blk-throttle.c 31.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

24 25 26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;
static void throtl_schedule_delayed_work(struct throtl_data *td,
				unsigned long delay);

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
struct throtl_rb_root {
	struct rb_root rb;
	struct rb_node *left;
	unsigned int count;
	unsigned long min_disptime;
};

#define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_disptime = 0}

#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

struct throtl_grp {
	/* List of throtl groups on the request queue*/
	struct hlist_node tg_node;

	/* active throtl group service_tree member */
	struct rb_node rb_node;

	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	struct blkio_group blkg;
	atomic_t ref;
	unsigned int flags;

	/* Two lists for READ and WRITE */
	struct bio_list bio_lists[2];

	/* Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* bytes per second rate limits */
	uint64_t bps[2];

68 69 70
	/* IOPS limits */
	unsigned int iops[2];

71 72
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
73 74
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
75 76 77 78

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
79 80

	/* Some throttle limits got updated for the group */
81
	int limits_changed;
82 83

	struct rcu_head rcu_head;
84 85 86 87 88 89 90 91 92 93
};

struct throtl_data
{
	/* List of throtl groups */
	struct hlist_head tg_list;

	/* service tree for active throtl groups */
	struct throtl_rb_root tg_service_tree;

94
	struct throtl_grp *root_tg;
95 96 97 98 99 100
	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
101
	 * number of total undestroyed groups
102 103 104 105 106
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
	struct delayed_work throtl_work;
107

108
	int limits_changed;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
};

enum tg_state_flags {
	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
};

#define THROTL_TG_FNS(name)						\
static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
{									\
	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
}									\
static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
{									\
	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
}									\
static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
{									\
	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
}

THROTL_TG_FNS(on_rr);

#define throtl_log_tg(td, tg, fmt, args...)				\
	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
				blkg_path(&(tg)->blkg), ##args);      	\

#define throtl_log(td, fmt, args...)	\
	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)

static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
{
	if (blkg)
		return container_of(blkg, struct throtl_grp, blkg);

	return NULL;
}

146
static inline unsigned int total_nr_queued(struct throtl_data *td)
147
{
148
	return td->nr_queued[0] + td->nr_queued[1];
149 150 151 152 153 154 155 156
}

static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
{
	atomic_inc(&tg->ref);
	return tg;
}

157 158 159 160 161
static void throtl_free_tg(struct rcu_head *head)
{
	struct throtl_grp *tg;

	tg = container_of(head, struct throtl_grp, rcu_head);
162
	free_percpu(tg->blkg.stats_cpu);
163 164 165
	kfree(tg);
}

166 167 168 169 170
static void throtl_put_tg(struct throtl_grp *tg)
{
	BUG_ON(atomic_read(&tg->ref) <= 0);
	if (!atomic_dec_and_test(&tg->ref))
		return;
171 172 173 174 175 176 177 178 179 180 181

	/*
	 * A group is freed in rcu manner. But having an rcu lock does not
	 * mean that one can access all the fields of blkg and assume these
	 * are valid. For example, don't try to follow throtl_data and
	 * request queue links.
	 *
	 * Having a reference to blkg under an rcu allows acess to only
	 * values local to groups like group stats and group rate limits
	 */
	call_rcu(&tg->rcu_head, throtl_free_tg);
182 183
}

184 185
static struct blkio_group *throtl_alloc_blkio_group(struct request_queue *q,
						    struct blkio_cgroup *blkcg)
186
{
187 188 189 190 191 192
	struct throtl_grp *tg;

	tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, q->node);
	if (!tg)
		return NULL;

193 194 195 196 197 198
	INIT_HLIST_NODE(&tg->tg_node);
	RB_CLEAR_NODE(&tg->rb_node);
	bio_list_init(&tg->bio_lists[0]);
	bio_list_init(&tg->bio_lists[1]);
	tg->limits_changed = false;

199 200 201 202
	tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
	tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
	tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
	tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
203 204 205 206 207 208 209 210 211

	/*
	 * Take the initial reference that will be released on destroy
	 * This can be thought of a joint reference by cgroup and
	 * request queue which will be dropped by either request queue
	 * exit or cgroup deletion path depending on who is exiting first.
	 */
	atomic_set(&tg->ref, 1);

212
	return &tg->blkg;
213 214
}

215 216
static void
__throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
217 218 219 220
{
	struct backing_dev_info *bdi = &td->queue->backing_dev_info;
	unsigned int major, minor;

221 222 223 224 225 226 227 228 229 230 231 232 233 234
	if (!tg || tg->blkg.dev)
		return;

	/*
	 * Fill in device details for a group which might not have been
	 * filled at group creation time as queue was being instantiated
	 * and driver had not attached a device yet
	 */
	if (bdi->dev && dev_name(bdi->dev)) {
		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
		tg->blkg.dev = MKDEV(major, minor);
	}
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Should be called with without queue lock held. Here queue lock will be
 * taken rarely. It will be taken only once during life time of a group
 * if need be
 */
static void
throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!tg || tg->blkg.dev)
		return;

	spin_lock_irq(td->queue->queue_lock);
	__throtl_tg_fill_dev_details(td, tg);
	spin_unlock_irq(td->queue->queue_lock);
}

251 252
static void throtl_link_blkio_group(struct request_queue *q,
				    struct blkio_group *blkg)
253
{
254 255
	struct throtl_data *td = q->td;
	struct throtl_grp *tg = tg_of_blkg(blkg);
256

257
	__throtl_tg_fill_dev_details(td, tg);
258

259 260
	hlist_add_head(&tg->tg_node, &td->tg_list);
	td->nr_undestroyed_grps++;
261 262 263
}

static struct
264
throtl_grp *throtl_lookup_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
265 266 267
{
	struct throtl_grp *tg = NULL;

268 269
	/*
	 * This is the common case when there are no blkio cgroups.
270 271
	 * Avoid lookup in this case
	 */
272
	if (blkcg == &blkio_root_cgroup)
273
		tg = td->root_tg;
274
	else
275 276
		tg = tg_of_blkg(blkg_lookup(blkcg, td->queue,
					    BLKIO_POLICY_THROTL));
277

278
	__throtl_tg_fill_dev_details(td, tg);
279 280 281
	return tg;
}

282 283
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
						  struct blkio_cgroup *blkcg)
284
{
285
	struct request_queue *q = td->queue;
286
	struct throtl_grp *tg = NULL;
287

288
	/*
289 290
	 * This is the common case when there are no blkio cgroups.
	 * Avoid lookup in this case
291
	 */
292 293 294 295
	if (blkcg == &blkio_root_cgroup) {
		tg = td->root_tg;
	} else {
		struct blkio_group *blkg;
296

297
		blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_THROTL, false);
298

299 300 301 302 303
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
			tg = tg_of_blkg(blkg);
		else if (!blk_queue_dead(q))
			tg = td->root_tg;
304 305
	}

306
	__throtl_tg_fill_dev_details(td, tg);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	return tg;
}

static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
{
	/* Service tree is empty */
	if (!root->count)
		return NULL;

	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_tg(root->left);

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
	rb_erase_init(n, &root->rb);
	--root->count;
}

static void update_min_dispatch_time(struct throtl_rb_root *st)
{
	struct throtl_grp *tg;

	tg = throtl_rb_first(st);
	if (!tg)
		return;

	st->min_disptime = tg->disptime;
}

static void
tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &tg->rb_node;

	rb_link_node(&tg->rb_node, parent, node);
	rb_insert_color(&tg->rb_node, &st->rb);
}

static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	tg_service_tree_add(st, tg);
	throtl_mark_tg_on_rr(tg);
	st->count++;
}

static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!throtl_tg_on_rr(tg))
		__throtl_enqueue_tg(td, tg);
}

static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
	throtl_clear_tg_on_rr(tg);
}

static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (throtl_tg_on_rr(tg))
		__throtl_dequeue_tg(td, tg);
}

static void throtl_schedule_next_dispatch(struct throtl_data *td)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	/*
	 * If there are more bios pending, schedule more work.
	 */
	if (!total_nr_queued(td))
		return;

	BUG_ON(!st->count);

	update_min_dispatch_time(st);

	if (time_before_eq(st->min_disptime, jiffies))
420
		throtl_schedule_delayed_work(td, 0);
421
	else
422
		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
423 424 425 426 427 428
}

static inline void
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	tg->bytes_disp[rw] = 0;
429
	tg->io_disp[rw] = 0;
430 431 432 433 434 435 436
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

437 438 439 440 441 442
static inline void throtl_set_slice_end(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static inline void throtl_extend_slice(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

/* Determine if previously allocated or extended slice is complete or not */
static bool
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
static inline void
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
466 467
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
468 469 470 471 472 473 474 475 476 477 478

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
	if (throtl_slice_used(td, tg, rw))
		return;

479 480 481 482 483 484 485 486 487 488
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);

489 490 491 492 493 494
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
495 496 497
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
498

499
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
500

501
	if (!bytes_trim && !io_trim)
502 503 504 505 506 507 508
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

509 510 511 512 513
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

514 515
	tg->slice_start[rw] += nr_slices * throtl_slice;

516
	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
517
			" start=%lu end=%lu jiffies=%lu",
518
			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
519 520 521
			tg->slice_start[rw], tg->slice_end[rw], jiffies);
}

522 523
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
524 525
{
	bool rw = bio_data_dir(bio);
526
	unsigned int io_allowed;
527
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
528
	u64 tmp;
529

530
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
531

532 533 534 535 536 537
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

538 539 540 541 542 543 544 545 546 547 548 549 550 551
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
552 553

	if (tg->io_disp[rw] + 1 <= io_allowed) {
554 555 556 557 558
		if (wait)
			*wait = 0;
		return 1;
	}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
576
	u64 bytes_allowed, extra_bytes, tmp;
577
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
578 579 580 581 582 583 584 585 586

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

587 588
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
589
	bytes_allowed = tmp;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
611 612 613
	return 0;
}

614 615 616 617 618 619
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
				struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
637

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
	if (throtl_slice_used(td, tg, rw))
		throtl_start_new_slice(td, tg, rw);
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
	}

	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
671 672 673 674 675 676 677

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
678
	bool sync = rw_is_sync(bio->bi_rw);
679 680 681

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
682
	tg->io_disp[rw]++;
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

	blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
}

static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
			struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	bio_list_add(&tg->bio_lists[rw], bio);
	/* Take a bio reference on tg */
	throtl_ref_get_tg(tg);
	tg->nr_queued[rw]++;
	td->nr_queued[rw]++;
	throtl_enqueue_tg(td, tg);
}

static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
{
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
		tg_may_dispatch(td, tg, bio, &read_wait);

	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
		tg_may_dispatch(td, tg, bio, &write_wait);

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
	throtl_dequeue_tg(td, tg);
	tg->disptime = disptime;
	throtl_enqueue_tg(td, tg);
}

static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
				bool rw, struct bio_list *bl)
{
	struct bio *bio;

	bio = bio_list_pop(&tg->bio_lists[rw]);
	tg->nr_queued[rw]--;
	/* Drop bio reference on tg */
	throtl_put_tg(tg);

	BUG_ON(td->nr_queued[rw] <= 0);
	td->nr_queued[rw]--;

	throtl_charge_bio(tg, bio);
	bio_list_add(bl, bio);
	bio->bi_rw |= REQ_THROTTLED;

	throtl_trim_slice(td, tg, rw);
}

static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
				struct bio_list *bl)
{
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
745
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
{
	unsigned int nr_disp = 0;
	struct throtl_grp *tg;
	struct throtl_rb_root *st = &td->tg_service_tree;

	while (1) {
		tg = throtl_rb_first(st);

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

		throtl_dequeue_tg(td, tg);

		nr_disp += throtl_dispatch_tg(td, tg, bl);

		if (tg->nr_queued[0] || tg->nr_queued[1]) {
			tg_update_disptime(td, tg);
			throtl_enqueue_tg(td, tg);
		}

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

804 805 806 807 808
static void throtl_process_limit_change(struct throtl_data *td)
{
	struct throtl_grp *tg;
	struct hlist_node *pos, *n;

809
	if (!td->limits_changed)
810 811
		return;

812
	xchg(&td->limits_changed, false);
813

814
	throtl_log(td, "limits changed");
815

816
	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
817 818 819 820 821 822 823 824 825 826
		if (!tg->limits_changed)
			continue;

		if (!xchg(&tg->limits_changed, false))
			continue;

		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
			tg->iops[READ], tg->iops[WRITE]);

827 828 829 830 831 832 833 834 835
		/*
		 * Restart the slices for both READ and WRITES. It
		 * might happen that a group's limit are dropped
		 * suddenly and we don't want to account recently
		 * dispatched IO with new low rate
		 */
		throtl_start_new_slice(td, tg, 0);
		throtl_start_new_slice(td, tg, 1);

836
		if (throtl_tg_on_rr(tg))
837 838 839 840
			tg_update_disptime(td, tg);
	}
}

841 842 843 844 845 846 847
/* Dispatch throttled bios. Should be called without queue lock held. */
static int throtl_dispatch(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	unsigned int nr_disp = 0;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
848
	struct blk_plug plug;
849 850 851

	spin_lock_irq(q->queue_lock);

852 853
	throtl_process_limit_change(td);

854 855 856 857 858
	if (!total_nr_queued(td))
		goto out;

	bio_list_init(&bio_list_on_stack);

859
	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
			total_nr_queued(td), td->nr_queued[READ],
			td->nr_queued[WRITE]);

	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);

	if (nr_disp)
		throtl_log(td, "bios disp=%u", nr_disp);

	throtl_schedule_next_dispatch(td);
out:
	spin_unlock_irq(q->queue_lock);

	/*
	 * If we dispatched some requests, unplug the queue to make sure
	 * immediate dispatch
	 */
	if (nr_disp) {
877
		blk_start_plug(&plug);
878 879
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
880
		blk_finish_plug(&plug);
881 882 883 884 885 886 887 888 889 890 891 892 893 894
	}
	return nr_disp;
}

void blk_throtl_work(struct work_struct *work)
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					throtl_work.work);
	struct request_queue *q = td->queue;

	throtl_dispatch(q);
}

/* Call with queue lock held */
895 896
static void
throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
897 898 899 900
{

	struct delayed_work *dwork = &td->throtl_work;

901
	/* schedule work if limits changed even if no bio is queued */
902
	if (total_nr_queued(td) || td->limits_changed) {
903 904 905 906 907
		/*
		 * We might have a work scheduled to be executed in future.
		 * Cancel that and schedule a new one.
		 */
		__cancel_delayed_work(dwork);
908
		queue_delayed_work(kthrotld_workqueue, dwork, delay);
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
				delay, jiffies);
	}
}

static void
throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	/* Something wrong if we are trying to remove same group twice */
	BUG_ON(hlist_unhashed(&tg->tg_node));

	hlist_del_init(&tg->tg_node);

	/*
	 * Put the reference taken at the time of creation so that when all
	 * queues are gone, group can be destroyed.
	 */
	throtl_put_tg(tg);
	td->nr_undestroyed_grps--;
}

930
static bool throtl_release_tgs(struct throtl_data *td, bool release_root)
931 932 933
{
	struct hlist_node *pos, *n;
	struct throtl_grp *tg;
934
	bool empty = true;
935 936

	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
937 938 939 940
		/* skip root? */
		if (!release_root && tg == td->root_tg)
			continue;

941 942 943 944 945 946 947
		/*
		 * If cgroup removal path got to blk_group first and removed
		 * it from cgroup list, then it will take care of destroying
		 * cfqg also.
		 */
		if (!blkiocg_del_blkio_group(&tg->blkg))
			throtl_destroy_tg(td, tg);
948 949
		else
			empty = false;
950
	}
951
	return empty;
952 953 954 955 956 957 958 959
}

/*
 * Blk cgroup controller notification saying that blkio_group object is being
 * delinked as associated cgroup object is going away. That also means that
 * no new IO will come in this group. So get rid of this group as soon as
 * any pending IO in the group is finished.
 *
960 961 962
 * This function is called under rcu_read_lock(). @q is the rcu protected
 * pointer. That means @q is a valid request_queue pointer as long as we
 * are rcu read lock.
963
 *
964
 * @q was fetched from blkio_group under blkio_cgroup->lock. That means
965 966 967
 * it should not be NULL as even if queue was going away, cgroup deltion
 * path got to it first.
 */
968 969
void throtl_unlink_blkio_group(struct request_queue *q,
			       struct blkio_group *blkg)
970 971 972
{
	unsigned long flags;

973 974 975
	spin_lock_irqsave(q->queue_lock, flags);
	throtl_destroy_tg(q->td, tg_of_blkg(blkg));
	spin_unlock_irqrestore(q->queue_lock, flags);
976 977
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991
static bool throtl_clear_queue(struct request_queue *q)
{
	lockdep_assert_held(q->queue_lock);

	/*
	 * Clear tgs but leave the root one alone.  This is necessary
	 * because root_tg is expected to be persistent and safe because
	 * blk-throtl can never be disabled while @q is alive.  This is a
	 * kludge to prepare for unified blkg.  This whole function will be
	 * removed soon.
	 */
	return throtl_release_tgs(q->td, false);
}

992 993 994 995 996 997 998 999 1000
static void throtl_update_blkio_group_common(struct throtl_data *td,
				struct throtl_grp *tg)
{
	xchg(&tg->limits_changed, true);
	xchg(&td->limits_changed, true);
	/* Schedule a work now to process the limit change */
	throtl_schedule_delayed_work(td, 0);
}

1001
/*
1002
 * For all update functions, @q should be a valid pointer because these
1003
 * update functions are called under blkcg_lock, that means, blkg is
1004
 * valid and in turn @q is valid. queue exit path can not race because
1005 1006 1007 1008 1009
 * of blkcg_lock
 *
 * Can not take queue lock in update functions as queue lock under blkcg_lock
 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
 */
1010
static void throtl_update_blkio_group_read_bps(struct request_queue *q,
1011
				struct blkio_group *blkg, u64 read_bps)
1012
{
1013
	struct throtl_grp *tg = tg_of_blkg(blkg);
1014

1015
	tg->bps[READ] = read_bps;
1016
	throtl_update_blkio_group_common(q->td, tg);
1017 1018
}

1019
static void throtl_update_blkio_group_write_bps(struct request_queue *q,
1020
				struct blkio_group *blkg, u64 write_bps)
1021
{
1022
	struct throtl_grp *tg = tg_of_blkg(blkg);
1023

1024
	tg->bps[WRITE] = write_bps;
1025
	throtl_update_blkio_group_common(q->td, tg);
1026 1027
}

1028
static void throtl_update_blkio_group_read_iops(struct request_queue *q,
1029
			struct blkio_group *blkg, unsigned int read_iops)
1030
{
1031
	struct throtl_grp *tg = tg_of_blkg(blkg);
1032

1033
	tg->iops[READ] = read_iops;
1034
	throtl_update_blkio_group_common(q->td, tg);
1035 1036
}

1037
static void throtl_update_blkio_group_write_iops(struct request_queue *q,
1038
			struct blkio_group *blkg, unsigned int write_iops)
1039
{
1040
	struct throtl_grp *tg = tg_of_blkg(blkg);
1041

1042
	tg->iops[WRITE] = write_iops;
1043
	throtl_update_blkio_group_common(q->td, tg);
1044 1045
}

1046
static void throtl_shutdown_wq(struct request_queue *q)
1047 1048 1049 1050 1051 1052 1053 1054
{
	struct throtl_data *td = q->td;

	cancel_delayed_work_sync(&td->throtl_work);
}

static struct blkio_policy_type blkio_policy_throtl = {
	.ops = {
1055 1056
		.blkio_alloc_group_fn = throtl_alloc_blkio_group,
		.blkio_link_group_fn = throtl_link_blkio_group,
1057
		.blkio_unlink_group_fn = throtl_unlink_blkio_group,
1058
		.blkio_clear_queue_fn = throtl_clear_queue,
1059 1060 1061 1062
		.blkio_update_group_read_bps_fn =
					throtl_update_blkio_group_read_bps,
		.blkio_update_group_write_bps_fn =
					throtl_update_blkio_group_write_bps,
1063 1064 1065 1066
		.blkio_update_group_read_iops_fn =
					throtl_update_blkio_group_read_iops,
		.blkio_update_group_write_iops_fn =
					throtl_update_blkio_group_write_iops,
1067
	},
1068
	.plid = BLKIO_POLICY_THROTL,
1069 1070
};

1071
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1072 1073 1074 1075
{
	struct throtl_data *td = q->td;
	struct throtl_grp *tg;
	bool rw = bio_data_dir(bio), update_disptime = true;
1076
	struct blkio_cgroup *blkcg;
1077
	bool throttled = false;
1078 1079 1080

	if (bio->bi_rw & REQ_THROTTLED) {
		bio->bi_rw &= ~REQ_THROTTLED;
1081
		goto out;
1082 1083
	}

1084 1085 1086 1087 1088 1089 1090
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
	blkcg = task_blkio_cgroup(current);
1091
	tg = throtl_lookup_tg(td, blkcg);
1092 1093 1094 1095 1096
	if (tg) {
		throtl_tg_fill_dev_details(td, tg);

		if (tg_no_rule_group(tg, rw)) {
			blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size,
1097
					rw, rw_is_sync(bio->bi_rw));
1098
			goto out_unlock_rcu;
1099 1100 1101 1102 1103 1104 1105
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1106
	spin_lock_irq(q->queue_lock);
1107
	tg = throtl_lookup_create_tg(td, blkcg);
1108 1109
	if (unlikely(!tg))
		goto out_unlock;
1110

1111 1112 1113 1114 1115
	if (tg->nr_queued[rw]) {
		/*
		 * There is already another bio queued in same dir. No
		 * need to update dispatch time.
		 */
1116
		update_disptime = false;
1117
		goto queue_bio;
1118

1119 1120 1121 1122 1123
	}

	/* Bio is with-in rate limit of group */
	if (tg_may_dispatch(td, tg, bio, NULL)) {
		throtl_charge_bio(tg, bio);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
		throtl_trim_slice(td, tg, rw);
1137
		goto out_unlock;
1138 1139 1140
	}

queue_bio:
1141
	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1142 1143
			" iodisp=%u iops=%u queued=%d/%d",
			rw == READ ? 'R' : 'W',
1144
			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1145
			tg->io_disp[rw], tg->iops[rw],
1146 1147 1148
			tg->nr_queued[READ], tg->nr_queued[WRITE]);

	throtl_add_bio_tg(q->td, tg, bio);
1149
	throttled = true;
1150 1151 1152 1153 1154 1155

	if (update_disptime) {
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}

1156
out_unlock:
1157
	spin_unlock_irq(q->queue_lock);
1158 1159
out_unlock_rcu:
	rcu_read_unlock();
1160 1161
out:
	return throttled;
1162 1163
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
	struct throtl_rb_root *st = &td->tg_service_tree;
	struct throtl_grp *tg;
	struct bio_list bl;
	struct bio *bio;

1179
	WARN_ON_ONCE(!queue_is_locked(q));
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	bio_list_init(&bl);

	while ((tg = throtl_rb_first(st))) {
		throtl_dequeue_tg(td, tg);

		while ((bio = bio_list_peek(&tg->bio_lists[READ])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
		while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
	}
	spin_unlock_irq(q->queue_lock);

	while ((bio = bio_list_pop(&bl)))
		generic_make_request(bio);

	spin_lock_irq(q->queue_lock);
}

1199 1200 1201
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1202
	struct blkio_group *blkg;
1203 1204 1205 1206 1207 1208 1209

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

	INIT_HLIST_HEAD(&td->tg_list);
	td->tg_service_tree = THROTL_RB_ROOT;
1210
	td->limits_changed = false;
1211
	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1212

1213
	q->td = td;
1214
	td->queue = q;
V
Vivek Goyal 已提交
1215

1216
	/* alloc and init root group. */
1217 1218
	rcu_read_lock();
	spin_lock_irq(q->queue_lock);
1219

1220 1221 1222 1223
	blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_THROTL,
				  true);
	if (!IS_ERR(blkg))
		td->root_tg = tg_of_blkg(blkg);
1224

1225
	spin_unlock_irq(q->queue_lock);
1226 1227
	rcu_read_unlock();

1228 1229 1230 1231
	if (!td->root_tg) {
		kfree(td);
		return -ENOMEM;
	}
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	return 0;
}

void blk_throtl_exit(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	bool wait = false;

	BUG_ON(!td);

1242
	throtl_shutdown_wq(q);
1243 1244

	spin_lock_irq(q->queue_lock);
1245
	throtl_release_tgs(td, true);
1246 1247

	/* If there are other groups */
V
Vivek Goyal 已提交
1248
	if (td->nr_undestroyed_grps > 0)
1249 1250 1251 1252 1253
		wait = true;

	spin_unlock_irq(q->queue_lock);

	/*
1254
	 * Wait for tg->blkg->q accessors to exit their grace periods.
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	 * Do this wait only if there are other undestroyed groups out
	 * there (other than root group). This can happen if cgroup deletion
	 * path claimed the responsibility of cleaning up a group before
	 * queue cleanup code get to the group.
	 *
	 * Do not call synchronize_rcu() unconditionally as there are drivers
	 * which create/delete request queue hundreds of times during scan/boot
	 * and synchronize_rcu() can take significant time and slow down boot.
	 */
	if (wait)
		synchronize_rcu();
1266 1267 1268 1269 1270 1271

	/*
	 * Just being safe to make sure after previous flush if some body did
	 * update limits through cgroup and another work got queued, cancel
	 * it.
	 */
1272
	throtl_shutdown_wq(q);
1273 1274 1275 1276 1277
}

void blk_throtl_release(struct request_queue *q)
{
	kfree(q->td);
1278 1279 1280 1281
}

static int __init throtl_init(void)
{
1282 1283 1284 1285
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

1286 1287 1288 1289 1290
	blkio_policy_register(&blkio_policy_throtl);
	return 0;
}

module_init(throtl_init);