book3s_pr.c 54.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 */

#include <linux/kvm_host.h>
20
#include <linux/export.h>
21 22 23 24 25 26
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
27
#include <linux/uaccess.h>
28 29 30 31
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
32
#include <asm/switch_to.h>
33
#include <asm/firmware.h>
34
#include <asm/setup.h>
35 36 37 38
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
39
#include <linux/module.h>
40
#include <linux/miscdevice.h>
41
#include <asm/asm-prototypes.h>
42
#include <asm/tm.h>
43

44
#include "book3s.h"
45 46 47

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
48 49 50 51 52 53

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
54 55 56
#ifdef CONFIG_PPC_BOOK3S_64
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
#endif
57 58 59 60 61 62

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
63
#define HPTE_R_M   _PAGE_COHERENT
64 65
#endif

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
}

static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	ulong pc = kvmppc_get_pc(vcpu);

	/* We are in DR only split real mode */
	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
		return;

	/* We have not fixed up the guest already */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
		return;

	/* The code is in fixupable address space */
	if (pc & SPLIT_HACK_MASK)
		return;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
		ulong pc = kvmppc_get_pc(vcpu);
		ulong lr = kvmppc_get_lr(vcpu);
		if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
			kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
		if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
			kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
		vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
	}
}

static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
{
	unsigned long msr, pc, new_msr, new_pc;

	kvmppc_unfixup_split_real(vcpu);

	msr = kvmppc_get_msr(vcpu);
	pc = kvmppc_get_pc(vcpu);
	new_msr = vcpu->arch.intr_msr;
	new_pc = to_book3s(vcpu)->hior + vec;

#ifdef CONFIG_PPC_BOOK3S_64
	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(msr))
		new_msr |= MSR_TS_S;
	else
		new_msr |= msr & MSR_TS_MASK;
#endif

	kvmppc_set_srr0(vcpu, pc);
	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
	kvmppc_set_pc(vcpu, new_pc);
	kvmppc_set_msr(vcpu, new_msr);
}
130

131
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
132 133
{
#ifdef CONFIG_PPC_BOOK3S_64
134 135 136
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
137
	svcpu->in_use = 0;
138
	svcpu_put(svcpu);
139
#endif
140 141 142 143 144 145

	/* Disable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);

146
	vcpu->cpu = smp_processor_id();
147
#ifdef CONFIG_PPC_BOOK3S_32
148
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
149
#endif
150 151 152

	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
153 154

	kvmppc_restore_tm_pr(vcpu);
155 156
}

157
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
158 159
{
#ifdef CONFIG_PPC_BOOK3S_64
160
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
161
	if (svcpu->in_use) {
162
		kvmppc_copy_from_svcpu(vcpu);
163
	}
164 165 166
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
167 168
#endif

169 170 171
	if (kvmppc_is_split_real(vcpu))
		kvmppc_unfixup_split_real(vcpu);

172
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
173
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
174
	kvmppc_save_tm_pr(vcpu);
175 176 177 178 179 180

	/* Enable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);

181
	vcpu->cpu = -1;
182 183
}

184
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
185
void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
186
{
187 188
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);

189 190 191 192 193 194 195 196 197 198 199 200 201 202
	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
203
	svcpu->cr  = vcpu->arch.regs.ccr;
204 205 206 207
	svcpu->xer = vcpu->arch.regs.xer;
	svcpu->ctr = vcpu->arch.regs.ctr;
	svcpu->lr  = vcpu->arch.regs.link;
	svcpu->pc  = vcpu->arch.regs.nip;
208 209 210
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
211 212 213 214 215
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
216
	vcpu->arch.entry_vtb = get_vtb();
217 218
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.entry_ic = mfspr(SPRN_IC);
219
	svcpu->in_use = true;
220 221

	svcpu_put(svcpu);
222 223
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;

	/* Guest MSR values */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
		MSR_TM | MSR_TS_MASK;
#else
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
#endif
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
243 244 245 246 247 248 249 250 251
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * in guest privileged state, we want to fail all TM transactions.
	 * So disable MSR TM bit so that all tbegin. will be able to be
	 * trapped into host.
	 */
	if (!(guest_msr & MSR_PR))
		smsr &= ~MSR_TM;
252 253 254 255
#endif
	vcpu->arch.shadow_msr = smsr;
}

256
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
257
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
258
{
259
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
260 261 262
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	ulong old_msr;
#endif
263 264 265 266 267 268 269 270

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

271 272 273 274 275 276 277 278 279 280 281 282 283 284
	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
285
	vcpu->arch.regs.ccr  = svcpu->cr;
286 287 288 289
	vcpu->arch.regs.xer = svcpu->xer;
	vcpu->arch.regs.ctr = svcpu->ctr;
	vcpu->arch.regs.link  = svcpu->lr;
	vcpu->arch.regs.nip  = svcpu->pc;
290 291 292 293
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
294 295 296
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
297 298 299 300 301
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
302
	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
303 304
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
	 * notifying host:
	 *  modified by unprivileged instructions like "tbegin"/"tend"/
	 * "tresume"/"tsuspend" in PR KVM guest.
	 *
	 * It is necessary to sync here to calculate a correct shadow_msr.
	 *
	 * privileged guest's tbegin will be failed at present. So we
	 * only take care of problem state guest.
	 */
	old_msr = kvmppc_get_msr(vcpu);
	if (unlikely((old_msr & MSR_PR) &&
		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
				(old_msr & (MSR_TS_MASK)))) {
		old_msr &= ~(MSR_TS_MASK);
		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
		kvmppc_set_msr_fast(vcpu, old_msr);
		kvmppc_recalc_shadow_msr(vcpu);
	}
#endif

329 330 331
	svcpu->in_use = false;

out:
332
	svcpu_put(svcpu);
333 334
}

335
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
336
void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
337 338 339 340 341 342 343 344
{
	tm_enable();
	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
	tm_disable();
}

345
void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
346 347 348 349 350 351 352 353
{
	tm_enable();
	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
	tm_disable();
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
 * hardware.
 */
static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
{
	ulong exit_nr;
	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
		(MSR_FP | MSR_VEC | MSR_VSX);

	if (!ext_diff)
		return;

	if (ext_diff == MSR_FP)
		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
	else if (ext_diff == MSR_VEC)
		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
	else
		exit_nr = BOOK3S_INTERRUPT_VSX;

	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
}

376 377 378 379 380 381 382
void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
{
	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
		kvmppc_save_tm_sprs(vcpu);
		return;
	}

383
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
384 385
	kvmppc_giveup_ext(vcpu, MSR_VSX);

386 387 388 389 390 391 392 393 394
	preempt_disable();
	_kvmppc_save_tm_pr(vcpu, mfmsr());
	preempt_enable();
}

void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
{
	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
		kvmppc_restore_tm_sprs(vcpu);
395
		if (kvmppc_get_msr(vcpu) & MSR_TM) {
396
			kvmppc_handle_lost_math_exts(vcpu);
397 398 399
			if (vcpu->arch.fscr & FSCR_TAR)
				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
		}
400 401 402 403 404 405
		return;
	}

	preempt_disable();
	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
	preempt_enable();
406

407
	if (kvmppc_get_msr(vcpu) & MSR_TM) {
408
		kvmppc_handle_lost_math_exts(vcpu);
409 410 411
		if (vcpu->arch.fscr & FSCR_TAR)
			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
	}
412
}
413 414
#endif

415
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
416
{
417 418
	int r = 1; /* Indicate we want to get back into the guest */

419 420 421 422
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
423 424

	return r;
425 426
}

427
/************* MMU Notifiers *************/
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
457

458 459
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
460
{
461
	do_kvm_unmap_hva(kvm, start, end);
462 463 464 465

	return 0;
}

A
Andres Lagar-Cavilla 已提交
466 467
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
			  unsigned long end)
468 469 470 471 472
{
	/* XXX could be more clever ;) */
	return 0;
}

473
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
474 475 476 477 478
{
	/* XXX could be more clever ;) */
	return 0;
}

479
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
480 481
{
	/* The page will get remapped properly on its next fault */
482
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
483 484 485 486
}

/*****************************************/

487
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
488
{
489
	ulong old_msr;
490

491 492 493 494
	/* For PAPR guest, make sure MSR reflects guest mode */
	if (vcpu->arch.papr_enabled)
		msr = (msr & ~MSR_HV) | MSR_ME;

495 496 497 498
#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

499 500 501 502 503 504 505 506 507 508 509
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/* We should never target guest MSR to TS=10 && PR=0,
	 * since we always fail transaction for guest privilege
	 * state.
	 */
	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
		kvmppc_emulate_tabort(vcpu,
			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
#endif

	old_msr = kvmppc_get_msr(vcpu);
510
	msr &= to_book3s(vcpu)->msr_mask;
511
	kvmppc_set_msr_fast(vcpu, msr);
512 513 514 515 516
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
517
			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
518 519 520 521
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
522
			kvmppc_set_msr_fast(vcpu, msr);
523 524 525
		}
	}

526 527 528 529 530
	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
	else
		kvmppc_unfixup_split_real(vcpu);

531
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

547 548 549
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
550
	 * page will be instantiated when calling into RTAS. Note: We
551 552 553 554 555 556 557 558 559 560 561
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

562
	/* Preload FPU if it's enabled */
563
	if (kvmppc_get_msr(vcpu) & MSR_FP)
564
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
565 566 567 568 569

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (kvmppc_get_msr(vcpu) & MSR_TM)
		kvmppc_handle_lost_math_exts(vcpu);
#endif
570 571
}

572
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
573 574 575 576 577 578 579 580
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
581 582
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
583
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
584
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
585 586 587 588
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
589 590
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
591
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
592
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
593 594
	}

595 596
	kvmppc_sanity_check(vcpu);

597 598 599 600 601 602 603 604 605 606 607 608
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

609 610 611 612 613 614 615 616 617 618 619 620
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
621 622
	case PVR_POWER8E:
	case PVR_POWER8NVL:
623
	case PVR_POWER9:
624 625 626 627 628
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
669
	if (is_error_page(hpage))
670 671 672 673 674 675 676
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
677
	page = kmap_atomic(hpage);
678 679 680

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
681 682
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
683

684
	kunmap_atomic(page);
685 686 687
	put_page(hpage);
}

688
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
689 690 691
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

692
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
693 694
		mp_pa = (uint32_t)mp_pa;

695 696
	gpa &= ~0xFFFULL;
	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
697
		return true;
698 699
	}

700
	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
701 702 703 704 705 706
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
707
	bool iswrite = false;
708 709 710
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
711
	struct kvmppc_pte pte = { 0 };
712 713
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
714 715 716
	u64 vsid;

	relocated = data ? dr : ir;
717 718
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
719 720 721

	/* Resolve real address if translation turned on */
	if (relocated) {
722
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
723 724 725 726 727 728 729
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
730
		pte.page_size = MMU_PAGE_64K;
731
		pte.wimg = HPTE_R_M;
732 733
	}

734
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
735 736 737 738
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
739 740 741 742 743
		if (!data &&
		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
			pte.raddr &= ~SPLIT_HACK_MASK;
		/* fall through */
744 745 746
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

747
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

768 769 770 771 772 773 774 775 776 777 778 779 780 781
	if (page_found == -ENOENT || page_found == -EPERM) {
		/* Page not found in guest PTE entries, or protection fault */
		u64 flags;

		if (page_found == -EPERM)
			flags = DSISR_PROTFAULT;
		else
			flags = DSISR_NOHPTE;
		if (data) {
			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
			kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
		} else {
			kvmppc_core_queue_inst_storage(vcpu, flags);
		}
782 783
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
784
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
785
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
786
	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
787 788 789 790 791 792 793 794
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
795
		/* The guest's PTE is not mapped yet. Map on the host */
796 797 798 799 800
		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
			/* Exit KVM if mapping failed */
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			return RESUME_HOST;
		}
801 802 803
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
804
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
805 806 807 808 809
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
810
		vcpu->arch.vaddr_accessed = pte.eaddr;
811 812 813 814 815 816 817 818 819 820 821 822 823
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

824 825 826 827 828 829 830 831 832
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
833 834 835 836 837 838
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

839 840 841 842
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
843
		 * registers into thread.fp_state.fpr[].
844
		 */
845
		if (t->regs->msr & MSR_FP)
846
			giveup_fpu(current);
847
		t->fp_save_area = NULL;
848 849
	}

850
#ifdef CONFIG_ALTIVEC
851
	if (msr & MSR_VEC) {
852 853
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
854
		t->vr_save_area = NULL;
855
	}
856
#endif
857

858
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
859 860 861
	kvmppc_recalc_shadow_msr(vcpu);
}

862
/* Give up facility (TAR / EBB / DSCR) */
863
void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
864 865 866 867 868 869
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
870 871 872 873 874 875 876 877

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
878 879 880
#endif
}

881 882 883 884 885 886 887 888 889 890
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

891
	if (!(kvmppc_get_msr(vcpu) & msr)) {
892 893 894 895
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
911 912
	}

913 914 915 916 917
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

918 919 920 921
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

922
	if (msr & MSR_FP) {
923
		preempt_disable();
924
		enable_kernel_fp();
925
		load_fp_state(&vcpu->arch.fp);
926
		disable_kernel_fp();
927
		t->fp_save_area = &vcpu->arch.fp;
928
		preempt_enable();
929 930 931
	}

	if (msr & MSR_VEC) {
932
#ifdef CONFIG_ALTIVEC
933
		preempt_disable();
934
		enable_kernel_altivec();
935
		load_vr_state(&vcpu->arch.vr);
936
		disable_kernel_altivec();
937
		t->vr_save_area = &vcpu->arch.vr;
938
		preempt_enable();
939 940 941
#endif
	}

942
	t->regs->msr |= msr;
943 944 945 946 947 948
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

949 950 951 952 953 954 955 956 957 958 959 960
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

961
	if (lost_ext & MSR_FP) {
962
		preempt_disable();
963
		enable_kernel_fp();
964
		load_fp_state(&vcpu->arch.fp);
965
		disable_kernel_fp();
966
		preempt_enable();
967
	}
968
#ifdef CONFIG_ALTIVEC
969
	if (lost_ext & MSR_VEC) {
970
		preempt_disable();
971
		enable_kernel_altivec();
972
		load_vr_state(&vcpu->arch.vr);
973
		disable_kernel_altivec();
974
		preempt_enable();
975
	}
976
#endif
977 978 979
	current->thread.regs->msr |= lost_ext;
}

980 981
#ifdef CONFIG_PPC_BOOK3S_64

982
void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
1006
	bool guest_fac_enabled;
1007 1008
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
1027 1028 1029 1030 1031 1032
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
1033 1034 1035 1036 1037 1038
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
1039 1040 1041 1042 1043
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
	 * for TM spr can trigger TM fac unavailable. In this case, the
	 * emulation is handled by kvmppc_emulate_fac(), which invokes
	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
	 * RT for NV registers. So it need to restore those NV reg to reflect
	 * the update.
	 */
	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
		return RESUME_GUEST_NV;
#endif

1056 1057
	return RESUME_GUEST;
}
1058 1059 1060 1061 1062 1063

void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
{
	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
		/* TAR got dropped, drop it in shadow too */
		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1064 1065 1066 1067
	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
		vcpu->arch.fscr = fscr;
		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
		return;
1068
	}
1069

1070 1071
	vcpu->arch.fscr = fscr;
}
1072 1073
#endif

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr | MSR_SE);
	}
}

static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
	}
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
				  unsigned int exit_nr)
{
	enum emulation_result er;
	ulong flags;
	u32 last_inst;
	int emul, r;

	/*
	 * shadow_srr1 only contains valid flags if we came here via a program
	 * exception. The other exceptions (emulation assist, FP unavailable,
	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
	 * exception when injecting a program interrupt into the guest.
	 */
	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
	else
		flags = SRR1_PROGILL;

	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
	if (emul != EMULATE_DONE)
		return RESUME_GUEST;

	if (kvmppc_get_msr(vcpu) & MSR_PR) {
#ifdef EXIT_DEBUG
		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
			kvmppc_get_pc(vcpu), last_inst);
#endif
		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
			kvmppc_core_queue_program(vcpu, flags);
			return RESUME_GUEST;
		}
	}

	vcpu->stat.emulated_inst_exits++;
	er = kvmppc_emulate_instruction(run, vcpu);
	switch (er) {
	case EMULATE_DONE:
		r = RESUME_GUEST_NV;
		break;
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
	case EMULATE_FAIL:
		pr_crit("%s: emulation at %lx failed (%08x)\n",
			__func__, kvmppc_get_pc(vcpu), last_inst);
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST_NV;
		break;
	case EMULATE_EXIT_USER:
		r = RESUME_HOST_NV;
		break;
	default:
		BUG();
	}

	return r;
}

1155 1156
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
1157 1158
{
	int r = RESUME_HOST;
1159
	int s;
1160 1161 1162 1163 1164 1165

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1166
	/* We get here with MSR.EE=1 */
1167

1168
	trace_kvm_exit(exit_nr, vcpu);
1169
	guest_exit();
1170

1171 1172
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
1173
	{
1174
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1175 1176
		vcpu->stat.pf_instruc++;

1177 1178 1179
		if (kvmppc_is_split_real(vcpu))
			kvmppc_fixup_split_real(vcpu);

1180 1181 1182
#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1183 1184 1185 1186 1187 1188
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1189
			svcpu_put(svcpu);
1190 1191 1192 1193 1194
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
1195 1196 1197 1198
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
1199
		if (shadow_srr1 & 0x40000000) {
1200
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1201
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1202
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
1214 1215
			kvmppc_core_queue_inst_storage(vcpu,
						shadow_srr1 & 0x58000000);
1216 1217 1218
			r = RESUME_GUEST;
		}
		break;
1219
	}
1220 1221 1222
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
1223
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1224 1225 1226 1227 1228
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1229 1230 1231 1232 1233 1234
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
1235
			svcpu_put(svcpu);
1236 1237 1238 1239 1240
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
1241 1242 1243
		}
#endif

1244 1245 1246 1247 1248 1249 1250
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1251
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1252
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1253
		} else {
1254
			kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1255 1256 1257 1258 1259 1260
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1261
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
1276
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1277
	case BOOK3S_INTERRUPT_DOORBELL:
1278
	case BOOK3S_INTERRUPT_H_DOORBELL:
1279 1280 1281 1282
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1283
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1284
	case BOOK3S_INTERRUPT_H_VIRT:
1285 1286 1287
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1288
	case BOOK3S_INTERRUPT_HMI:
1289
	case BOOK3S_INTERRUPT_PERFMON:
1290
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1291 1292 1293
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
1294
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1295
		r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1296 1297
		break;
	case BOOK3S_INTERRUPT_SYSCALL:
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	{
		u32 last_sc;
		int emul;

		/* Get last sc for papr */
		if (vcpu->arch.papr_enabled) {
			/* The sc instuction points SRR0 to the next inst */
			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
			if (emul != EMULATE_DONE) {
				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
				r = RESUME_GUEST;
				break;
			}
		}

1313
		if (vcpu->arch.papr_enabled &&
1314
		    (last_sc == 0x44000022) &&
1315
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1316 1317 1318 1319
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1320
#ifdef CONFIG_PPC_BOOK3S_64
1321 1322 1323 1324
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1325
#endif
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1347
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1359
	}
1360 1361 1362 1363 1364
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;
1365 1366 1367 1368 1369
		int emul;
		u32 last_inst;

		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
			/* Do paired single instruction emulation */
1370 1371
			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
						    &last_inst);
1372
			if (emul == EMULATE_DONE)
1373
				r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1374 1375
			else
				r = RESUME_GUEST;
1376

1377
			break;
1378 1379
		}

1380 1381 1382 1383
		/* Enable external provider */
		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL:
			ext_msr = MSR_FP;
1384
			break;
1385 1386 1387

		case BOOK3S_INTERRUPT_ALTIVEC:
			ext_msr = MSR_VEC;
1388
			break;
1389 1390 1391

		case BOOK3S_INTERRUPT_VSX:
			ext_msr = MSR_VSX;
1392 1393
			break;
		}
1394 1395

		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1396 1397 1398
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
1399
	{
1400 1401
		u32 last_inst;
		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1402 1403

		if (emul == EMULATE_DONE) {
1404 1405 1406 1407 1408 1409 1410 1411 1412
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1413 1414 1415 1416
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1417
	}
1418 1419
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1420
		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1421 1422
		break;
#endif
1423 1424 1425 1426
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
1427 1428 1429 1430 1431 1432 1433 1434 1435
	case BOOK3S_INTERRUPT_TRACE:
		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
			run->exit_reason = KVM_EXIT_DEBUG;
			r = RESUME_HOST;
		} else {
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1436
	default:
1437
	{
1438
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1439 1440
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1441
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1442 1443 1444 1445
		r = RESUME_HOST;
		BUG();
		break;
	}
1446
	}
1447 1448 1449 1450 1451

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1452 1453 1454 1455 1456 1457 1458

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1459
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1460
		if (s <= 0)
1461
			r = s;
S
Scott Wood 已提交
1462 1463
		else {
			/* interrupts now hard-disabled */
1464
			kvmppc_fix_ee_before_entry();
1465
		}
S
Scott Wood 已提交
1466

1467
		kvmppc_handle_lost_ext(vcpu);
1468 1469 1470 1471 1472 1473 1474
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1475 1476
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1491
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1502 1503
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1504 1505 1506 1507
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1508
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1509 1510

	vcpu3s->sdr1 = sregs->u.s.sdr1;
1511
#ifdef CONFIG_PPC_BOOK3S_64
1512
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1513 1514 1515 1516
		/* Flush all SLB entries */
		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
		vcpu->arch.mmu.slbia(vcpu);

1517
		for (i = 0; i < 64; i++) {
1518 1519 1520 1521 1522
			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
			u64 rs = sregs->u.s.ppc64.slb[i].slbv;

			if (rb & SLB_ESID_V)
				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1523
		}
1524 1525 1526
	} else
#endif
	{
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1548 1549
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1550
{
1551
	int r = 0;
1552

1553
	switch (id) {
1554 1555 1556
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1557
	case KVM_REG_PPC_HIOR:
1558
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1559
		break;
1560 1561 1562
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
		break;
1563
	case KVM_REG_PPC_LPCR:
1564
	case KVM_REG_PPC_LPCR_64:
1565 1566 1567 1568 1569 1570 1571 1572
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		*val = get_reg_val(id,
				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int i, j;

		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1640
	default:
1641
		r = -EINVAL;
1642 1643 1644 1645 1646 1647
		break;
	}

	return r;
}

1648 1649 1650 1651 1652 1653 1654 1655
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1656 1657
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1658
{
1659
	int r = 0;
1660

1661
	switch (id) {
1662
	case KVM_REG_PPC_HIOR:
1663 1664
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1665
		break;
1666 1667 1668
	case KVM_REG_PPC_VTB:
		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
		break;
1669
	case KVM_REG_PPC_LPCR:
1670
	case KVM_REG_PPC_LPCR_64:
1671 1672
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
			set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int i, j;

		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1739
	default:
1740
		r = -EINVAL;
1741 1742 1743 1744 1745 1746
		break;
	}

	return r;
}

1747
static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1748 1749 1750
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	unsigned long p;
1751 1752 1753
	int err;

	err = -ENOMEM;
1754 1755 1756

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
1757
		goto out;
1758
	vcpu->arch.book3s = vcpu_book3s;
1759

1760
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1761 1762 1763 1764
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1765
#endif
1766 1767 1768

	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
1769
		goto free_shadow_vcpu;
1770
	vcpu->arch.shared = (void *)p;
1771
#ifdef CONFIG_PPC_BOOK3S_64
1772 1773 1774 1775 1776 1777 1778
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1779 1780 1781 1782 1783
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1784
	vcpu->arch.pvr = 0x3C0301;
1785 1786
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1787
	vcpu->arch.intr_msr = MSR_SF;
1788 1789 1790
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
1791
	vcpu->arch.intr_msr = 0;
1792
#endif
1793
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1794 1795
	vcpu->arch.slb_nr = 64;

1796
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1797 1798 1799

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
1800
		goto free_shared_page;
1801

1802
	return 0;
1803

1804 1805
free_shared_page:
	free_page((unsigned long)vcpu->arch.shared);
1806
free_shadow_vcpu:
1807
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1808 1809
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1810
#endif
1811
	vfree(vcpu_book3s);
1812
out:
1813
	return err;
1814 1815
}

1816
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1817 1818 1819 1820
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1821
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1822 1823
	kfree(vcpu->arch.shadow_vcpu);
#endif
1824 1825 1826
	vfree(vcpu_book3s);
}

1827
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1828 1829 1830 1831 1832 1833
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1834 1835 1836
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1837 1838
		ret = -EINVAL;
		goto out;
1839 1840
	}

1841 1842
	kvmppc_setup_debug(vcpu);

1843 1844 1845 1846 1847 1848
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1849
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1850
	if (ret <= 0)
1851
		goto out;
S
Scott Wood 已提交
1852
	/* interrupts now hard-disabled */
1853

A
Anton Blanchard 已提交
1854 1855
	/* Save FPU, Altivec and VSX state */
	giveup_all(current);
1856 1857

	/* Preload FPU if it's enabled */
1858
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1859 1860
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1861
	kvmppc_fix_ee_before_entry();
1862 1863 1864

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1865 1866
	kvmppc_clear_debug(vcpu);

1867
	/* No need for guest_exit. It's done in handle_exit.
1868
	   We also get here with interrupts enabled. */
1869 1870

	/* Make sure we save the guest FPU/Altivec/VSX state */
1871 1872
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1873 1874 1875
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1876
out:
1877
	vcpu->mode = OUTSIDE_GUEST_MODE;
1878 1879 1880
	return ret;
}

1881 1882 1883
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1884 1885
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1886
{
1887
	struct kvm_memslots *slots;
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
1903 1904
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1922 1923
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1924
{
1925 1926
	return;
}
1927

1928 1929
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
1930
					const struct kvm_userspace_memory_region *mem)
1931
{
1932 1933 1934
	return 0;
}

1935
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1936
				const struct kvm_userspace_memory_region *mem,
1937
				const struct kvm_memory_slot *old,
1938 1939
				const struct kvm_memory_slot *new,
				enum kvm_mr_change change)
1940
{
1941
	return;
1942 1943
}

1944 1945
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1946
{
1947
	return;
1948 1949
}

1950 1951
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1952 1953 1954 1955
{
	return 0;
}

1956

1957
#ifdef CONFIG_PPC64
1958 1959
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1960
{
1961 1962 1963 1964
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1995
	/* Standard 16M large page size segment */
1996 1997 1998 1999
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
2000

2001 2002
	return 0;
}
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;
	/* Require flags and process table base and size to all be zero. */
	if (cfg->flags || cfg->process_table)
		return -EINVAL;
	return 0;
}

2014 2015 2016
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
2017
{
2018 2019
	/* We should not get called */
	BUG();
2020
}
2021
#endif /* CONFIG_PPC64 */
2022

2023 2024 2025
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

2026
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2027
{
2028
	mutex_init(&kvm->arch.hpt_mutex);
2029

2030 2031 2032 2033 2034
#ifdef CONFIG_PPC_BOOK3S_64
	/* Start out with the default set of hcalls enabled */
	kvmppc_pr_init_default_hcalls(kvm);
#endif

2035 2036 2037
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
2038
			pseries_disable_reloc_on_exc();
2039 2040
		spin_unlock(&kvm_global_user_count_lock);
	}
2041 2042 2043
	return 0;
}

2044
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2045
{
2046 2047 2048
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
2049 2050 2051 2052 2053

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
2054
			pseries_enable_reloc_on_exc();
2055 2056
		spin_unlock(&kvm_global_user_count_lock);
	}
2057 2058
}

2059
static int kvmppc_core_check_processor_compat_pr(void)
2060
{
2061
	/*
2062 2063 2064
	 * PR KVM can work on POWER9 inside a guest partition
	 * running in HPT mode.  It can't work if we are using
	 * radix translation (because radix provides no way for
2065
	 * a process to have unique translations in quadrant 3).
2066
	 */
2067
	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2068
		return -EIO;
2069 2070
	return 0;
}
2071

2072 2073 2074 2075 2076
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
2077

2078
static struct kvmppc_ops kvm_ops_pr = {
2079 2080 2081 2082 2083 2084
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
2085
	.inject_interrupt = kvmppc_inject_interrupt_pr,
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2110 2111
#ifdef CONFIG_PPC_BOOK3S_64
	.hcall_implemented = kvmppc_hcall_impl_pr,
2112
	.configure_mmu = kvm_configure_mmu_pr,
2113
#endif
2114
	.giveup_ext = kvmppc_giveup_ext,
2115 2116
};

2117 2118

int kvmppc_book3s_init_pr(void)
2119 2120 2121
{
	int r;

2122 2123
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
2124 2125
		return r;

2126 2127
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
2128

2129
	r = kvmppc_mmu_hpte_sysinit();
2130 2131 2132
	return r;
}

2133
void kvmppc_book3s_exit_pr(void)
2134
{
2135
	kvmppc_pr_ops = NULL;
2136 2137 2138
	kvmppc_mmu_hpte_sysexit();
}

2139 2140 2141 2142 2143
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

2144 2145
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
2146 2147

MODULE_LICENSE("GPL");
2148 2149
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
2150
#endif