helper.c 161.8 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "exec/gdbstub.h"
L
Lluís 已提交
3
#include "helper.h"
4
#include "qemu/host-utils.h"
5
#include "sysemu/arch_init.h"
6
#include "sysemu/sysemu.h"
7
#include "qemu/bitops.h"
8 9
#include "qemu/crc32c.h"
#include <zlib.h> /* For crc32 */
P
Peter Maydell 已提交
10

11 12 13
#ifndef CONFIG_USER_ONLY
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
                                int access_type, int is_user,
A
Avi Kivity 已提交
14
                                hwaddr *phys_ptr, int *prot,
15
                                target_ulong *page_size);
16 17 18 19 20

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
21 22
#endif

23
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

50
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
70
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
71 72 73 74
    }
    return 0;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

117
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
118
{
119
    if (cpreg_field_is_64bit(ri)) {
120
        return CPREG_FIELD64(env, ri);
121
    } else {
122
        return CPREG_FIELD32(env, ri);
123
    }
124 125
}

126 127
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
128
{
129
    if (cpreg_field_is_64bit(ri)) {
130 131 132 133
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
134 135
}

136
static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
137
{
138
    /* Raw read of a coprocessor register (as needed for migration, etc). */
139
    if (ri->type & ARM_CP_CONST) {
140
        return ri->resetvalue;
141
    } else if (ri->raw_readfn) {
142
        return ri->raw_readfn(env, ri);
143
    } else if (ri->readfn) {
144
        return ri->readfn(env, ri);
145
    } else {
146
        return raw_read(env, ri);
147 148 149
    }
}

150
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
151
                             uint64_t v)
152 153 154 155 156 157 158
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
159
        return;
160
    } else if (ri->raw_writefn) {
161
        ri->raw_writefn(env, ri, v);
162
    } else if (ri->writefn) {
163
        ri->writefn(env, ri, v);
164
    } else {
165
        raw_write(env, ri, v);
166 167 168 169 170 171 172 173 174 175 176 177
    }
}

bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
178

179
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
180 181 182 183 184 185 186
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
187
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
188 189 190 191 192 193 194 195 196 197 198 199 200 201
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

202
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
203 204 205 206 207 208 209 210 211 212 213
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
214 215
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
216 217 218 219 220 221 222 223 224 225 226 227 228
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
229
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
245
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
246 247 248 249 250 251 252 253

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
254 255
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
256

257 258 259 260 261 262 263
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
264 265
}

266 267 268 269 270 271 272
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
{
    GList **plist = udata;

    *plist = g_list_prepend(*plist, key);
}

273 274 275 276 277
void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
278
    GList *keys = NULL;
279 280
    int arraylen;

281 282
    g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

304
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
305
{
306 307
    ARMCPU *cpu = arm_env_get_cpu(env);

308
    env->cp15.c3 = value;
309
    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
310 311
}

312
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
313
{
314 315
    ARMCPU *cpu = arm_env_get_cpu(env);

316 317 318 319
    if (env->cp15.c13_fcse != value) {
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
320
        tlb_flush(CPU(cpu), 1);
321 322 323
        env->cp15.c13_fcse = value;
    }
}
324 325 326

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
327
{
328 329
    ARMCPU *cpu = arm_env_get_cpu(env);

330 331 332 333 334
    if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
335
        tlb_flush(CPU(cpu), 1);
336 337 338 339
    }
    env->cp15.c13_context = value;
}

340 341
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
342 343
{
    /* Invalidate all (TLBIALL) */
344 345 346
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), 1);
347 348
}

349 350
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
351 352
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
353 354 355
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
356 357
}

358 359
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
360 361
{
    /* Invalidate by ASID (TLBIASID) */
362 363 364
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), value == 0);
365 366
}

367 368
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
369 370
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
371 372 373
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
374 375
}

376 377 378 379 380 381 382
static const ARMCPRegInfo cp_reginfo[] = {
    /* DBGDIDR: just RAZ. In particular this means the "debug architecture
     * version" bits will read as a reserved value, which should cause
     * Linux to not try to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
383 384 385 386
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15,
      .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
387
      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
388 389
    { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
390
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
391
    { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
392
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
393
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
394 395 396 397 398
    /* ??? This covers not just the impdef TLB lockdown registers but also
     * some v7VMSA registers relating to TEX remap, so it is overly broad.
     */
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
399 400 401 402
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
403 404
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
      .type = ARM_CP_NO_MIGRATE },
405
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
406 407
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
      .type = ARM_CP_NO_MIGRATE },
408
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
409 410
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
      .type = ARM_CP_NO_MIGRATE },
411
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
412 413
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
      .type = ARM_CP_NO_MIGRATE },
414 415 416 417
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
418 419 420
    REGINFO_SENTINEL
};

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
436 437 438 439 440 441 442 443 444 445
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
446 447
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
448 449
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
450 451 452
    REGINFO_SENTINEL
};

453 454
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
455 456 457 458 459 460 461 462
{
    if (env->cp15.c1_coproc != value) {
        env->cp15.c1_coproc = value;
        /* ??? Is this safe when called from within a TB?  */
        tb_flush(env);
    }
}

463 464 465 466 467 468 469
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
470
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
471
      .access = PL0_W, .type = ARM_CP_NOP },
472
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
473
      .access = PL0_W, .type = ARM_CP_NOP },
474 475 476 477 478 479 480 481
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
482 483
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
484 485
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
      .resetvalue = 0, .writefn = cpacr_write },
486 487 488
    REGINFO_SENTINEL
};

489
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
490
{
S
Stefan Weil 已提交
491
    /* Performance monitor registers user accessibility is controlled
492
     * by PMUSERENR.
493 494
     */
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
495
        return CP_ACCESS_TRAP;
496
    }
497
    return CP_ACCESS_OK;
498 499
}

500
#ifndef CONFIG_USER_ONLY
501 502
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
503
{
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    /* Don't computer the number of ticks in user mode */
    uint32_t temp_ticks;

    temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRE) {
        /* If the counter is enabled */
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
        } else {
            env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
        }
    }

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

525 526 527
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

    if (env->cp15.c9_pmcr & PMCRE) {
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            temp_ticks /= 64;
        }
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t total_ticks;

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

    total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    uint32_t total_ticks;

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

    total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
576
}
577
#endif
578

579
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 581 582 583 584 585
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

586 587
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
588 589 590 591 592
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

593 594
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
595 596 597 598
{
    env->cp15.c9_pmovsr &= ~value;
}

599 600
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
601 602 603 604
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

605
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 607 608 609 610
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

611 612
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
613 614 615 616 617 618
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

619 620
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
621 622 623 624 625
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

626 627
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
628
{
629 630 631 632 633 634
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
N
Nathan Rossi 已提交
635 636 637
    env->cp15.c12_vbar = value & ~0x1Ful;
}

638
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
639 640
{
    ARMCPU *cpu = arm_env_get_cpu(env);
641
    return cpu->ccsidr[env->cp15.c0_cssel];
642 643
}

644 645
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
646 647 648 649
{
    env->cp15.c0_cssel = value & 0xf;
}

650 651 652 653 654 655
static const ARMCPRegInfo v7_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
     * debug components
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
656
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
657
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
658 659 660
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
661 662 663 664 665 666 667 668 669 670 671 672 673 674
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
675 676 677
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
678 679
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
680 681
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
682
      .type = ARM_CP_NO_MIGRATE },
683 684
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
685 686 687 688
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
689
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
690
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
691
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
692
     * We choose to RAZ/WI.
693 694
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
695 696
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
697
#ifndef CONFIG_USER_ONLY
698
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
699 700
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write,
701
      .accessfn = pmreg_access },
702
#endif
703 704 705
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
706 707 708
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
709
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
710 711
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
712 713 714 715
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
716
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
717 718 719 720
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
721
      .writefn = pmintenset_write, .raw_writefn = raw_write },
722
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
723
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
724
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
725
      .resetvalue = 0, .writefn = pmintenclr_write, },
726 727
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
N
Nathan Rossi 已提交
728 729 730
      .access = PL1_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
      .resetvalue = 0 },
731 732 733
    { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
      .resetvalue = 0, },
734 735
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
736
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
737 738
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
739 740 741 742 743 744 745
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
      .writefn = csselr_write, .resetvalue = 0 },
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
    { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
      .resetvalue = 0 },
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     * The override is necessary because of the overly-broad TLB_LOCKDOWN
     * definition.
     */
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
766 767 768
    REGINFO_SENTINEL
};

769 770
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
771 772 773 774 775
{
    value &= 1;
    env->teecr = value;
}

776
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
777 778
{
    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
779
        return CP_ACCESS_TRAP;
780
    }
781
    return CP_ACCESS_OK;
782 783 784 785 786 787 788 789 790
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
791
      .accessfn = teehbr_access, .resetvalue = 0 },
792 793 794
    REGINFO_SENTINEL
};

795
static const ARMCPRegInfo v6k_cp_reginfo[] = {
796 797 798 799
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
800 801
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
802 803 804 805 806 807
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
808 809
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
810 811 812 813
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
814
      .access = PL1_RW,
815
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
816 817 818
    REGINFO_SENTINEL
};

819 820
#ifndef CONFIG_USER_ONLY

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
    if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_VIRT);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_VIRT);
}

874 875
static uint64_t gt_get_countervalue(CPUARMState *env)
{
876
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count >= gt->cval;
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
910
        timer_mod(cpu->gt_timer[timeridx], nexttick);
911 912 913 914
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
915
        timer_del(cpu->gt_timer[timeridx]);
916 917 918 919 920 921 922 923
    }
}

static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->opc1 & 1;

924
    timer_del(cpu->gt_timer[timeridx]);
925 926
}

927
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
928
{
929
    return gt_get_countervalue(env);
930 931
}

932 933
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
934 935 936 937 938 939
{
    int timeridx = ri->opc1 & 1;

    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
940 941

static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
942 943 944
{
    int timeridx = ri->crm & 1;

945 946
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                      gt_get_countervalue(env));
947 948
}

949 950
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
951 952 953 954 955 956 957 958
{
    int timeridx = ri->crm & 1;

    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
        + sextract64(value, 0, 32);
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

959 960
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->crm & 1;
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

    env->cp15.c14_timer[timeridx].ctl = value & 3;
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
    } else if ((oldval & value) & 2) {
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (oldval & 4) && (value & 2));
    }
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
999 1000 1001 1002 1003 1004 1005 1006
      .type = ARM_CP_NO_MIGRATE,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
      .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1007 1008 1009 1010
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1011 1012
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1013 1014 1015 1016 1017 1018
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1019 1020 1021 1022 1023 1024 1025 1026 1027
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1028
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1029
      .accessfn = gt_ptimer_access,
1030 1031
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1032
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1033 1034
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1035 1036 1037 1038 1039 1040 1041 1042 1043
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1044
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1045
      .accessfn = gt_vtimer_access,
1046 1047
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1048
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1049 1050 1051 1052
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1053
      .accessfn = gt_ptimer_access,
1054 1055
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1056 1057 1058 1059 1060
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1061 1062
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1063
      .accessfn = gt_vtimer_access,
1064 1065
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1066 1067 1068 1069 1070
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1071 1072 1073
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1074
      .accessfn = gt_pct_access,
1075 1076 1077 1078 1079 1080
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_pct_access,
1081 1082 1083 1084
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1085
      .accessfn = gt_vct_access,
1086 1087 1088 1089 1090 1091
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_vct_access,
1092 1093 1094 1095 1096
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .access = PL1_RW | PL0_R,
1097
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1098
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1099 1100 1101 1102 1103 1104 1105 1106 1107
      .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1108
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1109 1110 1111
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1112
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1113
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1114 1115 1116 1117 1118 1119 1120 1121 1122
      .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1123
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1124 1125 1126 1127 1128 1129
    },
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1130
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1131 1132
 * so instead just don't register any of them.
 */
1133 1134 1135 1136
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1137 1138
#endif

1139
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1140
{
1141 1142 1143
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        env->cp15.c7_par = value;
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1144 1145 1146 1147 1148 1149 1150 1151
        env->cp15.c7_par = value & 0xfffff6ff;
    } else {
        env->cp15.c7_par = value & 0xfffff1ff;
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1152 1153 1154 1155 1156 1157 1158 1159

/* Return true if extended addresses are enabled, ie this is an
 * LPAE implementation and we are using the long-descriptor translation
 * table format because the TTBCR EAE bit is set.
 */
static inline bool extended_addresses_enabled(CPUARMState *env)
{
    return arm_feature(env, ARM_FEATURE_LPAE)
1160
        && (env->cp15.c2_control & (1U << 31));
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (ri->opc2 & 4) {
        /* Other states are only available with TrustZone; in
         * a non-TZ implementation these registers don't exist
         * at all, which is an Uncategorized trap. This underdecoding
         * is safe because the reginfo is NO_MIGRATE.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

1176
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1177
{
A
Avi Kivity 已提交
1178
    hwaddr phys_addr;
1179 1180 1181 1182 1183 1184 1185
    target_ulong page_size;
    int prot;
    int ret, is_user = ri->opc2 & 2;
    int access_type = ri->opc2 & 1;

    ret = get_phys_addr(env, value, access_type, is_user,
                        &phys_addr, &prot, &page_size);
1186 1187 1188 1189 1190 1191 1192 1193 1194
    if (extended_addresses_enabled(env)) {
        /* ret is a DFSR/IFSR value for the long descriptor
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
        uint64_t par64 = (1 << 11); /* LPAE bit always set */
        if (ret == 0) {
            par64 |= phys_addr & ~0xfffULL;
            /* We don't set the ATTR or SH fields in the PAR. */
1195
        } else {
1196 1197 1198 1199 1200 1201
            par64 |= 1; /* F */
            par64 |= (ret & 0x3f) << 1; /* FS */
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1202
        }
1203 1204
        env->cp15.c7_par = par64;
        env->cp15.c7_par_hi = par64 >> 32;
1205
    } else {
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        /* ret is a DFSR/IFSR value for the short descriptor
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
        if (ret == 0) {
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
                env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
            } else {
                env->cp15.c7_par = phys_addr & 0xfffff000;
            }
        } else {
1219 1220
            env->cp15.c7_par = ((ret & (1 << 10)) >> 5) |
                ((ret & (1 << 12)) >> 6) |
1221 1222 1223
                ((ret & 0xf) << 1) | 1;
        }
        env->cp15.c7_par_hi = 0;
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    }
}
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1235 1236
      .access = PL1_W, .accessfn = ats_access,
      .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1237 1238 1239 1240
#endif
    REGINFO_SENTINEL
};

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

1271 1272
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1273 1274 1275 1276
{
    env->cp15.c5_data = extended_mpu_ap_bits(value);
}

1277
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1278
{
1279
    return simple_mpu_ap_bits(env->cp15.c5_data);
1280 1281
}

1282 1283
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1284 1285 1286 1287
{
    env->cp15.c5_insn = extended_mpu_ap_bits(value);
}

1288
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1289
{
1290
    return simple_mpu_ap_bits(env->cp15.c5_insn);
1291 1292 1293 1294
}

static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1295
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1296 1297 1298
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1299
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1300 1301 1302 1303 1304 1305 1306 1307
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1308 1309 1310 1311 1312 1313
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1314
    /* Protection region base and size registers */
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1339 1340 1341
    REGINFO_SENTINEL
};

1342 1343
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1344
{
1345 1346
    int maskshift = extract32(value, 0, 3);

1347
    if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1348 1349 1350 1351 1352 1353 1354 1355 1356
        value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
    } else {
        value &= 7;
    }
    /* Note that we always calculate c2_mask and c2_base_mask, but
     * they are only used for short-descriptor tables (ie if EAE is 0);
     * for long-descriptor tables the TTBCR fields are used differently
     * and the c2_mask and c2_base_mask values are meaningless.
     */
1357
    env->cp15.c2_control = value;
1358 1359
    env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1360 1361
}

1362 1363
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1364
{
1365 1366
    ARMCPU *cpu = arm_env_get_cpu(env);

1367 1368 1369 1370
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
1371
        tlb_flush(CPU(cpu), 1);
1372
    }
1373
    vmsa_ttbcr_raw_write(env, ri, value);
1374 1375
}

1376 1377 1378 1379 1380 1381 1382
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c2_base_mask = 0xffffc000u;
    env->cp15.c2_control = 0;
    env->cp15.c2_mask = 0;
}

1383 1384 1385
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
1386 1387
    ARMCPU *cpu = arm_env_get_cpu(env);

1388
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1389
    tlb_flush(CPU(cpu), 1);
1390 1391 1392
    env->cp15.c2_control = value;
}

1393 1394 1395 1396 1397 1398 1399
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
1400 1401 1402
        ARMCPU *cpu = arm_env_get_cpu(env);

        tlb_flush(CPU(cpu), 1);
1403 1404 1405 1406
    }
    raw_write(env, ri, value);
}

1407 1408 1409 1410 1411 1412 1413
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1414 1415 1416 1417 1418 1419 1420 1421
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1422 1423 1424 1425
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1426
      .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1427 1428 1429 1430
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
      .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1431 1432 1433
    { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
      .resetvalue = 0, },
1434 1435 1436
    REGINFO_SENTINEL
};

1437 1438
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1439 1440 1441 1442 1443 1444 1445
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

1446 1447
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1448 1449 1450 1451
{
    env->cp15.c15_threadid = value & 0xffff;
}

1452 1453
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
1454 1455
{
    /* Wait-for-interrupt (deprecated) */
1456
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1457 1458
}

1459 1460
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
1461 1462 1463 1464 1465 1466 1467 1468
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

1469 1470 1471 1472
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1491
      .type = ARM_CP_NO_MIGRATE,
1492 1493 1494 1495 1496 1497
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
1498
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1499 1500
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1501
      .writefn = omap_cachemaint_write },
1502 1503 1504
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1505 1506 1507
    REGINFO_SENTINEL
};

1508 1509
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
{
    value &= 0x3fff;
    if (env->cp15.c15_cpar != value) {
        /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
        tb_flush(env);
        env->cp15.c15_cpar = value;
    }
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
1524 1525 1526 1527
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1539 1540
      .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1541
      .resetvalue = 0 },
1542 1543 1544
    REGINFO_SENTINEL
};

1545 1546 1547
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1548 1549
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1550 1551 1552 1553 1554 1555
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1556 1557
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1571 1572 1573 1574 1575 1576 1577 1578
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1579 1580
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1581
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1582 1583
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1584 1585 1586
    REGINFO_SENTINEL
};

1587 1588 1589 1590
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1591 1592
      .access = PL1_RW, .resetvalue = 0,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1593 1594 1595
    REGINFO_SENTINEL
};

1596
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
P
Peter Maydell 已提交
1597
{
1598 1599
    CPUState *cs = CPU(arm_env_get_cpu(env));
    uint32_t mpidr = cs->cpu_index;
1600 1601
    /* We don't support setting cluster ID ([8..11]) (known as Aff1
     * in later ARM ARM versions), or any of the higher affinity level fields,
P
Peter Maydell 已提交
1602 1603 1604
     * so these bits always RAZ.
     */
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
1605
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
1606 1607 1608 1609 1610 1611
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
         * bit 30. (For instance, A9UP.) However we do
         * not currently model any of those cores.
         */
    }
1612
    return mpidr;
P
Peter Maydell 已提交
1613 1614 1615
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1616 1617
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1618
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
P
Peter Maydell 已提交
1619 1620 1621
    REGINFO_SENTINEL
};

1622
static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
1623
{
1624
    return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1625 1626
}

1627 1628
static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
{
    env->cp15.c7_par_hi = value >> 32;
    env->cp15.c7_par = value;
}

static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c7_par_hi = 0;
    env->cp15.c7_par = 0;
}

1640
static const ARMCPRegInfo lpae_cp_reginfo[] = {
1641
    /* NOP AMAIR0/1: the override is because these clash with the rather
1642 1643
     * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
     */
1644 1645
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1646 1647
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1648
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1649 1650 1651
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1652 1653 1654 1655 1656
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1657 1658 1659 1660
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT,
      .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1661 1662 1663
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1664
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1665 1666 1667
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1668 1669 1670
    REGINFO_SENTINEL
};

1671
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1672
{
1673
    return vfp_get_fpcr(env);
1674 1675
}

1676 1677
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1678 1679 1680 1681
{
    vfp_set_fpcr(env, value);
}

1682
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1683
{
1684
    return vfp_get_fpsr(env);
1685 1686
}

1687 1688
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1689 1690 1691 1692
{
    vfp_set_fpsr(env, value);
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

1705 1706 1707 1708
static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    /* Invalidate by VA (AArch64 version) */
1709
    ARMCPU *cpu = arm_env_get_cpu(env);
1710
    uint64_t pageaddr = value << 12;
1711
    tlb_flush_page(CPU(cpu), pageaddr);
1712 1713 1714 1715 1716 1717
}

static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    /* Invalidate by VA, all ASIDs (AArch64 version) */
1718
    ARMCPU *cpu = arm_env_get_cpu(env);
1719
    uint64_t pageaddr = value << 12;
1720
    tlb_flush_page(CPU(cpu), pageaddr);
1721 1722 1723 1724 1725 1726
}

static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by ASID (AArch64 version) */
1727
    ARMCPU *cpu = arm_env_get_cpu(env);
1728
    int asid = extract64(value, 48, 16);
1729
    tlb_flush(CPU(cpu), asid == 0);
1730 1731
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
     * For system mode the DZP bit here will need to be computed, not constant.
     */
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
      .access = PL0_R, .type = ARM_CP_CONST,
      .resetvalue = 0x10 },
1752 1753 1754
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
1839 1840 1841 1842 1843 1844
    /* Dummy implementation of monitor debug system control register:
     * we don't support debug.
     */
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1845 1846 1847 1848
    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
1849 1850 1851
    REGINFO_SENTINEL
};

1852 1853
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1854
{
1855 1856
    ARMCPU *cpu = arm_env_get_cpu(env);

1857 1858 1859
    env->cp15.c1_sys = value;
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
1860
    tlb_flush(CPU(cpu), 1);
1861 1862
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static void define_aarch64_debug_regs(ARMCPU *cpu)
{
    /* Define breakpoint and watchpoint registers. These do nothing
     * but read as written, for now.
     */
    int i;

    for (i = 0; i < 16; i++) {
        ARMCPRegInfo dbgregs[] = {
            { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
            { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
            { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
            { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
               REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

1905 1906 1907 1908 1909 1910 1911 1912 1913
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

1914
    define_arm_cp_regs(cpu, cp_reginfo);
1915
    if (arm_feature(env, ARM_FEATURE_V6)) {
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
            { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr0 },
            { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr1 },
            { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_dfr0 },
            { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_afr0 },
            { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr0 },
            { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr1 },
            { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr2 },
            { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr3 },
            { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar0 },
            { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar1 },
            { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar2 },
            { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar3 },
            { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar4 },
            { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
1970 1971 1972 1973
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
1974 1975 1976
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
1977
    if (arm_feature(env, ARM_FEATURE_V7)) {
1978
        /* v7 performance monitor control register: same implementor
1979 1980
         * field as main ID register, and we implement only the cycle
         * count register.
1981
         */
1982
#ifndef CONFIG_USER_ONLY
1983 1984 1985 1986
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
            .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1987 1988
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
1989
        };
1990 1991
        define_one_arm_cp_reg(cpu, &pmcr);
#endif
1992
        ARMCPRegInfo clidr = {
1993 1994
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1995 1996 1997
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
1998
        define_arm_cp_regs(cpu, v7_cp_reginfo);
1999 2000
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
2001
    }
2002
    if (arm_feature(env, ARM_FEATURE_V8)) {
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
        /* AArch64 ID registers, which all have impdef reset values */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr0 },
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v8_idregs);
2048
        define_arm_cp_regs(cpu, v8_cp_reginfo);
2049
        define_aarch64_debug_regs(cpu);
2050
    }
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
    if (arm_feature(env, ARM_FEATURE_MPU)) {
        /* These are the MPU registers prior to PMSAv6. Any new
         * PMSA core later than the ARM946 will require that we
         * implement the PMSAv6 or PMSAv7 registers, which are
         * completely different.
         */
        assert(!arm_feature(env, ARM_FEATURE_V6));
        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
2062 2063 2064
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
2065 2066 2067
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
2068 2069 2070
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
2071 2072 2073 2074 2075 2076 2077 2078 2079
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
2080 2081 2082
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
2083 2084 2085
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
2086 2087 2088 2089 2090 2091
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
2092 2093 2094
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
2095 2096 2097 2098 2099 2100 2101 2102 2103
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
        ARMCPRegInfo id_cp_reginfo[] = {
            /* Note that the MIDR isn't a simple constant register because
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
2104 2105 2106 2107
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
2108 2109
             */
            { .name = "MIDR",
2110
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2111
              .access = PL1_R, .resetvalue = cpu->midr,
2112
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2113 2114
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
2115 2116 2117
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0,
              .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST },
2118 2119 2120
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2121 2122 2123 2124
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
2158 2159 2160
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
2161 2162 2163 2164 2165 2166
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
        }
2167
        define_arm_cp_regs(cpu, id_cp_reginfo);
2168 2169
    }

2170 2171 2172 2173
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

2174 2175 2176 2177 2178 2179 2180 2181 2182
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr = {
            .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
            .access = PL1_RW, .type = ARM_CP_CONST,
            .resetvalue = cpu->reset_auxcr
        };
        define_one_arm_cp_reg(cpu, &auxcr);
    }

2183 2184 2185 2186 2187 2188 2189 2190 2191
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
        ARMCPRegInfo cbar = {
            .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
            .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
            .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
        };
        define_one_arm_cp_reg(cpu, &cbar);
    }

2192 2193 2194
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
2195 2196
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2197
            .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2198 2199
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
2210 2211
}

2212
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
2213
{
2214
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
2215 2216 2217 2218
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
2219
    CPUState *cs = CPU(cpu);
2220 2221
    CPUARMState *env = &cpu->env;

2222 2223 2224 2225 2226
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2227
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2228 2229
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2230
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2231 2232
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2233
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2234 2235
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
2236 2237
}

2238 2239
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
2240
{
2241 2242 2243
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
2244

2245 2246
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
2247
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2248
        return 1;
A
Andreas Färber 已提交
2249
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2250 2251 2252
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
2253 2254 2255
    }
}

2256
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
2257
{
2258
    ObjectClass *oc = data;
2259
    CPUListState *s = user_data;
A
Andreas Färber 已提交
2260 2261
    const char *typename;
    char *name;
P
pbrook 已提交
2262

A
Andreas Färber 已提交
2263 2264
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2265
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
2266 2267
                      name);
    g_free(name);
2268 2269 2270 2271
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
2272
    CPUListState s = {
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
2283 2284 2285 2286 2287 2288
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
2289 2290
}

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

2322
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2323 2324
                                   void *opaque, int state,
                                   int crm, int opc1, int opc2)
2325 2326 2327 2328 2329 2330 2331
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
    if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
        /* The AArch32 view of a shared register sees the lower 32 bits
         * of a 64 bit backing field. It is not migratable as the AArch64
         * view handles that. AArch64 also handles reset.
         * We assume it is a cp15 register.
         */
        r2->cp = 15;
        r2->type |= ARM_CP_NO_MIGRATE;
        r2->resetfn = arm_cp_reset_ignore;
#ifdef HOST_WORDS_BIGENDIAN
        if (r2->fieldoffset) {
            r2->fieldoffset += sizeof(uint32_t);
        }
#endif
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
         */
        if (r->cp == 0) {
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
        *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
    }
2360 2361 2362
    if (opaque) {
        r2->opaque = opaque;
    }
2363 2364 2365 2366
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
     * NO_MIGRATE so we don't try to transfer the register
     * multiple times. Special registers (ie NOP/WFI) are
     * never migratable.
     */
    if ((r->type & ARM_CP_SPECIAL) ||
        ((r->crm == CP_ANY) && crm != 0) ||
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
        r2->type |= ARM_CP_NO_MIGRATE;
    }

    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
2430
     */
2431
    int crm, opc1, opc2, state;
2432 2433 2434 2435 2436 2437 2438 2439
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
            assert(r->fieldoffset || r->readfn);
        }
        if (r->access & PL3_W) {
            assert(r->fieldoffset || r->writefn);
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2502 2503 2504 2505 2506 2507 2508 2509
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
                    add_cpreg_to_hashtable(cpu, r, opaque, state,
                                           crm, opc1, opc2);
                }
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

2525
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2526
{
2527
    return g_hash_table_lookup(cpregs, &encoded_cp);
2528 2529
}

2530 2531
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
2532 2533 2534 2535
{
    /* Helper coprocessor write function for write-ignore registers */
}

2536
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2537 2538 2539 2540 2541
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

2542 2543 2544 2545 2546
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

2547
static int bad_mode_switch(CPUARMState *env, int mode)
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
    default:
        return 1;
    }
}

2567 2568 2569
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
2570 2571
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2572 2573 2574
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
2575
        | (env->GE << 16) | (env->daif & CPSR_AIF);
2576 2577 2578 2579 2580
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
2581 2582
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

2602 2603 2604
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

2605
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2606 2607 2608 2609 2610 2611 2612 2613 2614
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
2615 2616 2617 2618 2619
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
2637 2638
uint32_t HELPER(clz)(uint32_t x)
{
2639
    return clz32(x);
P
pbrook 已提交
2640 2641
}

P
pbrook 已提交
2642 2643 2644 2645
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
2646 2647
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

2673
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
2674

2675
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
2676
{
2677
    cs->exception_index = -1;
B
bellard 已提交
2678 2679
}

2680 2681
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
                             int mmu_idx)
B
bellard 已提交
2682
{
2683 2684 2685
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

B
bellard 已提交
2686
    if (rw == 2) {
2687
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
2688 2689
        env->cp15.c6_insn = address;
    } else {
2690
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
2691 2692 2693 2694 2695
        env->cp15.c6_data = address;
    }
    return 1;
}

P
pbrook 已提交
2696
/* These should probably raise undefined insn exceptions.  */
2697
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
2698
{
2699 2700 2701
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
2702 2703
}

2704
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
2705
{
2706 2707 2708
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
2709 2710 2711
    return 0;
}

2712
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
2713
{
2714 2715 2716 2717 2718
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
2719 2720
}

2721
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
2722
{
2723 2724 2725
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 write\n");
P
pbrook 已提交
2726 2727
}

2728
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
2729
{
2730 2731 2732
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 read\n");
P
pbrook 已提交
2733 2734 2735
    return 0;
}

B
bellard 已提交
2736 2737 2738
#else

/* Map CPU modes onto saved register banks.  */
2739
int bank_number(int mode)
B
bellard 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
    }
2756
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
B
bellard 已提交
2757 2758
}

2759
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
2770
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
2771 2772
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
2773
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
2774 2775
    }

2776
    i = bank_number(old_mode);
B
bellard 已提交
2777 2778 2779 2780
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

2781
    i = bank_number(mode);
B
bellard 已提交
2782 2783 2784 2785 2786
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

P
pbrook 已提交
2787 2788
static void v7m_push(CPUARMState *env, uint32_t val)
{
2789 2790
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
2791
    env->regs[13] -= 4;
2792
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
2793 2794 2795 2796
}

static uint32_t v7m_pop(CPUARMState *env)
{
2797
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
2798
    uint32_t val;
2799

2800
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
2824
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
/* Exception names for debug logging; note that not all of these
 * precisely correspond to architectural exceptions.
 */
static const char * const excnames[] = {
    [EXCP_UDEF] = "Undefined Instruction",
    [EXCP_SWI] = "SVC",
    [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
    [EXCP_DATA_ABORT] = "Data Abort",
    [EXCP_IRQ] = "IRQ",
    [EXCP_FIQ] = "FIQ",
    [EXCP_BKPT] = "Breakpoint",
    [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
    [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
    [EXCP_STREX] = "QEMU intercept of STREX",
};

static inline void arm_log_exception(int idx)
{
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        const char *exc = NULL;

        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
            exc = excnames[idx];
        }
        if (!exc) {
            exc = "unknown";
        }
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
    }
}

2879
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
2880
{
2881 2882
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
2883 2884 2885 2886
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

2887
    arm_log_exception(cs->exception_index);
2888

P
pbrook 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
2899
    switch (cs->exception_index) {
P
pbrook 已提交
2900
    case EXCP_UDEF:
P
Paul Brook 已提交
2901
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
2902 2903
        return;
    case EXCP_SWI:
2904
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
2905
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
2906 2907 2908
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
P
Paul Brook 已提交
2909
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
2910 2911
        return;
    case EXCP_BKPT:
P
pbrook 已提交
2912 2913
        if (semihosting_enabled) {
            int nr;
2914
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
2915 2916 2917
            if (nr == 0xab) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
2918
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
2919 2920 2921
                return;
            }
        }
P
Paul Brook 已提交
2922
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
2923 2924
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
2925
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
2926 2927 2928 2929 2930
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
2931
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
2932 2933 2934 2935 2936 2937 2938
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
2939
        env->regs[13] -= 4;
P
pbrook 已提交
2940 2941
        xpsr |= 0x200;
    }
B
balrog 已提交
2942
    /* Switch to the handler mode.  */
P
pbrook 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
2952 2953
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
2954
    env->regs[14] = lr;
2955
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
2956 2957 2958 2959
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

B
bellard 已提交
2960
/* Handle a CPU exception.  */
2961
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
2962
{
2963 2964
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
2965 2966 2967 2968 2969
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;

2970 2971
    assert(!IS_M(env));

2972
    arm_log_exception(cs->exception_index);
2973

B
bellard 已提交
2974
    /* TODO: Vectored interrupt controller.  */
2975
    switch (cs->exception_index) {
B
bellard 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
2986 2987 2988
        if (semihosting_enabled) {
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
2989 2990
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
2991
            } else {
2992
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
2993
                    & 0xffffff;
2994 2995 2996 2997 2998 2999 3000
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[0] = do_arm_semihosting(env);
3001
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3002 3003 3004
                return;
            }
        }
B
bellard 已提交
3005 3006 3007
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
3008
        /* The PC already points to the next instruction.  */
B
bellard 已提交
3009 3010
        offset = 0;
        break;
P
pbrook 已提交
3011
    case EXCP_BKPT:
P
pbrook 已提交
3012
        /* See if this is a semihosting syscall.  */
P
pbrook 已提交
3013
        if (env->thumb && semihosting_enabled) {
3014
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
3015 3016 3017 3018
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
3019
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
3020 3021 3022
                return;
            }
        }
3023
        env->cp15.c5_insn = 2;
P
pbrook 已提交
3024 3025
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
3026 3027
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
                      env->cp15.c5_insn, env->cp15.c6_insn);
B
bellard 已提交
3028 3029 3030 3031 3032 3033
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
3034 3035
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
                      env->cp15.c5_data, env->cp15.c6_data);
B
bellard 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
    default:
3056
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
3057 3058 3059
        return; /* Never happens.  Keep compiler happy.  */
    }
    /* High vectors.  */
3060
    if (env->cp15.c1_sys & SCTLR_V) {
N
Nathan Rossi 已提交
3061
        /* when enabled, base address cannot be remapped.  */
B
bellard 已提交
3062
        addr += 0xffff0000;
N
Nathan Rossi 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
         * This register is only followed in non-monitor mode, and has a secure
         * and un-secure copy. Since the cpu is always in a un-secure operation
         * and is never in monitor mode this feature is always active.
         * Note: only bits 31:5 are valid.
         */
        addr += env->cp15.c12_vbar;
B
bellard 已提交
3072 3073 3074
    }
    switch_mode (env, new_mode);
    env->spsr = cpsr_read(env);
P
pbrook 已提交
3075 3076
    /* Clear IT bits.  */
    env->condexec_bits = 0;
3077
    /* Switch to the new mode, and to the correct instruction set.  */
3078
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3079
    env->daif |= mask;
3080 3081 3082
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
3083
        env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3084
    }
B
bellard 已提交
3085 3086
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
3087
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
3088 3089 3090 3091 3092
}

/* Check section/page access permissions.
   Returns the page protection flags, or zero if the access is not
   permitted.  */
3093
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3094
                           int access_type, int is_user)
B
bellard 已提交
3095
{
P
pbrook 已提交
3096 3097
  int prot_ro;

3098
  if (domain_prot == 3) {
B
bellard 已提交
3099
    return PAGE_READ | PAGE_WRITE;
3100
  }
B
bellard 已提交
3101

P
pbrook 已提交
3102 3103 3104 3105 3106
  if (access_type == 1)
      prot_ro = 0;
  else
      prot_ro = PAGE_READ;

B
bellard 已提交
3107 3108
  switch (ap) {
  case 0:
3109 3110 3111
      if (arm_feature(env, ARM_FEATURE_V7)) {
          return 0;
      }
P
pbrook 已提交
3112
      if (access_type == 1)
B
bellard 已提交
3113
          return 0;
3114 3115
      switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
      case SCTLR_S:
B
bellard 已提交
3116
          return is_user ? 0 : PAGE_READ;
3117
      case SCTLR_R:
B
bellard 已提交
3118 3119 3120 3121 3122 3123 3124 3125
          return PAGE_READ;
      default:
          return 0;
      }
  case 1:
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
  case 2:
      if (is_user)
P
pbrook 已提交
3126
          return prot_ro;
B
bellard 已提交
3127 3128 3129 3130
      else
          return PAGE_READ | PAGE_WRITE;
  case 3:
      return PAGE_READ | PAGE_WRITE;
P
pbrook 已提交
3131
  case 4: /* Reserved.  */
P
pbrook 已提交
3132 3133 3134 3135 3136
      return 0;
  case 5:
      return is_user ? 0 : prot_ro;
  case 6:
      return prot_ro;
P
pbrook 已提交
3137
  case 7:
3138
      if (!arm_feature (env, ARM_FEATURE_V6K))
P
pbrook 已提交
3139 3140
          return 0;
      return prot_ro;
B
bellard 已提交
3141 3142 3143 3144 3145
  default:
      abort();
  }
}

3146
static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
3147 3148 3149 3150
{
    uint32_t table;

    if (address & env->cp15.c2_mask)
3151
        table = env->cp15.ttbr1_el1 & 0xffffc000;
3152
    else
3153
        table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3154 3155 3156 3157 3158

    table |= (address >> 18) & 0x3ffc;
    return table;
}

3159
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
3160
                            int is_user, hwaddr *phys_ptr,
3161
                            int *prot, target_ulong *page_size)
B
bellard 已提交
3162
{
3163
    CPUState *cs = CPU(arm_env_get_cpu(env));
B
bellard 已提交
3164 3165 3166 3167 3168 3169
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
    int domain;
3170
    int domain_prot;
A
Avi Kivity 已提交
3171
    hwaddr phys_addr;
B
bellard 已提交
3172

P
pbrook 已提交
3173 3174
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
3175
    table = get_level1_table_address(env, address);
3176
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3177
    type = (desc & 3);
3178 3179
    domain = (desc >> 5) & 0x0f;
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
P
pbrook 已提交
3180
    if (type == 0) {
3181
        /* Section translation fault.  */
P
pbrook 已提交
3182 3183 3184
        code = 5;
        goto do_fault;
    }
3185
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
3197
        *page_size = 1024 * 1024;
P
pbrook 已提交
3198 3199 3200 3201 3202 3203 3204 3205 3206
    } else {
        /* Lookup l2 entry.  */
	if (type == 1) {
	    /* Coarse pagetable.  */
	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
	} else {
	    /* Fine pagetable.  */
	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
	}
3207
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3208 3209 3210 3211 3212 3213 3214
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
3215
            *page_size = 0x10000;
P
pbrook 已提交
3216
            break;
P
pbrook 已提交
3217 3218
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3219
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
3220
            *page_size = 0x1000;
P
pbrook 已提交
3221
            break;
P
pbrook 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
        case 3: /* 1k page.  */
	    if (type == 1) {
		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
		} else {
		    /* Page translation fault.  */
		    code = 7;
		    goto do_fault;
		}
	    } else {
		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
	    }
            ap = (desc >> 4) & 3;
P
Paul Brook 已提交
3235
            *page_size = 0x400;
P
pbrook 已提交
3236 3237
            break;
        default:
P
pbrook 已提交
3238 3239
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
3240
        }
P
pbrook 已提交
3241 3242
        code = 15;
    }
3243
    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
P
pbrook 已提交
3244 3245 3246 3247
    if (!*prot) {
        /* Access permission fault.  */
        goto do_fault;
    }
3248
    *prot |= PAGE_EXEC;
P
pbrook 已提交
3249 3250 3251 3252 3253 3254
    *phys_ptr = phys_addr;
    return 0;
do_fault:
    return code | (domain << 4);
}

3255
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
3256
                            int is_user, hwaddr *phys_ptr,
3257
                            int *prot, target_ulong *page_size)
P
pbrook 已提交
3258
{
3259
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
3260 3261 3262 3263
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
3264
    uint32_t pxn = 0;
P
pbrook 已提交
3265 3266
    int type;
    int ap;
3267
    int domain = 0;
3268
    int domain_prot;
A
Avi Kivity 已提交
3269
    hwaddr phys_addr;
P
pbrook 已提交
3270 3271 3272

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
3273
    table = get_level1_table_address(env, address);
3274
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3275
    type = (desc & 3);
3276 3277 3278 3279
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
3280 3281
        code = 5;
        goto do_fault;
3282 3283 3284
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
3285
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
3286
    }
3287 3288
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
    if (domain_prot == 0 || domain_prot == 2) {
3289
        if (type != 1) {
P
pbrook 已提交
3290
            code = 9; /* Section domain fault.  */
3291
        } else {
P
pbrook 已提交
3292
            code = 11; /* Page domain fault.  */
3293
        }
P
pbrook 已提交
3294 3295
        goto do_fault;
    }
3296
    if (type != 1) {
P
pbrook 已提交
3297 3298 3299
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
P
Paul Brook 已提交
3300
            *page_size = 0x1000000;
B
bellard 已提交
3301
        } else {
P
pbrook 已提交
3302 3303
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
3304
            *page_size = 0x100000;
B
bellard 已提交
3305
        }
P
pbrook 已提交
3306 3307
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
3308
        pxn = desc & 1;
P
pbrook 已提交
3309 3310
        code = 13;
    } else {
3311 3312 3313
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
P
pbrook 已提交
3314 3315
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3316
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3317 3318 3319 3320
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
3321
            goto do_fault;
P
pbrook 已提交
3322 3323 3324
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
3325
            *page_size = 0x10000;
P
pbrook 已提交
3326 3327 3328 3329
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
3330
            *page_size = 0x1000;
P
pbrook 已提交
3331 3332 3333 3334
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
3335
        }
P
pbrook 已提交
3336 3337
        code = 15;
    }
3338
    if (domain_prot == 3) {
3339 3340
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
3341 3342 3343
        if (pxn && !is_user) {
            xn = 1;
        }
3344 3345
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
3346

3347
        /* The simplified model uses AP[0] as an access control bit.  */
3348
        if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3349 3350 3351 3352
            /* Access flag fault.  */
            code = (code == 15) ? 6 : 3;
            goto do_fault;
        }
3353
        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3354 3355 3356 3357 3358 3359 3360
        if (!*prot) {
            /* Access permission fault.  */
            goto do_fault;
        }
        if (!xn) {
            *prot |= PAGE_EXEC;
        }
3361
    }
P
pbrook 已提交
3362
    *phys_ptr = phys_addr;
B
bellard 已提交
3363 3364 3365 3366 3367
    return 0;
do_fault:
    return code | (domain << 4);
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
                              int access_type, int is_user,
A
Avi Kivity 已提交
3379
                              hwaddr *phys_ptr, int *prot,
3380 3381
                              target_ulong *page_size_ptr)
{
3382
    CPUState *cs = CPU(arm_env_get_cpu(env));
3383 3384 3385 3386 3387 3388 3389 3390
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
    uint32_t tsz;
    uint64_t ttbr;
    int ttbr_select;
    int n;
A
Avi Kivity 已提交
3391
    hwaddr descaddr;
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
    uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
    uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
    if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
    } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
    } else if (!t1sz) {
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
3429
        ttbr = env->cp15.ttbr0_el1;
3430 3431 3432
        epd = extract32(env->cp15.c2_control, 7, 1);
        tsz = t0sz;
    } else {
3433
        ttbr = env->cp15.ttbr1_el1;
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
        epd = extract32(env->cp15.c2_control, 23, 1);
        tsz = t1sz;
    }

    if (epd) {
        /* Translation table walk disabled => Translation fault on TLB miss */
        goto do_fault;
    }

    /* If the region is small enough we will skip straight to a 2nd level
     * lookup. This affects the number of bits of the address used in
     * combination with the TTBR to find the first descriptor. ('n' here
     * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
     * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
     */
    if (tsz > 1) {
        level = 2;
        n = 14 - tsz;
    } else {
        n = 5 - tsz;
    }

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
    address &= (0xffffffffU >> tsz);

    /* Now we can extract the actual base address from the TTBR */
    descaddr = extract64(ttbr, 0, 40);
    descaddr &= ~((1ULL << n) - 1);

    tableattrs = 0;
    for (;;) {
        uint64_t descriptor;

        descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
3471
        descriptor = ldq_phys(cs->as, descaddr);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
        page_size = (1 << (39 - (9 * level)));
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
        /* Since we're always in the Non-secure state, NSTable is ignored. */
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
    fault_type = permission_fault;
    if (is_user && !(attrs & (1 << 4))) {
        /* Unprivileged access not enabled */
        goto do_fault;
    }
    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
        /* XN or PXN */
        if (access_type == 2) {
            goto do_fault;
        }
        *prot &= ~PAGE_EXEC;
    }
    if (attrs & (1 << 5)) {
        /* Write access forbidden */
        if (access_type == 1) {
            goto do_fault;
        }
        *prot &= ~PAGE_WRITE;
    }

    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return 0;

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
    return (1 << 9) | (fault_type << 2) | level;
}

3547 3548
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
                             int access_type, int is_user,
A
Avi Kivity 已提交
3549
                             hwaddr *phys_ptr, int *prot)
P
pbrook 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
{
    int n;
    uint32_t mask;
    uint32_t base;

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
	base = env->cp15.c6_region[n];
	if ((base & 1) == 0)
	    continue;
	mask = 1 << ((base >> 1) & 0x1f);
	/* Keep this shift separate from the above to avoid an
	   (undefined) << 32.  */
	mask = (mask << 1) - 1;
	if (((base ^ address) & ~mask) == 0)
	    break;
    }
    if (n < 0)
	return 2;

    if (access_type == 2) {
	mask = env->cp15.c5_insn;
    } else {
	mask = env->cp15.c5_data;
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
	return 1;
    case 1:
	if (is_user)
	  return 1;
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 2:
	*prot = PAGE_READ;
	if (!is_user)
	    *prot |= PAGE_WRITE;
	break;
    case 3:
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 5:
	if (is_user)
	    return 1;
	*prot = PAGE_READ;
	break;
    case 6:
	*prot = PAGE_READ;
	break;
    default:
	/* Bad permission.  */
	return 1;
    }
3604
    *prot |= PAGE_EXEC;
P
pbrook 已提交
3605 3606 3607
    return 0;
}

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
 * prot and page_size are not filled in, and the return value provides
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for MPU based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
 * @is_user: 0 for privileged access, 1 for user
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 */
3631
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
P
pbrook 已提交
3632
                                int access_type, int is_user,
A
Avi Kivity 已提交
3633
                                hwaddr *phys_ptr, int *prot,
P
Paul Brook 已提交
3634
                                target_ulong *page_size)
P
pbrook 已提交
3635 3636 3637 3638 3639
{
    /* Fast Context Switch Extension.  */
    if (address < 0x02000000)
        address += env->cp15.c13_fcse;

3640
    if ((env->cp15.c1_sys & SCTLR_M) == 0) {
P
pbrook 已提交
3641 3642
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
3643
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
3644
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3645 3646
        return 0;
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
P
Paul Brook 已提交
3647
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3648 3649
	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
				 prot);
3650 3651 3652
    } else if (extended_addresses_enabled(env)) {
        return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
                                  prot, page_size);
3653
    } else if (env->cp15.c1_sys & SCTLR_XP) {
P
pbrook 已提交
3654
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
3655
                                prot, page_size);
P
pbrook 已提交
3656 3657
    } else {
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
3658
                                prot, page_size);
P
pbrook 已提交
3659 3660 3661
    }
}

3662 3663
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
                             int access_type, int mmu_idx)
B
bellard 已提交
3664
{
3665 3666
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
3667
    hwaddr phys_addr;
P
Paul Brook 已提交
3668
    target_ulong page_size;
B
bellard 已提交
3669
    int prot;
3670
    int ret, is_user;
B
bellard 已提交
3671

3672
    is_user = mmu_idx == MMU_USER_IDX;
P
Paul Brook 已提交
3673 3674
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
                        &page_size);
B
bellard 已提交
3675 3676
    if (ret == 0) {
        /* Map a single [sub]page.  */
A
Avi Kivity 已提交
3677
        phys_addr &= ~(hwaddr)0x3ff;
B
bellard 已提交
3678
        address &= ~(uint32_t)0x3ff;
3679
        tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
P
Paul Brook 已提交
3680
        return 0;
B
bellard 已提交
3681 3682 3683 3684 3685
    }

    if (access_type == 2) {
        env->cp15.c5_insn = ret;
        env->cp15.c6_insn = address;
3686
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
3687 3688
    } else {
        env->cp15.c5_data = ret;
P
pbrook 已提交
3689 3690
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
            env->cp15.c5_data |= (1 << 11);
B
bellard 已提交
3691
        env->cp15.c6_data = address;
3692
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
3693 3694 3695 3696
    }
    return 1;
}

3697
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
3698
{
3699
    ARMCPU *cpu = ARM_CPU(cs);
A
Avi Kivity 已提交
3700
    hwaddr phys_addr;
P
Paul Brook 已提交
3701
    target_ulong page_size;
B
bellard 已提交
3702 3703 3704
    int prot;
    int ret;

3705
    ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
B
bellard 已提交
3706

3707
    if (ret != 0) {
B
bellard 已提交
3708
        return -1;
3709
    }
B
bellard 已提交
3710 3711 3712 3713

    return phys_addr;
}

3714
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
3715
{
3716 3717 3718
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
3719
        env->banked_r13[bank_number(mode)] = val;
3720
    }
P
pbrook 已提交
3721 3722
}

3723
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
3724
{
3725 3726 3727
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
3728
        return env->banked_r13[bank_number(mode)];
3729
    }
P
pbrook 已提交
3730 3731
}

3732
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
3733
{
3734 3735
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
3756
        return (env->daif & PSTATE_I) != 0;
3757 3758
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
3759
        return env->v7m.basepri;
3760
    case 19: /* FAULTMASK */
3761
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
3762 3763 3764 3765
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
3766
        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
P
pbrook 已提交
3767 3768 3769 3770
        return 0;
    }
}

3771
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
3772
{
3773 3774
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
3810 3811 3812 3813 3814
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
3815
        break;
3816
    case 17: /* BASEPRI */
P
pbrook 已提交
3817 3818
        env->v7m.basepri = val & 0xff;
        break;
3819
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
3820 3821 3822 3823
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
3824
    case 19: /* FAULTMASK */
3825 3826 3827 3828 3829
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
3830
        break;
P
pbrook 已提交
3831 3832 3833 3834 3835 3836
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
3837
        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
P
pbrook 已提交
3838 3839 3840 3841
        return;
    }
}

B
bellard 已提交
3842
#endif
P
pbrook 已提交
3843 3844 3845 3846 3847 3848 3849

/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
3850
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
3865
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
3880
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
3895
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
3919
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
3920 3921 3922 3923 3924 3925 3926 3927
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
3928
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
3929
{
3930
    if (a > b)
P
pbrook 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
3947
    if (a > b)
P
pbrook 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
3964
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
3965 3966 3967 3968 3969 3970 3971
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
3972
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
3993
    if ((sum >> 16) == 1) \
P
pbrook 已提交
3994 3995 3996 3997 3998 3999 4000
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
4001 4002
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
4018
        ge |= 1 << n; \
P
pbrook 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

4088 4089
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
4103
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
4104 4105 4106
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
4107 4108
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
4109 4110 4111
    return target_bits;
}

4112
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
4113 4114 4115 4116 4117 4118 4119 4120
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
4121
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
4122 4123 4124 4125
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

4126
uint32_t vfp_get_fpscr(CPUARMState *env)
4127 4128 4129 4130
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
4146 4147
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
4148 4149 4150
    return host_bits;
}

4151
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
4165
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
4166 4167
            i = float_round_nearest_even;
            break;
4168
        case FPROUNDING_POSINF:
P
pbrook 已提交
4169 4170
            i = float_round_up;
            break;
4171
        case FPROUNDING_NEGINF:
P
pbrook 已提交
4172 4173
            i = float_round_down;
            break;
4174
        case FPROUNDING_ZERO:
P
pbrook 已提交
4175 4176 4177 4178 4179
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
4180
    if (changed & (1 << 24)) {
4181
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4182 4183
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
4184 4185
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
4186

4187
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
4188
    set_float_exception_flags(i, &env->vfp.fp_status);
4189
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
4190 4191
}

4192
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4193 4194 4195 4196
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
4197 4198 4199
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
4200
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
4201
{ \
4202 4203
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
4204
} \
4205
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
4206
{ \
4207 4208
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
4209 4210 4211 4212 4213
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
4214 4215 4216 4217
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
4227
    return float64_chs(a);
P
pbrook 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
4237
    return float64_abs(a);
P
pbrook 已提交
4238 4239
}

4240
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
4241 4242 4243 4244
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

4245
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
4246 4247 4248 4249 4250 4251
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
4252
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
4264
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

4280
/* Integer to float and float to integer conversions */
P
pbrook 已提交
4281

4282 4283 4284 4285
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
4286
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
4287 4288
}

4289 4290 4291 4292 4293 4294 4295 4296 4297
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
4298 4299
}

4300 4301 4302 4303
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
4304

4305 4306 4307 4308
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
4309

4310 4311 4312
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
4313 4314

/* floating point conversion */
4315
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
4316
{
4317 4318 4319 4320 4321
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
4322 4323
}

4324
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
4325
{
4326 4327 4328 4329 4330
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
4331 4332 4333
}

/* VFP3 fixed point conversion.  */
4334
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4335 4336
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
4337
{ \
4338
    float_status *fpst = fpstp; \
4339
    float##fsz tmp; \
4340
    tmp = itype##_to_##float##fsz(x, fpst); \
4341
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4342 4343
}

4344 4345 4346 4347 4348
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
4349 4350 4351 4352
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
4353
{ \
4354
    float_status *fpst = fpstp; \
4355
    int old_exc_flags = get_float_exception_flags(fpst); \
4356 4357
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
4358
        float_raise(float_flag_invalid, fpst); \
4359
        return 0; \
4360
    } \
4361
    tmp = float##fsz##_scalbn(x, shift, fpst); \
4362 4363 4364
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
4365
    return float##fsz##_to_##itype##round(tmp, fpst); \
4366 4367
}

4368 4369
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
4370 4371 4372 4373 4374 4375
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4376

4377 4378
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
4379
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4380 4381
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
4382
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4383 4384
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
4385
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4386 4387
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
4388
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
4389
#undef VFP_CONV_FIX
4390 4391
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
4392

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
4423
/* Half precision conversions.  */
4424
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4425 4426
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4427 4428 4429 4430 4431
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
4432 4433
}

4434
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4435 4436
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4437 4438 4439 4440 4441
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
4442 4443
}

4444
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4445 4446 4447 4448
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

4449
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4450 4451 4452 4453
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

4454
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4455 4456 4457 4458
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

4459
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4460 4461 4462 4463
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

4484
#define float32_two make_float32(0x40000000)
4485 4486
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
4487

4488
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4489
{
4490 4491 4492
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4493 4494 4495
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4496 4497 4498
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
4499 4500
}

4501
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4502
{
4503
    float_status *s = &env->vfp.standard_fp_status;
4504 4505 4506
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4507 4508 4509
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4510
        return float32_one_point_five;
4511
    }
4512 4513
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
4514 4515
}

P
pbrook 已提交
4516 4517
/* NEON helpers.  */

4518 4519 4520 4521 4522
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)

4523 4524 4525
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
4526
static float64 recip_estimate(float64 a, CPUARMState *env)
4527
{
4528 4529 4530 4531 4532
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
    float_status dummy_status = env->vfp.standard_fp_status;
    float_status *s = &dummy_status;
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

4552
float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
P
pbrook 已提交
4553
{
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
    float_status *s = &env->vfp.standard_fp_status;
    float64 f64;
    uint32_t val32 = float32_val(a);

    int result_exp;
    int a_exp = (val32  & 0x7f800000) >> 23;
    int sign = val32 & 0x80000000;

    if (float32_is_any_nan(a)) {
        if (float32_is_signaling_nan(a)) {
            float_raise(float_flag_invalid, s);
        }
        return float32_default_nan;
    } else if (float32_is_infinity(a)) {
        return float32_set_sign(float32_zero, float32_is_neg(a));
    } else if (float32_is_zero_or_denormal(a)) {
4570 4571 4572
        if (!float32_is_zero(a)) {
            float_raise(float_flag_input_denormal, s);
        }
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
        float_raise(float_flag_divbyzero, s);
        return float32_set_sign(float32_infinity, float32_is_neg(a));
    } else if (a_exp >= 253) {
        float_raise(float_flag_underflow, s);
        return float32_set_sign(float32_zero, float32_is_neg(a));
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(val32 & 0x7fffff) << 29));

    result_exp = 253 - a_exp;

    f64 = recip_estimate(f64, env);

    val32 = sign
        | ((result_exp & 0xff) << 23)
        | ((float64_val(f64) >> 29) & 0x7fffff);
    return make_float32(val32);
P
pbrook 已提交
4591 4592
}

4593 4594 4595
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
4596
static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
4597
{
4598 4599 4600 4601 4602
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
    float_status dummy_status = env->vfp.standard_fp_status;
    float_status *s = &dummy_status;
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

4648
float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
P
pbrook 已提交
4649
{
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
    float_status *s = &env->vfp.standard_fp_status;
    int result_exp;
    float64 f64;
    uint32_t val;
    uint64_t val64;

    val = float32_val(a);

    if (float32_is_any_nan(a)) {
        if (float32_is_signaling_nan(a)) {
            float_raise(float_flag_invalid, s);
        }
        return float32_default_nan;
    } else if (float32_is_zero_or_denormal(a)) {
4664 4665 4666
        if (!float32_is_zero(a)) {
            float_raise(float_flag_input_denormal, s);
        }
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
        float_raise(float_flag_divbyzero, s);
        return float32_set_sign(float32_infinity, float32_is_neg(a));
    } else if (float32_is_neg(a)) {
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
    } else if (float32_is_infinity(a)) {
        return float32_zero;
    }

    /* Normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */
    if ((val & 0x800000) == 0) {
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
                           | (0x3feULL << 52)
                           | ((uint64_t)(val & 0x7fffff) << 29));
    } else {
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
                           | (0x3fdULL << 52)
                           | ((uint64_t)(val & 0x7fffff) << 29));
    }

    result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;

    f64 = recip_sqrt_estimate(f64, env);

    val64 = float64_val(f64);

4694
    val = ((result_exp & 0xff) << 23)
4695 4696
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
4697 4698
}

4699
uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
P
pbrook 已提交
4700
{
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

    f64 = recip_estimate (f64, env);

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
4713 4714
}

4715
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
P
pbrook 已提交
4716
{
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

    f64 = recip_sqrt_estimate(f64, env);

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
4734
}
4735

4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857

static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes)
{
    memset(buf, 0, 4);

    if (bytes == 1) {
        buf[0] = val & 0xff;
    } else if (bytes == 2) {
        buf[0] = val & 0xff;
        buf[1] = (val >> 8) & 0xff;
    } else {
        buf[0] = val & 0xff;
        buf[1] = (val >> 8) & 0xff;
        buf[2] = (val >> 16) & 0xff;
        buf[3] = (val >> 24) & 0xff;
    }
}

uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    crc_init_buffer(buf, val, bytes);

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    crc_init_buffer(buf, val, bytes);

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}