cpuset.c 77.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
A
Arun Sharma 已提交
58
#include <linux/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
62
#include <linux/wait.h>
L
Linus Torvalds 已提交
63

64 65 66 67 68
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
69
int number_of_cpusets __read_mostly;
70

71
/* Forward declare cgroup structures */
72 73 74
struct cgroup_subsys cpuset_subsys;
struct cpuset;

75 76 77 78 79 80 81 82 83
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
84
struct cpuset {
85 86
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
87
	unsigned long flags;		/* "unsigned long" so bitops work */
88
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
89 90
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

91 92 93 94 95 96 97 98 99 100 101 102
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

103
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
104

105 106 107 108 109 110
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
111 112
	/* partition number for rebuild_sched_domains() */
	int pn;
113

114 115
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
116 117
};

118
/* Retrieve the cpuset for a cgroup */
L
Li Zefan 已提交
119
static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
120
{
L
Li Zefan 已提交
121
	return container_of(cgroup_subsys_state(cgrp, cpuset_subsys_id),
122 123 124 125 126 127 128 129 130 131
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}

T
Tejun Heo 已提交
132 133 134 135 136 137 138 139 140
static inline struct cpuset *parent_cs(const struct cpuset *cs)
{
	struct cgroup *pcgrp = cs->css.cgroup->parent;

	if (pcgrp)
		return cgroup_cs(pcgrp);
	return NULL;
}

141 142 143 144 145 146 147 148 149 150 151 152 153
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
154 155
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
156
	CS_ONLINE,
L
Linus Torvalds 已提交
157 158
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
159
	CS_MEM_HARDWALL,
160
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
161
	CS_SCHED_LOAD_BALANCE,
162 163
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
164 165 166
} cpuset_flagbits_t;

/* convenient tests for these bits */
T
Tejun Heo 已提交
167 168 169 170 171
static inline bool is_cpuset_online(const struct cpuset *cs)
{
	return test_bit(CS_ONLINE, &cs->flags);
}

L
Linus Torvalds 已提交
172 173
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
174
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
175 176 177 178
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
179
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
180 181
}

182 183 184 185 186
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
187 188 189 190 191
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

192 193
static inline int is_memory_migrate(const struct cpuset *cs)
{
194
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
195 196
}

197 198 199 200 201 202 203 204 205 206
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
207
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
208 209
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
210 211
};

212 213 214 215 216 217 218 219 220 221 222 223 224
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
 * @pos_cgrp: used for iteration
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs)		\
	cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup)	\
		if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))

225 226 227 228 229 230 231 232 233 234 235 236 237 238
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
 * @pos_cgrp: used for iteration
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 * with RCU read locked.  The caller may modify @pos_cgrp by calling
 * cgroup_rightmost_descendant() to skip subtree.
 */
#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs)	\
	cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
		if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))

L
Linus Torvalds 已提交
239
/*
240 241 242 243 244 245 246 247 248 249 250 251 252 253
 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 * and callback_mutex.  The latter may nest inside the former.  We also
 * require taking task_lock() when dereferencing a task's cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold both mutexes to modify cpusets.  If a task holds
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 * is the only task able to also acquire callback_mutex and be able to
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
 * callback routines can briefly acquire callback_mutex to query cpusets.
 * Once it is ready to make the changes, it takes callback_mutex, blocking
 * everyone else.
254 255
 *
 * Calls to the kernel memory allocator can not be made while holding
256
 * callback_mutex, as that would risk double tripping on callback_mutex
257 258 259
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
260
 * If a task is only holding callback_mutex, then it has read-only
261 262
 * access to cpusets.
 *
263 264 265
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
266
 *
267
 * The cpuset_common_file_read() handlers only hold callback_mutex across
268 269 270
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
271 272
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
273 274
 */

275
static DEFINE_MUTEX(cpuset_mutex);
276
static DEFINE_MUTEX(callback_mutex);
277

278 279 280 281 282 283
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

284 285
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

286 287
/*
 * This is ugly, but preserves the userspace API for existing cpuset
288
 * users. If someone tries to mount the "cpuset" filesystem, we
289 290
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
291 292
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
293
{
294
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
295
	struct dentry *ret = ERR_PTR(-ENODEV);
296 297 298 299
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
300 301
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
302 303 304
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
305 306 307 308
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
309
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
310 311 312
};

/*
313
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
314
 * are online.  If none are online, walk up the cpuset hierarchy
315 316
 * until we find one that does have some online cpus.  The top
 * cpuset always has some cpus online.
L
Linus Torvalds 已提交
317 318
 *
 * One way or another, we guarantee to return some non-empty subset
319
 * of cpu_online_mask.
L
Linus Torvalds 已提交
320
 *
321
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
322
 */
323 324
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
325
{
326
	while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
T
Tejun Heo 已提交
327
		cs = parent_cs(cs);
328
	cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
329 330 331 332
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
333 334
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
335
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
336 337
 *
 * One way or another, we guarantee to return some non-empty subset
338
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
339
 *
340
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
341 342 343
 */
static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
344
	while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
T
Tejun Heo 已提交
345
		cs = parent_cs(cs);
346
	nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
347 348
}

349 350 351
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
352
 * Called with callback_mutex/cpuset_mutex held
353 354 355 356 357 358 359 360 361 362 363 364 365 366
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
		tsk->flags |= PF_SPREAD_PAGE;
	else
		tsk->flags &= ~PF_SPREAD_PAGE;
	if (is_spread_slab(cs))
		tsk->flags |= PF_SPREAD_SLAB;
	else
		tsk->flags &= ~PF_SPREAD_SLAB;
}

L
Linus Torvalds 已提交
367 368 369 370 371
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
372
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
373 374 375 376
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
377
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
378 379 380 381 382
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

383 384 385 386 387 388
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
389 390 391 392 393 394 395 396 397 398 399 400 401
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
402 403 404 405 406 407 408 409
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
410
	free_cpumask_var(trial->cpus_allowed);
411 412 413
	kfree(trial);
}

L
Linus Torvalds 已提交
414 415 416 417 418 419 420
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
421
 * cpuset_mutex held.
L
Linus Torvalds 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
L
Li Zefan 已提交
436
	struct cgroup *cgrp;
L
Linus Torvalds 已提交
437
	struct cpuset *c, *par;
438 439 440
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
441 442

	/* Each of our child cpusets must be a subset of us */
443
	ret = -EBUSY;
L
Li Zefan 已提交
444
	cpuset_for_each_child(c, cgrp, cur)
445 446
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
447 448

	/* Remaining checks don't apply to root cpuset */
449
	ret = 0;
450
	if (cur == &top_cpuset)
451
		goto out;
L
Linus Torvalds 已提交
452

T
Tejun Heo 已提交
453
	par = parent_cs(cur);
454

L
Linus Torvalds 已提交
455
	/* We must be a subset of our parent cpuset */
456
	ret = -EACCES;
L
Linus Torvalds 已提交
457
	if (!is_cpuset_subset(trial, par))
458
		goto out;
L
Linus Torvalds 已提交
459

460 461 462 463
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
464
	ret = -EINVAL;
L
Li Zefan 已提交
465
	cpuset_for_each_child(c, cgrp, par) {
L
Linus Torvalds 已提交
466 467
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
468
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
469
			goto out;
L
Linus Torvalds 已提交
470 471 472
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
473
			goto out;
L
Linus Torvalds 已提交
474 475
	}

476 477
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
478
	 * be changed to have empty cpus_allowed or mems_allowed.
479
	 */
480
	ret = -ENOSPC;
481 482 483 484 485 486 487 488
	if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress)) {
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
489

490 491 492 493
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
494 495
}

496
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
497
/*
498
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
499 500 501 502
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
503
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
504 505
}

506 507 508 509 510 511 512 513
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

514 515
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
516
{
517 518
	struct cpuset *cp;
	struct cgroup *pos_cgrp;
519

520 521 522 523 524
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
525
			continue;
526
		}
527 528 529 530

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
531
	rcu_read_unlock();
532 533
}

P
Paul Jackson 已提交
534
/*
535 536 537 538 539
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
540
 * The output of this function needs to be passed to kernel/sched/core.c
541 542 543
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
544
 *
L
Li Zefan 已提交
545
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
546 547 548 549 550 551 552
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
553
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
554 555
 *
 * The three key local variables below are:
556
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
557 558 559 560 561 562 563 564 565 566 567 568
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
569
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
588
static int generate_sched_domains(cpumask_var_t **domains,
589
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
590 591 592 593 594
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
595
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
596
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
597
	int ndoms = 0;		/* number of sched domains in result */
598
	int nslot;		/* next empty doms[] struct cpumask slot */
599
	struct cgroup *pos_cgrp;
P
Paul Jackson 已提交
600 601

	doms = NULL;
602
	dattr = NULL;
603
	csa = NULL;
P
Paul Jackson 已提交
604 605 606

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
607 608
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
609
		if (!doms)
610 611
			goto done;

612 613 614
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
615
			update_domain_attr_tree(dattr, &top_cpuset);
616
		}
617
		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
618 619

		goto done;
P
Paul Jackson 已提交
620 621 622 623 624 625 626
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

627 628
	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
629
		/*
630 631 632 633 634 635
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
636
		 */
637 638
		if (!cpumask_empty(cp->cpus_allowed) &&
		    !is_sched_load_balance(cp))
639
			continue;
640

641 642 643 644 645 646 647
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
		pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

676 677 678 679
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
680
	doms = alloc_sched_domains(ndoms);
681
	if (!doms)
682 683 684 685 686 687
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
688
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
689 690 691

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
692
		struct cpumask *dp;
P
Paul Jackson 已提交
693 694
		int apn = a->pn;

695 696 697 698 699
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

700
		dp = doms[nslot];
701 702 703 704 705 706 707 708 709 710

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
711
			}
712 713
			continue;
		}
P
Paul Jackson 已提交
714

715
		cpumask_clear(dp);
716 717 718 719 720 721
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
722
				cpumask_or(dp, dp, b->cpus_allowed);
723 724 725 726 727
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
728 729
			}
		}
730
		nslot++;
P
Paul Jackson 已提交
731 732 733
	}
	BUG_ON(nslot != ndoms);

734 735 736
done:
	kfree(csa);

737 738 739 740 741 742 743
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

744 745 746 747 748 749 750 751
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
752 753 754 755 756
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
757
 *
758
 * Call with cpuset_mutex held.  Takes get_online_cpus().
759
 */
760
static void rebuild_sched_domains_locked(void)
761 762
{
	struct sched_domain_attr *attr;
763
	cpumask_var_t *doms;
764 765
	int ndoms;

766
	lockdep_assert_held(&cpuset_mutex);
767
	get_online_cpus();
768

769 770 771 772 773 774 775 776
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
	if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
		goto out;

777 778 779 780 781
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
782
out:
783
	put_online_cpus();
784
}
785
#else /* !CONFIG_SMP */
786
static void rebuild_sched_domains_locked(void)
787 788 789
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
790

791 792
void rebuild_sched_domains(void)
{
793
	mutex_lock(&cpuset_mutex);
794
	rebuild_sched_domains_locked();
795
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
796 797
}

798 799 800
/*
 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
 * @cs: the cpuset in interest
C
Cliff Wickman 已提交
801
 *
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
 * with non-empty cpus. We use effective cpumask whenever:
 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
 *   if the cpuset they reside in has no cpus)
 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
 *
 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
 * exception. See comments there.
 */
static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
{
	while (cpumask_empty(cs->cpus_allowed))
		cs = parent_cs(cs);
	return cs;
}

/*
 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
 * @cs: the cpuset in interest
 *
 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
 * with non-empty memss. We use effective nodemask whenever:
 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
 *   if the cpuset they reside in has no mems)
 * - we want to retrieve task_cs(tsk)'s mems_allowed.
 *
 * Called with cpuset_mutex held.
829
 */
830
static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
C
Cliff Wickman 已提交
831
{
832 833 834
	while (nodes_empty(cs->mems_allowed))
		cs = parent_cs(cs);
	return cs;
C
Cliff Wickman 已提交
835
}
836

C
Cliff Wickman 已提交
837 838 839 840 841 842 843 844 845
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
846
 * holding cpuset_mutex at this point.
C
Cliff Wickman 已提交
847
 */
848 849
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
850
{
851 852 853 854
	struct cpuset *cpus_cs;

	cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cg));
	set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
C
Cliff Wickman 已提交
855 856
}

857 858 859
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
860
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
861
 *
862
 * Called with cpuset_mutex held
863 864 865 866
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
867 868
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
869
 */
870
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
871 872 873 874
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
L
Li Zefan 已提交
875
	scan.test_task = NULL;
876
	scan.process_task = cpuset_change_cpumask;
877 878
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
879 880
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
/*
 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
 * @root_cs: the root cpuset of the hierarchy
 * @update_root: update root cpuset or not?
 * @heap: the heap used by cgroup_scan_tasks()
 *
 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
 * which take on cpumask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_cpumask_hier(struct cpuset *root_cs,
				      bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
	struct cgroup *pos_cgrp;

	if (update_root)
		update_tasks_cpumask(root_cs, heap);

	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp have some CPU */
		if (!cpumask_empty(cp->cpus_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
			continue;
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_cpumask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

C
Cliff Wickman 已提交
920 921 922 923 924
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
925 926
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
927
{
928
	struct ptr_heap heap;
C
Cliff Wickman 已提交
929 930
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
931

932
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
933 934 935
	if (cs == &top_cpuset)
		return -EACCES;

936
	/*
937
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
938 939 940
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
941
	 */
942
	if (!*buf) {
943
		cpumask_clear(trialcs->cpus_allowed);
944
	} else {
945
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
946 947
		if (retval < 0)
			return retval;
948

949
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
950
			return -EINVAL;
951
	}
P
Paul Jackson 已提交
952

P
Paul Menage 已提交
953
	/* Nothing to do if the cpus didn't change */
954
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
955
		return 0;
C
Cliff Wickman 已提交
956

957 958 959 960
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

961 962 963 964
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

965
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
966

967
	mutex_lock(&callback_mutex);
968
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
969
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
970

971
	update_tasks_cpumask_hier(cs, true, &heap);
972 973

	heap_free(&heap);
C
Cliff Wickman 已提交
974

P
Paul Menage 已提交
975
	if (is_load_balanced)
976
		rebuild_sched_domains_locked();
977
	return 0;
L
Linus Torvalds 已提交
978 979
}

980 981 982 983 984 985 986 987
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
988
 *    Call holding cpuset_mutex, so current's cpuset won't change
989
 *    during this call, as manage_mutex holds off any cpuset_attach()
990 991
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
992
 *    our task's cpuset.
993 994 995 996 997 998 999 1000 1001 1002 1003
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;
1004
	struct cpuset *mems_cs;
1005 1006 1007 1008 1009

	tsk->mems_allowed = *to;

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

1010 1011
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &tsk->mems_allowed);
1012 1013
}

1014
/*
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 * we structure updates as setting all new allowed nodes, then clearing newly
 * disallowed ones.
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1026
	bool need_loop;
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return;
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return;

	task_lock(tsk);
1038 1039 1040 1041 1042 1043 1044 1045
	/*
	 * Determine if a loop is necessary if another thread is doing
	 * get_mems_allowed().  If at least one node remains unchanged and
	 * tsk does not have a mempolicy, then an empty nodemask will not be
	 * possible when mems_allowed is larger than a word.
	 */
	need_loop = task_has_mempolicy(tsk) ||
			!nodes_intersects(*newmems, tsk->mems_allowed);
1046

1047 1048
	if (need_loop)
		write_seqcount_begin(&tsk->mems_allowed_seq);
1049

1050 1051
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1052 1053

	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1054
	tsk->mems_allowed = *newmems;
1055 1056 1057 1058

	if (need_loop)
		write_seqcount_end(&tsk->mems_allowed_seq);

1059
	task_unlock(tsk);
1060 1061 1062 1063 1064
}

/*
 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1065
 * memory_migrate flag is set. Called with cpuset_mutex held.
1066 1067 1068 1069
 */
static void cpuset_change_nodemask(struct task_struct *p,
				   struct cgroup_scanner *scan)
{
1070
	struct cpuset *cs = cgroup_cs(scan->cg);
1071 1072
	struct mm_struct *mm;
	int migrate;
1073
	nodemask_t *newmems = scan->data;
1074

1075
	cpuset_change_task_nodemask(p, newmems);
1076

1077 1078 1079 1080 1081 1082 1083 1084
	mm = get_task_mm(p);
	if (!mm)
		return;

	migrate = is_memory_migrate(cs);

	mpol_rebind_mm(mm, &cs->mems_allowed);
	if (migrate)
1085
		cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
1086 1087 1088
	mmput(mm);
}

1089 1090
static void *cpuset_being_rebound;

1091 1092 1093
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1094
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1095
 *
1096
 * Called with cpuset_mutex held
1097 1098
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
1099
 */
1100
static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
L
Linus Torvalds 已提交
1101
{
1102
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1103
	struct cgroup_scanner scan;
1104
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1105

1106
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1107

1108
	guarantee_online_mems(mems_cs, &newmems);
1109

1110 1111 1112
	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_nodemask;
1113
	scan.heap = heap;
1114
	scan.data = &newmems;
1115 1116

	/*
1117 1118 1119 1120
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1121
	 * the global cpuset_mutex, we know that no other rebind effort
1122
	 * will be contending for the global variable cpuset_being_rebound.
1123
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1124
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1125
	 */
1126
	cgroup_scan_tasks(&scan);
1127

1128 1129 1130 1131 1132 1133
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1134
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1135
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1136 1137
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
 * @cs: the root cpuset of the hierarchy
 * @update_root: update the root cpuset or not?
 * @heap: the heap used by cgroup_scan_tasks()
 *
 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
 * which take on nodemask of @root_cs.
 *
 * Called with cpuset_mutex held
 */
static void update_tasks_nodemask_hier(struct cpuset *root_cs,
				       bool update_root, struct ptr_heap *heap)
{
	struct cpuset *cp;
	struct cgroup *pos_cgrp;

	if (update_root)
		update_tasks_nodemask(root_cs, heap);

	rcu_read_lock();
	cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
		/* skip the whole subtree if @cp have some CPU */
		if (!nodes_empty(cp->mems_allowed)) {
			pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
			continue;
		}
		if (!css_tryget(&cp->css))
			continue;
		rcu_read_unlock();

		update_tasks_nodemask(cp, heap);

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1177 1178 1179
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1180 1181 1182 1183
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1184
 *
1185
 * Call with cpuset_mutex held.  May take callback_mutex during call.
1186 1187 1188 1189
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1190 1191
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1192 1193
{
	int retval;
1194
	struct ptr_heap heap;
1195 1196

	/*
1197
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1198 1199
	 * it's read-only
	 */
1200 1201 1202 1203
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1204 1205 1206 1207 1208 1209 1210 1211

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1212
		nodes_clear(trialcs->mems_allowed);
1213
	} else {
1214
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1215 1216 1217
		if (retval < 0)
			goto done;

1218
		if (!nodes_subset(trialcs->mems_allowed,
1219
				node_states[N_MEMORY])) {
1220 1221 1222
			retval =  -EINVAL;
			goto done;
		}
1223
	}
1224 1225

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1226 1227 1228
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1229
	retval = validate_change(cs, trialcs);
1230 1231 1232
	if (retval < 0)
		goto done;

1233 1234 1235 1236
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval < 0)
		goto done;

1237
	mutex_lock(&callback_mutex);
1238
	cs->mems_allowed = trialcs->mems_allowed;
1239 1240
	mutex_unlock(&callback_mutex);

1241
	update_tasks_nodemask_hier(cs, true, &heap);
1242 1243

	heap_free(&heap);
1244 1245 1246 1247
done:
	return retval;
}

1248 1249 1250 1251 1252
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1253
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1254
{
1255
#ifdef CONFIG_SMP
1256
	if (val < -1 || val >= sched_domain_level_max)
1257
		return -EINVAL;
1258
#endif
1259 1260 1261

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1262 1263
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1264
			rebuild_sched_domains_locked();
1265 1266 1267 1268 1269
	}

	return 0;
}

1270 1271 1272 1273 1274 1275 1276 1277
/*
 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
 * @tsk: task to be updated
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
1278
 * holding cpuset_mutex at this point.
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
 */
static void cpuset_change_flag(struct task_struct *tsk,
				struct cgroup_scanner *scan)
{
	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
}

/*
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 *
1291
 * Called with cpuset_mutex held
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
 */
static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = NULL;
	scan.process_task = cpuset_change_flag;
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
}

L
Linus Torvalds 已提交
1310 1311
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1312 1313 1314
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1315
 *
1316
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1317 1318
 */

1319 1320
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1321
{
1322
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1323
	int balance_flag_changed;
1324 1325 1326
	int spread_flag_changed;
	struct ptr_heap heap;
	int err;
L
Linus Torvalds 已提交
1327

1328 1329 1330 1331
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1332
	if (turning_on)
1333
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1334
	else
1335
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1336

1337
	err = validate_change(cs, trialcs);
1338
	if (err < 0)
1339
		goto out;
P
Paul Jackson 已提交
1340

1341 1342 1343 1344
	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (err < 0)
		goto out;

P
Paul Jackson 已提交
1345
	balance_flag_changed = (is_sched_load_balance(cs) !=
1346
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1347

1348 1349 1350
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1351
	mutex_lock(&callback_mutex);
1352
	cs->flags = trialcs->flags;
1353
	mutex_unlock(&callback_mutex);
1354

1355
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1356
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1357

1358 1359 1360
	if (spread_flag_changed)
		update_tasks_flags(cs, &heap);
	heap_free(&heap);
1361 1362 1363
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1364 1365
}

1366
/*
A
Adrian Bunk 已提交
1367
 * Frequency meter - How fast is some event occurring?
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1464
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1465
static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1466
{
1467
	struct cpuset *cs = cgroup_cs(cgrp);
1468 1469
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1470

1471 1472
	mutex_lock(&cpuset_mutex);

1473 1474 1475 1476
	/*
	 * We allow to move tasks into an empty cpuset if sane_behavior
	 * flag is set.
	 */
1477
	ret = -ENOSPC;
1478 1479
	if (!cgroup_sane_behavior(cgrp) &&
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1480
		goto out_unlock;
1481

1482 1483
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
1484 1485 1486 1487 1488 1489 1490
		 * Kthreads which disallow setaffinity shouldn't be moved
		 * to a new cpuset; we don't want to change their cpu
		 * affinity and isolating such threads by their set of
		 * allowed nodes is unnecessary.  Thus, cpusets are not
		 * applicable for such threads.  This prevents checking for
		 * success of set_cpus_allowed_ptr() on all attached tasks
		 * before cpus_allowed may be changed.
1491
		 */
1492
		ret = -EINVAL;
1493
		if (task->flags & PF_NO_SETAFFINITY)
1494 1495 1496 1497
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1498
	}
1499

1500 1501 1502 1503 1504
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1505 1506 1507 1508
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1509
}
1510

1511 1512 1513
static void cpuset_cancel_attach(struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
{
1514
	mutex_lock(&cpuset_mutex);
1515
	cgroup_cs(cgrp)->attach_in_progress--;
1516
	mutex_unlock(&cpuset_mutex);
1517
}
L
Linus Torvalds 已提交
1518

1519
/*
1520
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1521 1522 1523 1524 1525
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1526
static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1527
{
1528
	/* static buf protected by cpuset_mutex */
1529
	static nodemask_t cpuset_attach_nodemask_to;
1530
	struct mm_struct *mm;
1531 1532
	struct task_struct *task;
	struct task_struct *leader = cgroup_taskset_first(tset);
1533 1534 1535
	struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *oldcs = cgroup_cs(oldcgrp);
1536 1537
	struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
	struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1538

1539 1540
	mutex_lock(&cpuset_mutex);

1541 1542 1543 1544
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1545
		guarantee_online_cpus(cpus_cs, cpus_attach);
1546

1547
	guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	cgroup_taskset_for_each(task, cgrp, tset) {
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1559

1560 1561 1562 1563 1564
	/*
	 * Change mm, possibly for multiple threads in a threadgroup. This is
	 * expensive and may sleep.
	 */
	cpuset_attach_nodemask_to = cs->mems_allowed;
1565
	mm = get_task_mm(leader);
1566
	if (mm) {
1567 1568
		struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);

1569
		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

		/*
		 * old_mems_allowed is the same with mems_allowed here, except
		 * if this task is being moved automatically due to hotplug.
		 * In that case @mems_allowed has been updated and is empty,
		 * so @old_mems_allowed is the right nodesets that we migrate
		 * mm from.
		 */
		if (is_memory_migrate(cs)) {
			cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1580
					  &cpuset_attach_nodemask_to);
1581
		}
1582 1583
		mmput(mm);
	}
1584

1585
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1586

1587
	cs->attach_in_progress--;
1588 1589
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1590 1591

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1592 1593 1594 1595 1596
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1597
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1598 1599 1600 1601
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1602
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1603
	FILE_SCHED_LOAD_BALANCE,
1604
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1605 1606
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1607 1608
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1609 1610
} cpuset_filetype_t;

1611 1612 1613 1614
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1615
	int retval = 0;
1616

1617
	mutex_lock(&cpuset_mutex);
1618 1619
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1620
		goto out_unlock;
1621
	}
1622 1623

	switch (type) {
L
Linus Torvalds 已提交
1624
	case FILE_CPU_EXCLUSIVE:
1625
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1626 1627
		break;
	case FILE_MEM_EXCLUSIVE:
1628
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1629
		break;
1630 1631 1632
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1633
	case FILE_SCHED_LOAD_BALANCE:
1634
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1635
		break;
1636
	case FILE_MEMORY_MIGRATE:
1637
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1638
		break;
1639
	case FILE_MEMORY_PRESSURE_ENABLED:
1640
		cpuset_memory_pressure_enabled = !!val;
1641 1642 1643 1644
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1645
	case FILE_SPREAD_PAGE:
1646
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1647 1648
		break;
	case FILE_SPREAD_SLAB:
1649
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1650
		break;
L
Linus Torvalds 已提交
1651 1652
	default:
		retval = -EINVAL;
1653
		break;
L
Linus Torvalds 已提交
1654
	}
1655 1656
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1657 1658 1659
	return retval;
}

1660 1661 1662 1663
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;
1664
	int retval = -ENODEV;
1665

1666 1667 1668
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1669

1670 1671 1672 1673 1674 1675 1676 1677
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1678 1679
out_unlock:
	mutex_unlock(&cpuset_mutex);
1680 1681 1682
	return retval;
}

1683 1684 1685 1686 1687 1688
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
1689 1690
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1691
	int retval = -ENODEV;
1692

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
	 */
	flush_work(&cpuset_hotplug_work);

1706 1707 1708
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1709

1710
	trialcs = alloc_trial_cpuset(cs);
1711 1712
	if (!trialcs) {
		retval = -ENOMEM;
1713
		goto out_unlock;
1714
	}
1715

1716 1717
	switch (cft->private) {
	case FILE_CPULIST:
1718
		retval = update_cpumask(cs, trialcs, buf);
1719 1720
		break;
	case FILE_MEMLIST:
1721
		retval = update_nodemask(cs, trialcs, buf);
1722 1723 1724 1725 1726
		break;
	default:
		retval = -EINVAL;
		break;
	}
1727 1728

	free_trial_cpuset(trialcs);
1729 1730
out_unlock:
	mutex_unlock(&cpuset_mutex);
1731 1732 1733
	return retval;
}

L
Linus Torvalds 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

1746
static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1747
{
1748
	size_t count;
L
Linus Torvalds 已提交
1749

1750
	mutex_lock(&callback_mutex);
1751
	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1752
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1753

1754
	return count;
L
Linus Torvalds 已提交
1755 1756
}

1757
static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
L
Linus Torvalds 已提交
1758
{
1759
	size_t count;
L
Linus Torvalds 已提交
1760

1761
	mutex_lock(&callback_mutex);
1762
	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1763
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1764

1765
	return count;
L
Linus Torvalds 已提交
1766 1767
}

L
Li Zefan 已提交
1768
static ssize_t cpuset_common_file_read(struct cgroup *cgrp,
1769 1770 1771 1772
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1773
{
L
Li Zefan 已提交
1774
	struct cpuset *cs = cgroup_cs(cgrp);
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1780
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1798
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803
out:
	free_page((unsigned long)page);
	return retval;
}

L
Li Zefan 已提交
1804
static u64 cpuset_read_u64(struct cgroup *cgrp, struct cftype *cft)
1805
{
L
Li Zefan 已提交
1806
	struct cpuset *cs = cgroup_cs(cgrp);
1807 1808 1809 1810 1811 1812
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1813 1814
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1830 1831 1832

	/* Unreachable but makes gcc happy */
	return 0;
1833
}
L
Linus Torvalds 已提交
1834

L
Li Zefan 已提交
1835
static s64 cpuset_read_s64(struct cgroup *cgrp, struct cftype *cft)
1836
{
L
Li Zefan 已提交
1837
	struct cpuset *cs = cgroup_cs(cgrp);
1838 1839 1840 1841 1842 1843 1844
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1845 1846 1847

	/* Unrechable but makes gcc happy */
	return 0;
1848 1849
}

L
Linus Torvalds 已提交
1850 1851 1852 1853 1854

/*
 * for the common functions, 'private' gives the type of file
 */

1855 1856 1857 1858
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1859 1860
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1861 1862 1863 1864 1865 1866
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1867 1868
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1886 1887 1888 1889 1890 1891 1892
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1893 1894 1895 1896 1897 1898 1899 1900 1901
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1902 1903
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
L
Li Zefan 已提交
1919
		.mode = S_IRUGO,
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1935

1936 1937 1938 1939 1940 1941 1942
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1943

1944 1945
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1946 1947

/*
1948
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1949
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1950 1951
 */

L
Li Zefan 已提交
1952
static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cgrp)
L
Linus Torvalds 已提交
1953
{
T
Tejun Heo 已提交
1954
	struct cpuset *cs;
L
Linus Torvalds 已提交
1955

L
Li Zefan 已提交
1956
	if (!cgrp->parent)
1957
		return &top_cpuset.css;
1958

T
Tejun Heo 已提交
1959
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1960
	if (!cs)
1961
		return ERR_PTR(-ENOMEM);
1962 1963 1964 1965
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1966

P
Paul Jackson 已提交
1967
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1968
	cpumask_clear(cs->cpus_allowed);
1969
	nodes_clear(cs->mems_allowed);
1970
	fmeter_init(&cs->fmeter);
1971
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1972

T
Tejun Heo 已提交
1973 1974 1975 1976 1977 1978
	return &cs->css;
}

static int cpuset_css_online(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);
T
Tejun Heo 已提交
1979
	struct cpuset *parent = parent_cs(cs);
1980 1981
	struct cpuset *tmp_cs;
	struct cgroup *pos_cg;
T
Tejun Heo 已提交
1982 1983 1984 1985

	if (!parent)
		return 0;

1986 1987
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1988
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1989 1990 1991 1992
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1993

1994
	number_of_cpusets++;
1995

T
Tejun Heo 已提交
1996
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1997
		goto out_unlock;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2012 2013 2014 2015
	rcu_read_lock();
	cpuset_for_each_child(tmp_cs, pos_cg, parent) {
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2016
			goto out_unlock;
2017
		}
2018
	}
2019
	rcu_read_unlock();
2020 2021 2022 2023 2024

	mutex_lock(&callback_mutex);
	cs->mems_allowed = parent->mems_allowed;
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
	mutex_unlock(&callback_mutex);
2025 2026
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2027 2028 2029 2030 2031 2032 2033
	return 0;
}

static void cpuset_css_offline(struct cgroup *cgrp)
{
	struct cpuset *cs = cgroup_cs(cgrp);

2034
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2035 2036 2037 2038 2039

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

	number_of_cpusets--;
T
Tejun Heo 已提交
2040
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2041

2042
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2043 2044
}

P
Paul Jackson 已提交
2045 2046 2047
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
2048
 * will call rebuild_sched_domains_locked().
P
Paul Jackson 已提交
2049 2050
 */

L
Li Zefan 已提交
2051
static void cpuset_css_free(struct cgroup *cgrp)
L
Linus Torvalds 已提交
2052
{
L
Li Zefan 已提交
2053
	struct cpuset *cs = cgroup_cs(cgrp);
L
Linus Torvalds 已提交
2054

2055
	free_cpumask_var(cs->cpus_allowed);
2056
	kfree(cs);
L
Linus Torvalds 已提交
2057 2058
}

2059 2060
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
2061
	.css_alloc = cpuset_css_alloc,
T
Tejun Heo 已提交
2062 2063
	.css_online = cpuset_css_online,
	.css_offline = cpuset_css_offline,
2064
	.css_free = cpuset_css_free,
2065
	.can_attach = cpuset_can_attach,
2066
	.cancel_attach = cpuset_cancel_attach,
2067 2068
	.attach = cpuset_attach,
	.subsys_id = cpuset_subsys_id,
2069
	.base_cftypes = files,
2070 2071 2072
	.early_init = 1,
};

L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078 2079 2080
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2081
	int err = 0;
L
Linus Torvalds 已提交
2082

2083 2084 2085
	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
		BUG();

2086
	cpumask_setall(top_cpuset.cpus_allowed);
2087
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
2088

2089
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2090
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2091
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2092 2093 2094

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2095 2096
		return err;

2097 2098 2099
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

2100
	number_of_cpusets = 1;
2101
	return 0;
L
Linus Torvalds 已提交
2102 2103
}

2104
/*
2105
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2106 2107
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2108 2109
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2110
 */
2111 2112 2113 2114 2115 2116 2117 2118
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2119
	parent = parent_cs(cs);
2120
	while (cpumask_empty(parent->cpus_allowed) ||
2121
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2122
		parent = parent_cs(parent);
2123

2124 2125 2126 2127 2128 2129
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
		rcu_read_lock();
		printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
		       cgroup_name(cs->css.cgroup));
		rcu_read_unlock();
	}
2130 2131
}

2132
/**
2133
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2134
 * @cs: cpuset in interest
2135
 *
2136 2137 2138
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2139
 */
2140
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2141
{
2142
	static cpumask_t off_cpus;
2143
	static nodemask_t off_mems;
2144
	bool is_empty;
2145
	bool sane = cgroup_sane_behavior(cs->css.cgroup);
2146

2147 2148
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2149

2150
	mutex_lock(&cpuset_mutex);
2151

2152 2153 2154 2155 2156 2157 2158 2159 2160
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2161 2162
	cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
	nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2163

2164 2165 2166 2167 2168 2169
	mutex_lock(&callback_mutex);
	cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' cpumask
2170 2171 2172
	 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
	 * call update_tasks_cpumask() if the cpuset becomes empty, as
	 * the tasks in it will be migrated to an ancestor.
2173 2174
	 */
	if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2175
	    (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2176
		update_tasks_cpumask(cs, NULL);
2177

2178 2179 2180 2181 2182 2183
	mutex_lock(&callback_mutex);
	nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
	mutex_unlock(&callback_mutex);

	/*
	 * If sane_behavior flag is set, we need to update tasks' nodemask
2184 2185 2186
	 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
	 * call update_tasks_nodemask() if the cpuset becomes empty, as
	 * the tasks in it will be migratd to an ancestor.
2187 2188
	 */
	if ((sane && nodes_empty(cs->mems_allowed)) ||
2189
	    (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2190
		update_tasks_nodemask(cs, NULL);
2191

2192 2193
	is_empty = cpumask_empty(cs->cpus_allowed) ||
		nodes_empty(cs->mems_allowed);
2194

2195 2196 2197
	mutex_unlock(&cpuset_mutex);

	/*
2198 2199 2200 2201
	 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
	 *
	 * Otherwise move tasks to the nearest ancestor with execution
	 * resources.  This is full cgroup operation which will
2202 2203
	 * also call back into cpuset.  Should be done outside any lock.
	 */
2204
	if (!sane && is_empty)
2205
		remove_tasks_in_empty_cpuset(cs);
2206 2207
}

2208
/**
2209
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2210
 *
2211 2212 2213 2214 2215
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2216
 *
2217
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2218 2219
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2220
 *
2221 2222
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2223
 */
2224
static void cpuset_hotplug_workfn(struct work_struct *work)
2225
{
2226 2227
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2228
	bool cpus_updated, mems_updated;
2229

2230
	mutex_lock(&cpuset_mutex);
2231

2232 2233 2234
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2235

2236 2237
	cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2238

2239 2240 2241 2242 2243 2244 2245
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
		mutex_lock(&callback_mutex);
		cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
		mutex_unlock(&callback_mutex);
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2246

2247 2248 2249 2250 2251
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
		mutex_lock(&callback_mutex);
		top_cpuset.mems_allowed = new_mems;
		mutex_unlock(&callback_mutex);
2252
		update_tasks_nodemask(&top_cpuset, NULL);
2253
	}
2254

2255 2256
	mutex_unlock(&cpuset_mutex);

2257 2258
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2259
		struct cpuset *cs;
2260
		struct cgroup *pos_cgrp;
2261

2262
		rcu_read_lock();
2263 2264 2265 2266
		cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
			if (!css_tryget(&cs->css))
				continue;
			rcu_read_unlock();
2267

2268
			cpuset_hotplug_update_tasks(cs);
2269

2270 2271 2272 2273 2274
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2275

2276
	/* rebuild sched domains if cpus_allowed has changed */
2277 2278
	if (cpus_updated)
		rebuild_sched_domains();
2279 2280
}

2281
void cpuset_update_active_cpus(bool cpu_online)
2282
{
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2295 2296
}

2297
/*
2298 2299
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2300
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2301
 */
2302 2303
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2304
{
2305
	schedule_work(&cpuset_hotplug_work);
2306
	return NOTIFY_OK;
2307
}
2308 2309 2310 2311 2312

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2313

L
Linus Torvalds 已提交
2314 2315 2316 2317
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2318
 */
L
Linus Torvalds 已提交
2319 2320
void __init cpuset_init_smp(void)
{
2321
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2322
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2323
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2324

2325
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
L
Linus Torvalds 已提交
2326 2327 2328 2329 2330
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2331
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2332
 *
2333
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2334
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2335
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2336 2337 2338
 * tasks cpuset.
 **/

2339
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2340
{
2341 2342
	struct cpuset *cpus_cs;

2343
	mutex_lock(&callback_mutex);
2344
	task_lock(tsk);
2345 2346
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	guarantee_online_cpus(cpus_cs, pmask);
2347
	task_unlock(tsk);
2348
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2349 2350
}

2351
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2352
{
2353
	const struct cpuset *cpus_cs;
2354 2355

	rcu_read_lock();
2356 2357
	cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
	do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2373 2374 2375
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2376 2377 2378
	 */
}

L
Linus Torvalds 已提交
2379 2380
void cpuset_init_current_mems_allowed(void)
{
2381
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2382 2383
}

2384 2385 2386 2387 2388 2389
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2390
 * subset of node_states[N_MEMORY], even if this means going outside the
2391 2392 2393 2394 2395
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
2396
	struct cpuset *mems_cs;
2397 2398
	nodemask_t mask;

2399
	mutex_lock(&callback_mutex);
2400
	task_lock(tsk);
2401 2402
	mems_cs = effective_nodemask_cpuset(task_cs(tsk));
	guarantee_online_mems(mems_cs, &mask);
2403
	task_unlock(tsk);
2404
	mutex_unlock(&callback_mutex);
2405 2406 2407 2408

	return mask;
}

2409
/**
2410 2411
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2412
 *
2413
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2414
 */
2415
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2416
{
2417
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2418 2419
}

2420
/*
2421 2422 2423 2424
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2425
 */
2426
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2427
{
T
Tejun Heo 已提交
2428 2429
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2430 2431 2432
	return cs;
}

2433
/**
2434 2435
 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2436
 * @gfp_mask: memory allocation flags
2437
 *
2438 2439 2440 2441 2442 2443
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
 * flag, yes.
2444 2445
 * Otherwise, no.
 *
2446 2447 2448
 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
 * might sleep, and might allow a node from an enclosing cpuset.
2449
 *
2450 2451
 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
 * cpusets, and never sleeps.
2452 2453 2454 2455 2456 2457 2458
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2459
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2460 2461
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2462
 * GFP_KERNEL allocations are not so marked, so can escape to the
2463
 * nearest enclosing hardwalled ancestor cpuset.
2464
 *
2465 2466 2467 2468 2469 2470 2471
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2472
 *
2473
 * The first call here from mm/page_alloc:get_page_from_freelist()
2474 2475 2476
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2477 2478 2479 2480 2481 2482
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2483 2484
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2485
 *	TIF_MEMDIE   - any node ok
2486
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2487
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2488 2489
 *
 * Rule:
2490
 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2491 2492
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2493
 */
2494
int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2495
{
2496
	const struct cpuset *cs;	/* current cpuset ancestors */
2497
	int allowed;			/* is allocation in zone z allowed? */
2498

2499
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2500
		return 1;
2501
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2502 2503
	if (node_isset(node, current->mems_allowed))
		return 1;
2504 2505 2506 2507 2508 2509
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2510 2511 2512
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2513 2514 2515
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2516
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2517
	mutex_lock(&callback_mutex);
2518 2519

	task_lock(current);
2520
	cs = nearest_hardwall_ancestor(task_cs(current));
2521 2522
	task_unlock(current);

2523
	allowed = node_isset(node, cs->mems_allowed);
2524
	mutex_unlock(&callback_mutex);
2525
	return allowed;
L
Linus Torvalds 已提交
2526 2527
}

2528
/*
2529 2530
 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
 * @node: is this an allowed node?
2531 2532
 * @gfp_mask: memory allocation flags
 *
2533 2534 2535 2536 2537
 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
 * yes.  If the task has been OOM killed and has access to memory reserves as
 * specified by the TIF_MEMDIE flag, yes.
 * Otherwise, no.
2538 2539 2540 2541 2542 2543 2544
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2545 2546
 * Unlike the cpuset_node_allowed_softwall() variant, above,
 * this variant requires that the node be in the current task's
2547 2548 2549 2550
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */
2551
int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2552 2553 2554 2555 2556
{
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2557 2558 2559 2560 2561 2562
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2563 2564 2565
	return 0;
}

2566
/**
2567 2568
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2593
static int cpuset_spread_node(int *rotor)
2594 2595 2596
{
	int node;

2597
	node = next_node(*rotor, current->mems_allowed);
2598 2599
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
2600
	*rotor = node;
2601 2602
	return node;
}
2603 2604 2605

int cpuset_mem_spread_node(void)
{
2606 2607 2608 2609
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2610 2611 2612 2613 2614
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2615 2616 2617 2618
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2619 2620 2621
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2622 2623
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2624
/**
2625 2626 2627 2628 2629 2630 2631 2632
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2633 2634
 **/

2635 2636
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2637
{
2638
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2639 2640
}

2641 2642
#define CPUSET_NODELIST_LEN	(256)

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
2653 2654 2655
	 /* Statically allocated to prevent using excess stack. */
	static char cpuset_nodelist[CPUSET_NODELIST_LEN];
	static DEFINE_SPINLOCK(cpuset_buffer_lock);
2656

2657
	struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2658

2659
	rcu_read_lock();
2660
	spin_lock(&cpuset_buffer_lock);
2661

2662 2663 2664
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2665 2666
	       tsk->comm, cgroup_name(cgrp), cpuset_nodelist);

2667
	spin_unlock(&cpuset_buffer_lock);
2668
	rcu_read_unlock();
2669 2670
}

2671 2672 2673 2674 2675 2676
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2677
int cpuset_memory_pressure_enabled __read_mostly;
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2700
	fmeter_markevent(&task_cs(current)->fmeter);
2701 2702 2703
	task_unlock(current);
}

2704
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2705 2706 2707 2708
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2709 2710
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2711
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2712
 *    anyway.
L
Linus Torvalds 已提交
2713
 */
2714
int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2715
{
2716
	struct pid *pid;
L
Linus Torvalds 已提交
2717 2718
	struct task_struct *tsk;
	char *buf;
2719
	struct cgroup_subsys_state *css;
2720
	int retval;
L
Linus Torvalds 已提交
2721

2722
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2723 2724
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2725 2726 2727
		goto out;

	retval = -ESRCH;
2728 2729
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2730 2731
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2732

L
Li Zefan 已提交
2733
	rcu_read_lock();
2734 2735
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Li Zefan 已提交
2736
	rcu_read_unlock();
L
Linus Torvalds 已提交
2737
	if (retval < 0)
L
Li Zefan 已提交
2738
		goto out_put_task;
L
Linus Torvalds 已提交
2739 2740
	seq_puts(m, buf);
	seq_putc(m, '\n');
L
Li Zefan 已提交
2741
out_put_task:
2742 2743
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2744
	kfree(buf);
2745
out:
L
Linus Torvalds 已提交
2746 2747
	return retval;
}
2748
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2749

2750
/* Display task mems_allowed in /proc/<pid>/status file. */
2751 2752 2753
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Mems_allowed:\t");
2754
	seq_nodemask(m, &task->mems_allowed);
2755
	seq_printf(m, "\n");
2756
	seq_printf(m, "Mems_allowed_list:\t");
2757
	seq_nodemask_list(m, &task->mems_allowed);
2758
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2759
}