
	int cpu = smp_processor_id();
6560 6561

	rcu_read_lock();
6562
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6563 6564 6565 6566 6567

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

6568
	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6569
unlock:
6570 6571 6572 6573 6574 6575
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
6576
	int cpu = smp_processor_id();
6577 6578

	rcu_read_lock();
6579
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6580 6581 6582 6583 6584

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

6585
	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6586
unlock:
6587 6588 6589
	rcu_read_unlock();
}

6590
/*
6591
 * This routine will record that the cpu is going idle with tick stopped.
6592
 * This info will be used in performing idle load balancing in the future.
6593
 */
6594
void nohz_balance_enter_idle(int cpu)
6595
{
6596 6597 6598 6599 6600 6601
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

6602 6603
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
6604

6605 6606 6607
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6608
}
6609

6610
static int sched_ilb_notifier(struct notifier_block *nfb,
6611 6612 6613 6614
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
6615
		nohz_balance_exit_idle(smp_processor_id());
6616 6617 6618 6619 6620
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
6621 6622 6623 6624
#endif

static DEFINE_SPINLOCK(balancing);

6625 6626 6627 6628
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
6629
void update_max_interval(void)
6630 6631 6632 6633
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

6634 6635 6636 6637
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
6638
 * Balancing parameters are set up in init_sched_domains.
6639 6640 6641
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
6642
	int continue_balancing = 1;
6643 6644
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
6645
	struct sched_domain *sd;
6646 6647 6648
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
6649 6650
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
6651

6652
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
6653

6654
	rcu_read_lock();
6655
	for_each_domain(cpu, sd) {
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

6668 6669 6670
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

6682 6683 6684 6685 6686 6687
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
6688
		interval = clamp(interval, 1UL, max_load_balance_interval);
6689 6690 6691 6692 6693 6694 6695 6696 6697

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
6698
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6699
				/*
6700
				 * The LBF_DST_PINNED logic could have changed
6701 6702
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
6703
				 */
6704
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
6715 6716
	}
	if (need_decay) {
6717
		/*
6718 6719
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
6720
		 */
6721 6722
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
6723
	}
6724
	rcu_read_unlock();
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

6735
#ifdef CONFIG_NO_HZ_COMMON
6736
/*
6737
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6738 6739
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
6740 6741 6742 6743 6744 6745
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

6746 6747 6748
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
6749 6750

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6751
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6752 6753 6754 6755 6756 6757 6758
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
6759
		if (need_resched())
6760 6761
			break;

V
Vincent Guittot 已提交
6762 6763 6764 6765 6766 6767
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
6768 6769 6770 6771 6772 6773 6774

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
6775 6776
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6777 6778 6779
}

/*
6780 6781 6782 6783 6784 6785 6786
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
6787 6788 6789 6790
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
6791
	struct sched_domain *sd;
6792 6793
	struct sched_group_power *sgp;
	int nr_busy;
6794

6795
	if (unlikely(idle_cpu(cpu)))
6796 6797
		return 0;

6798 6799 6800 6801
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
6802
	set_cpu_sd_state_busy();
6803
	nohz_balance_exit_idle(cpu);
6804 6805 6806 6807 6808 6809 6810

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
6811 6812

	if (time_before(now, nohz.next_balance))
6813 6814
		return 0;

6815 6816
	if (rq->nr_running >= 2)
		goto need_kick;
6817

6818
	rcu_read_lock();
6819
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6820

6821 6822 6823
	if (sd) {
		sgp = sd->groups->sgp;
		nr_busy = atomic_read(&sgp->nr_busy_cpus);
6824

6825
		if (nr_busy > 1)
6826
			goto need_kick_unlock;
6827
	}
6828 6829 6830 6831 6832 6833 6834

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

6835
	rcu_read_unlock();
6836
	return 0;
6837 6838 6839

need_kick_unlock:
	rcu_read_unlock();
6840 6841
need_kick:
	return 1;
6842 6843 6844 6845 6846 6847 6848 6849 6850
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
6851 6852 6853 6854
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
6855
	enum cpu_idle_type idle = this_rq->idle_balance ?
6856 6857 6858 6859 6860
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
6861
	 * If this cpu has a pending nohz_balance_kick, then do the
6862 6863 6864
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
6865
	nohz_idle_balance(this_cpu, idle);
6866 6867 6868 6869
}

static inline int on_null_domain(int cpu)
{
6870
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6871 6872 6873 6874 6875
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
6876
void trigger_load_balance(struct rq *rq, int cpu)
6877 6878 6879 6880 6881
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
6882
#ifdef CONFIG_NO_HZ_COMMON
6883
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6884 6885
		nohz_balancer_kick(cpu);
#endif
6886 6887
}

6888 6889 6890 6891 6892 6893 6894 6895
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
6896 6897 6898

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
6899 6900
}

6901
#endif /* CONFIG_SMP */
6902

6903 6904 6905
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
6906
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6907 6908 6909 6910 6911 6912
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
6913
		entity_tick(cfs_rq, se, queued);
6914
	}
6915

6916
	if (numabalancing_enabled)
6917
		task_tick_numa(rq, curr);
6918

6919
	update_rq_runnable_avg(rq, 1);
6920 6921 6922
}

/*
P
Peter Zijlstra 已提交
6923 6924 6925
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
6926
 */
P
Peter Zijlstra 已提交
6927
static void task_fork_fair(struct task_struct *p)
6928
{
6929 6930
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
6931
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
6932 6933 6934
	struct rq *rq = this_rq();
	unsigned long flags;

6935
	raw_spin_lock_irqsave(&rq->lock, flags);
6936

6937 6938
	update_rq_clock(rq);

6939 6940 6941
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

6942 6943 6944 6945 6946 6947 6948 6949 6950
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
6951

6952
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
6953

6954 6955
	if (curr)
		se->vruntime = curr->vruntime;
6956
	place_entity(cfs_rq, se, 1);
6957

P
Peter Zijlstra 已提交
6958
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
6959
		/*
6960 6961 6962
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
6963
		swap(curr->vruntime, se->vruntime);
6964
		resched_task(rq->curr);
6965
	}
6966

6967 6968
	se->vruntime -= cfs_rq->min_vruntime;

6969
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6970 6971
}

6972 6973 6974 6975
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
6976 6977
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6978
{
P
Peter Zijlstra 已提交
6979 6980 6981
	if (!p->se.on_rq)
		return;

6982 6983 6984 6985 6986
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
6987
	if (rq->curr == p) {
6988 6989 6990
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
6991
		check_preempt_curr(rq, p, 0);
6992 6993
}

P
Peter Zijlstra 已提交
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7016

7017
#ifdef CONFIG_SMP
7018 7019 7020 7021 7022
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7023 7024 7025
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7026 7027
	}
#endif
P
Peter Zijlstra 已提交
7028 7029
}

7030 7031 7032
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7033
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7034
{
P
Peter Zijlstra 已提交
7035 7036 7037
	if (!p->se.on_rq)
		return;

7038 7039 7040 7041 7042
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7043
	if (rq->curr == p)
7044 7045
		resched_task(rq->curr);
	else
7046
		check_preempt_curr(rq, p, 0);
7047 7048
}

7049 7050 7051 7052 7053 7054 7055 7056 7057
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7058 7059 7060 7061 7062 7063 7064
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7065 7066
}

7067 7068 7069 7070 7071 7072 7073
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7074
#ifdef CONFIG_SMP
7075
	atomic64_set(&cfs_rq->decay_counter, 1);
7076
	atomic_long_set(&cfs_rq->removed_load, 0);
7077
#endif
7078 7079
}

P
Peter Zijlstra 已提交
7080
#ifdef CONFIG_FAIR_GROUP_SCHED
7081
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7082
{
7083
	struct cfs_rq *cfs_rq;
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7097 7098 7099 7100 7101 7102
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7103 7104
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7105 7106 7107 7108
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
7109
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7110 7111
		on_rq = 1;

7112 7113 7114
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
P
Peter Zijlstra 已提交
7128
}
7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
7227 7228
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7259 7260 7261

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7262
		for_each_sched_entity(se)
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7284

7285
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7286 7287 7288 7289 7290 7291 7292 7293 7294
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7295
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7296 7297 7298 7299

	return rr_interval;
}

7300 7301 7302
/*
 * All the scheduling class methods:
 */
7303
const struct sched_class fair_sched_class = {
7304
	.next			= &idle_sched_class,
7305 7306 7307
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7308
	.yield_to_task		= yield_to_task_fair,
7309

I
Ingo Molnar 已提交
7310
	.check_preempt_curr	= check_preempt_wakeup,
7311 7312 7313 7314

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7315
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7316
	.select_task_rq		= select_task_rq_fair,
7317
	.migrate_task_rq	= migrate_task_rq_fair,
7318

7319 7320
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7321 7322

	.task_waking		= task_waking_fair,
7323
#endif
7324

7325
	.set_curr_task          = set_curr_task_fair,
7326
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7327
	.task_fork		= task_fork_fair,
7328 7329

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7330
	.switched_from		= switched_from_fair,
7331
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7332

7333 7334
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7335
#ifdef CONFIG_FAIR_GROUP_SCHED
7336
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7337
#endif
7338 7339 7340
};

#ifdef CONFIG_SCHED_DEBUG
7341
void print_cfs_stats(struct seq_file *m, int cpu)
7342 7343 7344
{
	struct cfs_rq *cfs_rq;

7345
	rcu_read_lock();
7346
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7347
		print_cfs_rq(m, cpu, cfs_rq);
7348
	rcu_read_unlock();
7349 7350
}
#endif
7351 7352 7353 7354 7355 7356

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7357
#ifdef CONFIG_NO_HZ_COMMON
7358
	nohz.next_balance = jiffies;
7359
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7360
	cpu_notifier(sched_ilb_notifier, 0);
7361 7362 7363 7364
#endif
#endif /* SMP */

}