spapr.c 60.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
27
#include "sysemu/sysemu.h"
28
#include "sysemu/numa.h"
29
#include "hw/hw.h"
30
#include "hw/fw-path-provider.h"
31
#include "elf.h"
P
Paolo Bonzini 已提交
32
#include "net/net.h"
33
#include "sysemu/block-backend.h"
34 35
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
36
#include "kvm_ppc.h"
37
#include "mmu-hash64.h"
38
#include "qom/cpu.h"
39 40

#include "hw/boards.h"
P
Paolo Bonzini 已提交
41
#include "hw/ppc/ppc.h"
42 43
#include "hw/loader.h"

P
Paolo Bonzini 已提交
44 45 46 47
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
48
#include "hw/pci/msi.h"
49

50
#include "hw/pci/pci.h"
51 52
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
53

54
#include "exec/address-spaces.h"
55
#include "hw/usb.h"
56
#include "qemu/config-file.h"
57
#include "qemu/error-report.h"
58
#include "trace.h"
59
#include "hw/nmi.h"
A
Avi Kivity 已提交
60

61 62
#include "hw/compat.h"

63 64
#include <libfdt.h>

65 66 67 68 69 70 71 72 73 74
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
75
#define FDT_MAX_SIZE            0x40000
76
#define RTAS_MAX_SIZE           0x10000
77
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
78 79
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
80 81
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
82

83
#define MIN_RMA_SLOF            128UL
84 85 86

#define TIMEBASE_FREQ           512000000ULL

87
#define MAX_CPUS                255
88

89 90
#define PHANDLE_XICP            0x00001111

91 92
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

93
static XICSState *try_create_xics(const char *type, int nr_servers,
94
                                  int nr_irqs, Error **errp)
95
{
96
    Error *err = NULL;
97 98 99 100 101
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
102 103 104 105
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
106 107
        return NULL;
    }
108
    return XICS_COMMON(dev);
109 110
}

111 112
static XICSState *xics_system_init(MachineState *machine,
                                   int nr_servers, int nr_irqs)
113 114 115
{
    XICSState *icp = NULL;

116
    if (kvm_enabled()) {
117 118
        Error *err = NULL;

119
        if (machine_kernel_irqchip_allowed(machine)) {
120
            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
121
        }
122
        if (machine_kernel_irqchip_required(machine) && !icp) {
123 124
            error_report("kernel_irqchip requested but unavailable: %s",
                         error_get_pretty(err));
125 126 127 128
        }
    }

    if (!icp) {
129
        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
130 131 132 133 134
    }

    return icp;
}

135 136 137 138 139 140 141 142
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

143
    if (cpu->cpu_version) {
144
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
145 146 147 148 149
        if (ret < 0) {
            return ret;
        }
    }

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

189
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
190
{
191 192
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
193 194
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
195
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
196

197 198 199 200
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
201

202
        if ((index % smt) != 0) {
203 204 205
            continue;
        }

206
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
207

208 209 210 211 212 213 214 215 216
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
217
        if (offset < 0) {
218 219 220 221
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
222 223
        }

224 225
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
226 227 228
        if (ret < 0) {
            return ret;
        }
229

230 231 232 233 234
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

235
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
236
                                     ppc_get_compat_smt_threads(cpu));
237 238 239
        if (ret < 0) {
            return ret;
        }
240 241 242 243
    }
    return ret;
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
                                     size_t maxsize)
{
    size_t maxcells = maxsize / sizeof(uint32_t);
    int i, j, count;
    uint32_t *p = prop;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];

        if (!sps->page_shift) {
            break;
        }
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
            if (sps->enc[count].page_shift == 0) {
                break;
            }
        }
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
            break;
        }
        *(p++) = cpu_to_be32(sps->page_shift);
        *(p++) = cpu_to_be32(sps->slb_enc);
        *(p++) = cpu_to_be32(count);
        for (j = 0; j < count; j++) {
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
        }
    }

    return (p - prop) * sizeof(uint32_t);
}

278 279
static hwaddr spapr_node0_size(void)
{
280 281
    MachineState *machine = MACHINE(qdev_get_machine());

282 283 284 285
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
286 287
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
288 289 290
            }
        }
    }
291
    return machine->ram_size;
292 293
}

294 295 296 297 298 299 300 301 302 303
#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

304 305 306 307
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
308

309
static void *spapr_create_fdt_skel(hwaddr initrd_base,
A
Avi Kivity 已提交
310 311
                                   hwaddr initrd_size,
                                   hwaddr kernel_size,
312
                                   bool little_endian,
313 314
                                   const char *kernel_cmdline,
                                   uint32_t epow_irq)
315 316 317 318
{
    void *fdt;
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
319 320
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
321
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
322
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
323
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
324
    char *buf;
325

326 327 328 329 330 331 332 333 334 335 336
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(qemu_hypertas, "hcall-memop1");

337
    fdt = g_malloc0(FDT_MAX_SIZE);
338 339
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

340 341 342 343 344 345
    if (kernel_size) {
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
    }
    if (initrd_size) {
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
    }
346 347 348 349 350
    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
351
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
352
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT((fdt_property_string(fdt, "host-model", buf)));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT((fdt_property_string(fdt, "host-serial", buf)));
        g_free(buf);
    }

    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
                          qemu_uuid[14], qemu_uuid[15]);

    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
    g_free(buf);

377 378 379 380 381 382
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

383 384 385
    /* Set Form1_affinity */
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));

386 387 388 389 390
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
391 392 393
    if (kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(kernel_size) };
394

395
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
396 397 398
        if (little_endian) {
            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
        }
399
    }
400 401 402
    if (boot_menu) {
        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
    }
403 404 405
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
406

407 408
    _FDT((fdt_end_node(fdt)));

409 410 411
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

412 413 414
    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
415 416 417 418 419 420
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
                       hypertas->len)));
    g_string_free(hypertas, TRUE);
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
                       qemu_hypertas->len)));
    g_string_free(qemu_hypertas, TRUE);
421

422 423 424
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
        refpoints, sizeof(refpoints))));

425
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
426 427
    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
                            RTAS_EVENT_SCAN_RATE)));
428

429
    /*
430
     * According to PAPR, rtas ibm,os-term does not guarantee a return
431 432 433 434 435 436 437
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates that
     * rtas call return will always occur. Set this property.
     */
    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));

438 439
    _FDT((fdt_end_node(fdt)));

440
    /* interrupt controller */
441
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
442 443 444 445 446 447 448 449

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));
450 451 452
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
453 454 455

    _FDT((fdt_end_node(fdt)));

456 457 458 459 460 461 462
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
463 464
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
465 466 467

    _FDT((fdt_end_node(fdt)));

468 469 470
    /* event-sources */
    spapr_events_fdt_skel(fdt, epow_irq);

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    /* /hypervisor node */
    if (kvm_enabled()) {
        uint8_t hypercall[16];

        /* indicate KVM hypercall interface */
        _FDT((fdt_begin_node(fdt, "hypervisor")));
        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
        if (kvmppc_has_cap_fixup_hcalls()) {
            /*
             * Older KVM versions with older guest kernels were broken with the
             * magic page, don't allow the guest to map it.
             */
            kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                 sizeof(hypercall));
            _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
                              sizeof(hypercall))));
        }
        _FDT((fdt_end_node(fdt)));
    }

491 492 493
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

494 495 496
    return fdt;
}

497 498
int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

515 516
    /* Fix skeleton up */
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

534 535 536 537 538 539
static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
540
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
}

559
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
560
{
561
    MachineState *machine = MACHINE(spapr);
562 563 564 565 566 567 568 569
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
570
        ramnode.node_mem = machine->ram_size;
571
        nodes = &ramnode;
572
    }
573

574 575 576 577
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
578
        if (mem_start >= machine->ram_size) {
579 580
            node_size = 0;
        } else {
581
            node_size = nodes[i].node_mem;
582 583
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
584 585
            }
        }
586 587 588 589 590 591
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
592 593 594 595 596 597 598 599 600 601 602 603
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
604 605 606 607 608
    }

    return 0;
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
    QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
    unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
    uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};

    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
        fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

    page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
                           cs->cpu_index / cpus_per_socket)));

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
                                ppc_get_compat_smt_threads(cpu)));
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

740
static void spapr_finalize_fdt(sPAPRMachineState *spapr,
A
Avi Kivity 已提交
741 742 743
                               hwaddr fdt_addr,
                               hwaddr rtas_addr,
                               hwaddr rtas_size)
744
{
745 746
    MachineState *machine = MACHINE(qdev_get_machine());
    const char *boot_device = machine->boot_order;
747 748 749
    int ret, i;
    size_t cb = 0;
    char *bootlist;
750
    void *fdt;
751
    sPAPRPHBState *phb;
752

753
    fdt = g_malloc(FDT_MAX_SIZE);
754 755 756

    /* open out the base tree into a temp buffer for the final tweaks */
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
757

758 759 760 761 762 763
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
        exit(1);
    }

764 765 766 767 768 769
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

770
    QLIST_FOREACH(phb, &spapr->phbs, list) {
771
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
772 773 774 775 776 777 778
    }

    if (ret < 0) {
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
        exit(1);
    }

779 780 781 782 783 784
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

785 786
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
787

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
    bootlist = get_boot_devices_list(&cb, true);
    if (cb && bootlist) {
        int offset = fdt_path_offset(fdt, "/chosen");
        if (offset < 0) {
            exit(1);
        }
        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }

        }
        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
    }

803 804 805 806 807 808 809 810 811
    if (boot_device && strlen(boot_device)) {
        int offset = fdt_path_offset(fdt, "/chosen");

        if (offset < 0) {
            exit(1);
        }
        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
    }

812
    if (!spapr->has_graphics) {
813 814
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
    }
815

816 817
    _FDT((fdt_pack(fdt)));

818
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
819 820
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
821 822 823
        exit(1);
    }

824
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
825

G
Gonglei 已提交
826
    g_free(bootlist);
827
    g_free(fdt);
828 829 830 831 832 833 834
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

835
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
836
{
837 838
    CPUPPCState *env = &cpu->env;

839 840 841 842
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
843
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
844
    }
845 846
}

847 848 849 850 851 852
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

853
static void spapr_reset_htab(sPAPRMachineState *spapr)
854 855
{
    long shift;
856
    int index;
857 858 859 860 861 862 863 864 865 866

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */

    shift = kvmppc_reset_htab(spapr->htab_shift);

    if (shift > 0) {
        /* Kernel handles htab, we don't need to allocate one */
        spapr->htab_shift = shift;
867
        kvmppc_kern_htab = true;
868 869 870 871 872

        /* Tell readers to update their file descriptor */
        if (spapr->htab_fd >= 0) {
            spapr->htab_fd_stale = true;
        }
873 874 875 876 877 878 879 880
    } else {
        if (!spapr->htab) {
            /* Allocate an htab if we don't yet have one */
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
        }

        /* And clear it */
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
881 882 883 884

        for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
            DIRTY_HPTE(HPTE(spapr->htab, index));
        }
885 886 887 888
    }

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
889 890
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
891
    }
892 893
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }

    return 0;
}

911 912 913 914
/*
 * A guest reset will cause spapr->htab_fd to become stale if being used.
 * Reopen the file descriptor to make sure the whole HTAB is properly read.
 */
915
static int spapr_check_htab_fd(sPAPRMachineState *spapr)
916 917 918 919 920 921 922 923
{
    int rc = 0;

    if (spapr->htab_fd_stale) {
        close(spapr->htab_fd);
        spapr->htab_fd = kvmppc_get_htab_fd(false);
        if (spapr->htab_fd < 0) {
            error_report("Unable to open fd for reading hash table from KVM: "
924
                         "%s", strerror(errno));
925 926 927 928 929 930 931 932
            rc = -1;
        }
        spapr->htab_fd_stale = false;
    }

    return rc;
}

933
static void ppc_spapr_reset(void)
934
{
935
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
936
    PowerPCCPU *first_ppc_cpu;
937
    uint32_t rtas_limit;
938

939 940 941
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

942 943
    /* Reset the hash table & recalc the RMA */
    spapr_reset_htab(spapr);
944

945
    qemu_devices_reset();
946

947 948 949 950 951 952 953 954 955
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;

956 957 958 959
    /* Load the fdt */
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
                       spapr->rtas_size);

960 961 962 963
    /* Copy RTAS over */
    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
                              spapr->rtas_size);

964
    /* Set up the entry state */
965 966 967 968
    first_ppc_cpu = POWERPC_CPU(first_cpu);
    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
969
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
970 971 972

}

973 974
static void spapr_cpu_reset(void *opaque)
{
975
    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
976
    PowerPCCPU *cpu = opaque;
977
    CPUState *cs = CPU(cpu);
978
    CPUPPCState *env = &cpu->env;
979

980
    cpu_reset(cs);
981 982 983 984

    /* All CPUs start halted.  CPU0 is unhalted from the machine level
     * reset code and the rest are explicitly started up by the guest
     * using an RTAS call */
985
    cs->halted = 1;
986 987

    env->spr[SPR_HIOR] = 0;
988

989
    env->external_htab = (uint8_t *)spapr->htab;
990 991 992 993 994 995 996
    if (kvm_enabled() && !env->external_htab) {
        /*
         * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
         * functions do the right thing.
         */
        env->external_htab = (void *)1;
    }
997
    env->htab_base = -1;
998 999 1000 1001 1002 1003
    /*
     * htab_mask is the mask used to normalize hash value to PTEG index.
     * htab_shift is log2 of hash table size.
     * We have 8 hpte per group, and each hpte is 16 bytes.
     * ie have 128 bytes per hpte entry.
     */
1004
    env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1005
    env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1006
        (spapr->htab_shift - 18);
1007 1008
}

1009
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1010
{
1011
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1012
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1013

P
Paolo Bonzini 已提交
1014
    if (dinfo) {
1015
        qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
D
David Gibson 已提交
1016 1017 1018 1019 1020 1021 1022
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1023
static void spapr_rtc_create(sPAPRMachineState *spapr)
1024 1025 1026 1027 1028
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1029 1030 1031

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1032 1033
}

1034
/* Returns whether we want to use VGA or not */
1035 1036
static int spapr_vga_init(PCIBus *pci_bus)
{
1037 1038
    switch (vga_interface_type) {
    case VGA_NONE:
1039 1040 1041
        return false;
    case VGA_DEVICE:
        return true;
1042 1043
    case VGA_STD:
        return pci_vga_init(pci_bus) != NULL;
1044
    default:
1045 1046
        fprintf(stderr, "This vga model is not supported,"
                "currently it only supports -vga std\n");
1047
        exit(0);
1048 1049 1050
    }
}

1051 1052
static int spapr_post_load(void *opaque, int version_id)
{
1053
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1054 1055
    int err = 0;

S
Stefan Weil 已提交
1056
    /* In earlier versions, there was no separate qdev for the PAPR
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1072 1073
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1074
    .version_id = 3,
1075
    .minimum_version_id = 1,
1076
    .post_load = spapr_post_load,
1077
    .fields = (VMStateField[]) {
1078 1079
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1080 1081

        /* RTC offset */
1082
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1083

1084
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1085 1086 1087 1088 1089 1090
        VMSTATE_END_OF_LIST()
    },
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1091
    sPAPRMachineState *spapr = opaque;
1092 1093 1094 1095

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1096 1097 1098 1099 1100 1101 1102
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());

        spapr->htab_fd = kvmppc_get_htab_fd(false);
1103
        spapr->htab_fd_stale = false;
1104 1105 1106 1107 1108 1109 1110 1111
        if (spapr->htab_fd < 0) {
            fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
                    strerror(errno));
            return -1;
        }
    }


1112 1113 1114
    return 0;
}

1115
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1116 1117 1118 1119
                                 int64_t max_ns)
{
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1120
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1136
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1151
            if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1165
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1166
                                int64_t max_ns)
1167 1168 1169 1170 1171
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1172
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1188
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1189 1190 1191 1192 1193 1194 1195 1196 1197
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1198
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1217
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1239
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1240 1241
}

1242 1243 1244
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1245 1246
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1247
    sPAPRMachineState *spapr = opaque;
1248
    int rc = 0;
1249 1250 1251 1252

    /* Iteration header */
    qemu_put_be32(f, 0);

1253 1254 1255
    if (!spapr->htab) {
        assert(kvm_enabled());

1256 1257 1258 1259 1260
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1261 1262 1263 1264 1265 1266
        rc = kvmppc_save_htab(f, spapr->htab_fd,
                              MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1267 1268
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1269
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1270 1271 1272 1273 1274 1275 1276
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1277
    return rc;
1278 1279 1280 1281
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1282
    sPAPRMachineState *spapr = opaque;
1283 1284 1285 1286

    /* Iteration header */
    qemu_put_be32(f, 0);

1287 1288 1289 1290 1291
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1292 1293 1294 1295 1296
        rc = spapr_check_htab_fd(spapr);
        if (rc < 0) {
            return rc;
        }

1297 1298 1299 1300 1301 1302 1303 1304 1305
        rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
        if (rc < 0) {
            return rc;
        }
        close(spapr->htab_fd);
        spapr->htab_fd = -1;
    } else {
        htab_save_later_pass(f, spapr, -1);
    }
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1317
    sPAPRMachineState *spapr = opaque;
1318
    uint32_t section_hdr;
1319
    int fd = -1;
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

    if (version_id < 1 || version_id > 1) {
        fprintf(stderr, "htab_load() bad version\n");
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
        /* First section, just the hash shift */
        if (spapr->htab_shift != section_hdr) {
            return -EINVAL;
        }
        return 0;
    }

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
            fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
                    strerror(errno));
        }
    }

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1359
        if ((index + n_valid + n_invalid) >
1360 1361 1362
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
            fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1363 1364
                    "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
                    spapr->htab_shift);
1365 1366 1367
            return -EINVAL;
        }

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1386 1387 1388
        }
    }

1389 1390 1391 1392 1393
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    return 0;
}

static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
    .save_live_complete = htab_save_complete,
    .load_state = htab_load,
};

1404 1405 1406 1407 1408 1409 1410
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;

    /* Set time-base frequency to 512 MHz */
    cpu_ppc_tb_init(env, TIMEBASE_FREQ);

    /* PAPR always has exception vectors in RAM not ROM. To ensure this,
     * MSR[IP] should never be set.
     */
    env->msr_mask &= ~(1 << 6);

    /* Tell KVM that we're in PAPR mode */
    if (kvm_enabled()) {
        kvmppc_set_papr(cpu);
    }

    if (cpu->max_compat) {
        if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
            exit(1);
        }
    }

    xics_cpu_setup(spapr->icp, cpu);

    qemu_register_reset(spapr_cpu_reset, cpu);
}

1439
/* pSeries LPAR / sPAPR hardware init */
1440
static void ppc_spapr_init(MachineState *machine)
1441
{
1442
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1443 1444 1445
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
1446
    PowerPCCPU *cpu;
1447
    PCIHostState *phb;
1448
    int i;
A
Avi Kivity 已提交
1449 1450
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1451 1452
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1453
    hwaddr rma_alloc_size;
1454
    hwaddr node0_size = spapr_node0_size();
1455 1456
    uint32_t initrd_base = 0;
    long kernel_size = 0, initrd_size = 0;
1457
    long load_limit, fw_size;
1458
    bool kernel_le = false;
1459
    char *filename;
1460

1461 1462
    msi_supported = true;

1463 1464
    QLIST_INIT(&spapr->phbs);

1465 1466
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1467
    /* Allocate RMA if necessary */
1468
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1469 1470

    if (rma_alloc_size == -1) {
1471
        error_report("Unable to create RMA");
1472 1473
        exit(1);
    }
1474

1475
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1476
        spapr->rma_size = rma_alloc_size;
1477
    } else {
1478
        spapr->rma_size = node0_size;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1493 1494
    }

1495 1496 1497 1498 1499 1500
    if (spapr->rma_size > node0_size) {
        fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
                spapr->rma_size);
        exit(1);
    }

1501 1502
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1503

1504 1505 1506 1507 1508
    /* We aim for a hash table of size 1/128 the size of RAM.  The
     * normal rule of thumb is 1/64 the size of RAM, but that's much
     * more than needed for the Linux guests we support. */
    spapr->htab_shift = 18; /* Minimum architected size */
    while (spapr->htab_shift <= 46) {
1509
        if ((1ULL << (spapr->htab_shift + 7)) >= machine->ram_size) {
1510 1511 1512 1513
            break;
        }
        spapr->htab_shift++;
    }
1514

1515
    /* Set up Interrupt Controller before we create the VCPUs */
1516
    spapr->icp = xics_system_init(machine,
1517
                                  DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1518
                                               smp_threads),
1519 1520
                                  XICS_IRQS);

1521
    /* init CPUs */
1522 1523
    if (machine->cpu_model == NULL) {
        machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1524 1525
    }
    for (i = 0; i < smp_cpus; i++) {
1526
        cpu = cpu_ppc_init(machine->cpu_model);
1527
        if (cpu == NULL) {
1528 1529 1530
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
1531
        spapr_cpu_init(spapr, cpu);
1532 1533
    }

1534 1535 1536 1537 1538
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
    }

1539
    /* allocate RAM */
1540
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1541
                                         machine->ram_size);
1542
    memory_region_add_subregion(sysmem, 0, ram);
1543

1544 1545 1546 1547 1548 1549 1550 1551
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1552
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1553
    if (!filename) {
1554
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1555 1556
        exit(1);
    }
1557 1558 1559
    spapr->rtas_size = get_image_size(filename);
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1560
        error_report("Could not load LPAR rtas '%s'", filename);
1561 1562
        exit(1);
    }
1563
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1564 1565
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1566 1567
        exit(1);
    }
1568
    g_free(filename);
1569

1570 1571 1572
    /* Set up EPOW events infrastructure */
    spapr_events_init(spapr);

1573
    /* Set up the RTC RTAS interfaces */
1574
    spapr_rtc_create(spapr);
1575

1576
    /* Set up VIO bus */
1577 1578
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1579
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1580
        if (serial_hds[i]) {
1581
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1582 1583
        }
    }
1584

D
David Gibson 已提交
1585 1586 1587
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

1588
    /* Set up PCI */
1589 1590
    spapr_pci_rtas_init();

1591
    phb = spapr_create_phb(spapr, 0);
1592

P
Paolo Bonzini 已提交
1593
    for (i = 0; i < nb_nics; i++) {
1594 1595 1596
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
1597
            nd->model = g_strdup("ibmveth");
1598 1599 1600
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
1601
            spapr_vlan_create(spapr->vio_bus, nd);
1602
        } else {
1603
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1604 1605 1606
        }
    }

1607
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1608
        spapr_vscsi_create(spapr->vio_bus);
1609 1610
    }

1611
    /* Graphics */
1612
    if (spapr_vga_init(phb->bus)) {
1613
        spapr->has_graphics = true;
1614
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1615 1616
    }

1617
    if (machine->usb) {
1618
        pci_create_simple(phb->bus, -1, "pci-ohci");
1619

1620
        if (spapr->has_graphics) {
1621 1622 1623 1624
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
1625 1626 1627
        }
    }

1628
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1629 1630 1631 1632 1633
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
        exit(1);
    }

1634 1635 1636 1637 1638
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1639
        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1640 1641 1642 1643 1644
            kernel_size = load_elf(kernel_filename,
                                   translate_kernel_address, NULL,
                                   NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
            kernel_le = kernel_size > 0;
        }
1645
        if (kernel_size < 0) {
1646 1647
            fprintf(stderr, "qemu: error loading %s: %s\n",
                    kernel_filename, load_elf_strerror(kernel_size));
1648 1649 1650 1651 1652
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
1653 1654 1655 1656
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1657
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1658
                                              load_limit - initrd_base);
1659 1660 1661 1662 1663 1664 1665 1666 1667
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
1668
    }
1669

1670 1671 1672 1673
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1674
    if (!filename) {
1675
        error_report("Could not find LPAR firmware '%s'", bios_name);
1676 1677
        exit(1);
    }
1678
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1679 1680
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
1681 1682 1683 1684
        exit(1);
    }
    g_free(filename);

1685 1686 1687
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
1688 1689 1690 1691
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

1692
    /* Prepare the device tree */
1693
    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1694
                                            kernel_size, kernel_le,
1695 1696
                                            kernel_cmdline,
                                            spapr->check_exception_irq);
1697
    assert(spapr->fdt_skel != NULL);
1698

1699 1700 1701 1702
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

1703
    qemu_register_boot_set(spapr_boot_set, spapr);
1704 1705
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

1724
/*
1725
 * Implementation of an interface to adjust firmware path
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
1781 1782
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
1783
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1784

1785
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
1786 1787 1788 1789
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
1790
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
1791

1792 1793
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
1794 1795 1796 1797 1798 1799
}

static void spapr_machine_initfn(Object *obj)
{
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1800 1801 1802
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
E
Eduardo Habkost 已提交
1803 1804
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static void ppc_cpu_do_nmi_on_cpu(void *arg)
{
    CPUState *cs = arg;

    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
    }
}

1822 1823 1824
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1825
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1826
    NMIClass *nc = NMI_CLASS(oc);
1827 1828 1829 1830 1831 1832

    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
    mc->max_cpus = MAX_CPUS;
    mc->no_parallel = 1;
1833
    mc->default_boot_order = "";
1834
    mc->default_ram_size = 512 * M_BYTE;
1835
    mc->kvm_type = spapr_kvm_type;
1836
    mc->has_dynamic_sysbus = true;
1837

1838
    fwc->get_dev_path = spapr_get_fw_dev_path;
1839
    nc->nmi_monitor_handler = spapr_nmi;
1840 1841 1842 1843 1844
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
1845
    .abstract      = true,
1846
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
1847
    .instance_init = spapr_machine_initfn,
D
David Gibson 已提交
1848
    .class_size    = sizeof(sPAPRMachineClass),
1849
    .class_init    = spapr_machine_class_init,
1850 1851
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
1852
        { TYPE_NMI },
1853 1854
        { }
    },
1855 1856
};

E
Eduardo Habkost 已提交
1857
#define SPAPR_COMPAT_2_3 \
1858 1859 1860 1861 1862 1863
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
1864

1865
#define SPAPR_COMPAT_2_2 \
E
Eduardo Habkost 已提交
1866
        SPAPR_COMPAT_2_3 \
1867
        HW_COMPAT_2_2 \
1868 1869 1870 1871
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
1872
        },
1873 1874

#define SPAPR_COMPAT_2_1 \
1875 1876
        SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_1
1877

J
Jason Wang 已提交
1878 1879 1880 1881
static void spapr_compat_2_3(Object *obj)
{
}

1882 1883
static void spapr_compat_2_2(Object *obj)
{
J
Jason Wang 已提交
1884
    spapr_compat_2_3(obj);
1885 1886 1887 1888 1889 1890 1891
}

static void spapr_compat_2_1(Object *obj)
{
    spapr_compat_2_2(obj);
}

J
Jason Wang 已提交
1892 1893 1894 1895 1896 1897
static void spapr_machine_2_3_instance_init(Object *obj)
{
    spapr_compat_2_3(obj);
    spapr_machine_initfn(obj);
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void spapr_machine_2_2_instance_init(Object *obj)
{
    spapr_compat_2_2(obj);
    spapr_machine_initfn(obj);
}

static void spapr_machine_2_1_instance_init(Object *obj)
{
    spapr_compat_2_1(obj);
    spapr_machine_initfn(obj);
}

1910 1911 1912
static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
1913
    static GlobalProperty compat_props[] = {
1914
        SPAPR_COMPAT_2_1
1915 1916
        { /* end of list */ }
    };
1917 1918 1919

    mc->name = "pseries-2.1";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1920
    mc->compat_props = compat_props;
1921 1922 1923 1924 1925 1926
}

static const TypeInfo spapr_machine_2_1_info = {
    .name          = TYPE_SPAPR_MACHINE "2.1",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_1_class_init,
1927
    .instance_init = spapr_machine_2_1_instance_init,
1928 1929
};

1930 1931
static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
{
1932
    static GlobalProperty compat_props[] = {
1933
        SPAPR_COMPAT_2_2
1934 1935
        { /* end of list */ }
    };
1936 1937 1938 1939
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.2";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
1940
    mc->compat_props = compat_props;
1941 1942 1943 1944 1945 1946
}

static const TypeInfo spapr_machine_2_2_info = {
    .name          = TYPE_SPAPR_MACHINE "2.2",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_2_class_init,
1947
    .instance_init = spapr_machine_2_2_instance_init,
1948 1949
};

1950 1951
static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
{
1952
    static GlobalProperty compat_props[] = {
1953
        SPAPR_COMPAT_2_3
1954 1955
        { /* end of list */ }
    };
1956 1957 1958 1959
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.3";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
1960
    mc->compat_props = compat_props;
1961 1962 1963 1964 1965 1966
}

static const TypeInfo spapr_machine_2_3_info = {
    .name          = TYPE_SPAPR_MACHINE "2.3",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_3_class_init,
J
Jason Wang 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
    .instance_init = spapr_machine_2_3_instance_init,
};

static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->name = "pseries-2.4";
    mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
    mc->alias = "pseries";
    mc->is_default = 1;
}

static const TypeInfo spapr_machine_2_4_info = {
    .name          = TYPE_SPAPR_MACHINE "2.4",
    .parent        = TYPE_SPAPR_MACHINE,
    .class_init    = spapr_machine_2_4_class_init,
1984 1985
};

1986
static void spapr_machine_register_types(void)
1987
{
1988
    type_register_static(&spapr_machine_info);
1989
    type_register_static(&spapr_machine_2_1_info);
1990
    type_register_static(&spapr_machine_2_2_info);
1991
    type_register_static(&spapr_machine_2_3_info);
J
Jason Wang 已提交
1992
    type_register_static(&spapr_machine_2_4_info);
1993 1994
}

1995
type_init(spapr_machine_register_types)