book3s_pr.c 54.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
30
#include <linux/uaccess.h>
31 32 33 34
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
35
#include <asm/switch_to.h>
36
#include <asm/firmware.h>
37
#include <asm/setup.h>
38 39 40 41
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
42
#include <linux/module.h>
43
#include <linux/miscdevice.h>
44
#include <asm/asm-prototypes.h>
45
#include <asm/tm.h>
46

47
#include "book3s.h"
48 49 50

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
51 52 53 54 55 56

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
57 58 59
#ifdef CONFIG_PPC_BOOK3S_64
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
#endif
60 61 62 63 64 65

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
66
#define HPTE_R_M   _PAGE_COHERENT
67 68
#endif

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
}

static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	ulong pc = kvmppc_get_pc(vcpu);

	/* We are in DR only split real mode */
	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
		return;

	/* We have not fixed up the guest already */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
		return;

	/* The code is in fixupable address space */
	if (pc & SPLIT_HACK_MASK)
		return;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
}

void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);

98
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
99 100
{
#ifdef CONFIG_PPC_BOOK3S_64
101 102 103
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
104
	svcpu->in_use = 0;
105
	svcpu_put(svcpu);
106
#endif
107 108 109 110 111 112

	/* Disable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);

113
	vcpu->cpu = smp_processor_id();
114
#ifdef CONFIG_PPC_BOOK3S_32
115
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
116
#endif
117 118 119

	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
120 121

	kvmppc_restore_tm_pr(vcpu);
122 123
}

124
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
125 126
{
#ifdef CONFIG_PPC_BOOK3S_64
127
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
128
	if (svcpu->in_use) {
129
		kvmppc_copy_from_svcpu(vcpu);
130
	}
131 132 133
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
134 135
#endif

136 137 138
	if (kvmppc_is_split_real(vcpu))
		kvmppc_unfixup_split_real(vcpu);

139
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
140
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
141
	kvmppc_save_tm_pr(vcpu);
142 143 144 145 146 147

	/* Enable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);

148
	vcpu->cpu = -1;
149 150
}

151
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
152
void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
153
{
154 155
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);

156 157 158 159 160 161 162 163 164 165 166 167 168 169
	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
170
	svcpu->cr  = vcpu->arch.regs.ccr;
171 172 173 174
	svcpu->xer = vcpu->arch.regs.xer;
	svcpu->ctr = vcpu->arch.regs.ctr;
	svcpu->lr  = vcpu->arch.regs.link;
	svcpu->pc  = vcpu->arch.regs.nip;
175 176 177
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
178 179 180 181 182
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
183
	vcpu->arch.entry_vtb = get_vtb();
184 185
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.entry_ic = mfspr(SPRN_IC);
186
	svcpu->in_use = true;
187 188

	svcpu_put(svcpu);
189 190
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;

	/* Guest MSR values */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
		MSR_TM | MSR_TS_MASK;
#else
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
#endif
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
210 211 212 213 214 215 216 217 218
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * in guest privileged state, we want to fail all TM transactions.
	 * So disable MSR TM bit so that all tbegin. will be able to be
	 * trapped into host.
	 */
	if (!(guest_msr & MSR_PR))
		smsr &= ~MSR_TM;
219 220 221 222
#endif
	vcpu->arch.shadow_msr = smsr;
}

223
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
224
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
225
{
226
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
227 228 229
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	ulong old_msr;
#endif
230 231 232 233 234 235 236 237

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

238 239 240 241 242 243 244 245 246 247 248 249 250 251
	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
252
	vcpu->arch.regs.ccr  = svcpu->cr;
253 254 255 256
	vcpu->arch.regs.xer = svcpu->xer;
	vcpu->arch.regs.ctr = svcpu->ctr;
	vcpu->arch.regs.link  = svcpu->lr;
	vcpu->arch.regs.nip  = svcpu->pc;
257 258 259 260
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
261 262 263
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
264 265 266 267 268
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
269
	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
270 271
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
	 * notifying host:
	 *  modified by unprivileged instructions like "tbegin"/"tend"/
	 * "tresume"/"tsuspend" in PR KVM guest.
	 *
	 * It is necessary to sync here to calculate a correct shadow_msr.
	 *
	 * privileged guest's tbegin will be failed at present. So we
	 * only take care of problem state guest.
	 */
	old_msr = kvmppc_get_msr(vcpu);
	if (unlikely((old_msr & MSR_PR) &&
		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
				(old_msr & (MSR_TS_MASK)))) {
		old_msr &= ~(MSR_TS_MASK);
		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
		kvmppc_set_msr_fast(vcpu, old_msr);
		kvmppc_recalc_shadow_msr(vcpu);
	}
#endif

296 297 298
	svcpu->in_use = false;

out:
299
	svcpu_put(svcpu);
300 301
}

302
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
303
void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
304 305 306 307 308 309 310 311
{
	tm_enable();
	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
	tm_disable();
}

312
void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
313 314 315 316 317 318 319 320
{
	tm_enable();
	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
	tm_disable();
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
 * hardware.
 */
static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
{
	ulong exit_nr;
	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
		(MSR_FP | MSR_VEC | MSR_VSX);

	if (!ext_diff)
		return;

	if (ext_diff == MSR_FP)
		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
	else if (ext_diff == MSR_VEC)
		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
	else
		exit_nr = BOOK3S_INTERRUPT_VSX;

	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
}

343 344 345 346 347 348 349
void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
{
	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
		kvmppc_save_tm_sprs(vcpu);
		return;
	}

350
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
351 352
	kvmppc_giveup_ext(vcpu, MSR_VSX);

353 354 355 356 357 358 359 360 361
	preempt_disable();
	_kvmppc_save_tm_pr(vcpu, mfmsr());
	preempt_enable();
}

void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
{
	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
		kvmppc_restore_tm_sprs(vcpu);
362
		if (kvmppc_get_msr(vcpu) & MSR_TM) {
363
			kvmppc_handle_lost_math_exts(vcpu);
364 365 366
			if (vcpu->arch.fscr & FSCR_TAR)
				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
		}
367 368 369 370 371 372
		return;
	}

	preempt_disable();
	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
	preempt_enable();
373

374
	if (kvmppc_get_msr(vcpu) & MSR_TM) {
375
		kvmppc_handle_lost_math_exts(vcpu);
376 377 378
		if (vcpu->arch.fscr & FSCR_TAR)
			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
	}
379
}
380 381
#endif

382
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
383
{
384 385
	int r = 1; /* Indicate we want to get back into the guest */

386 387 388 389
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
390 391

	return r;
392 393
}

394
/************* MMU Notifiers *************/
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
424

425 426
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
427
{
428
	do_kvm_unmap_hva(kvm, start, end);
429 430 431 432

	return 0;
}

A
Andres Lagar-Cavilla 已提交
433 434
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
			  unsigned long end)
435 436 437 438 439
{
	/* XXX could be more clever ;) */
	return 0;
}

440
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
441 442 443 444 445
{
	/* XXX could be more clever ;) */
	return 0;
}

446
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
447 448
{
	/* The page will get remapped properly on its next fault */
449
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
450 451 452 453
}

/*****************************************/

454
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
455
{
456
	ulong old_msr;
457

458 459 460 461
	/* For PAPR guest, make sure MSR reflects guest mode */
	if (vcpu->arch.papr_enabled)
		msr = (msr & ~MSR_HV) | MSR_ME;

462 463 464 465
#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

466 467 468 469 470 471 472 473 474 475 476
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/* We should never target guest MSR to TS=10 && PR=0,
	 * since we always fail transaction for guest privilege
	 * state.
	 */
	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
		kvmppc_emulate_tabort(vcpu,
			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
#endif

	old_msr = kvmppc_get_msr(vcpu);
477
	msr &= to_book3s(vcpu)->msr_mask;
478
	kvmppc_set_msr_fast(vcpu, msr);
479 480 481 482 483
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
484
			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
485 486 487 488
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
489
			kvmppc_set_msr_fast(vcpu, msr);
490 491 492
		}
	}

493 494 495 496 497
	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
	else
		kvmppc_unfixup_split_real(vcpu);

498
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

514 515 516
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
517
	 * page will be instantiated when calling into RTAS. Note: We
518 519 520 521 522 523 524 525 526 527 528
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

529
	/* Preload FPU if it's enabled */
530
	if (kvmppc_get_msr(vcpu) & MSR_FP)
531
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
532 533 534 535 536

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (kvmppc_get_msr(vcpu) & MSR_TM)
		kvmppc_handle_lost_math_exts(vcpu);
#endif
537 538
}

539
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
540 541 542 543 544 545 546 547
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
548 549
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
550
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
551
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
552 553 554 555
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
556 557
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
558
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
559
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
560 561
	}

562 563
	kvmppc_sanity_check(vcpu);

564 565 566 567 568 569 570 571 572 573 574 575
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

576 577 578 579 580 581 582 583 584 585 586 587
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
588 589
	case PVR_POWER8E:
	case PVR_POWER8NVL:
590
	case PVR_POWER9:
591 592 593 594 595
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
636
	if (is_error_page(hpage))
637 638 639 640 641 642 643
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
644
	page = kmap_atomic(hpage);
645 646 647

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
648 649
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
650

651
	kunmap_atomic(page);
652 653 654
	put_page(hpage);
}

655
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
656 657 658
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

659
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
660 661
		mp_pa = (uint32_t)mp_pa;

662 663
	gpa &= ~0xFFFULL;
	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
664
		return true;
665 666
	}

667
	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
668 669 670 671 672 673
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
674
	bool iswrite = false;
675 676 677
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
678
	struct kvmppc_pte pte = { 0 };
679 680
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
681 682 683
	u64 vsid;

	relocated = data ? dr : ir;
684 685
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
686 687 688

	/* Resolve real address if translation turned on */
	if (relocated) {
689
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
690 691 692 693 694 695 696
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
697
		pte.page_size = MMU_PAGE_64K;
698
		pte.wimg = HPTE_R_M;
699 700
	}

701
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
702 703 704 705
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
706 707 708 709 710
		if (!data &&
		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
			pte.raddr &= ~SPLIT_HACK_MASK;
		/* fall through */
711 712 713
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

714
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

735 736 737 738 739 740 741 742 743 744 745 746 747 748
	if (page_found == -ENOENT || page_found == -EPERM) {
		/* Page not found in guest PTE entries, or protection fault */
		u64 flags;

		if (page_found == -EPERM)
			flags = DSISR_PROTFAULT;
		else
			flags = DSISR_NOHPTE;
		if (data) {
			flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
			kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
		} else {
			kvmppc_core_queue_inst_storage(vcpu, flags);
		}
749 750
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
751
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
752
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
753
	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
754 755 756 757 758 759 760 761
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
762
		/* The guest's PTE is not mapped yet. Map on the host */
763 764 765 766 767
		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
			/* Exit KVM if mapping failed */
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			return RESUME_HOST;
		}
768 769 770
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
771
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
772 773 774 775 776
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
777
		vcpu->arch.vaddr_accessed = pte.eaddr;
778 779 780 781 782 783 784 785 786 787 788 789 790
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

791 792 793 794 795 796 797 798 799
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
800 801 802 803 804 805
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

806 807 808 809
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
810
		 * registers into thread.fp_state.fpr[].
811
		 */
812
		if (t->regs->msr & MSR_FP)
813
			giveup_fpu(current);
814
		t->fp_save_area = NULL;
815 816
	}

817
#ifdef CONFIG_ALTIVEC
818
	if (msr & MSR_VEC) {
819 820
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
821
		t->vr_save_area = NULL;
822
	}
823
#endif
824

825
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
826 827 828
	kvmppc_recalc_shadow_msr(vcpu);
}

829
/* Give up facility (TAR / EBB / DSCR) */
830
void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
831 832 833 834 835 836
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
837 838 839 840 841 842 843 844

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
845 846 847
#endif
}

848 849 850 851 852 853 854 855 856 857
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

858
	if (!(kvmppc_get_msr(vcpu) & msr)) {
859 860 861 862
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
878 879
	}

880 881 882 883 884
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

885 886 887 888
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

889
	if (msr & MSR_FP) {
890
		preempt_disable();
891
		enable_kernel_fp();
892
		load_fp_state(&vcpu->arch.fp);
893
		disable_kernel_fp();
894
		t->fp_save_area = &vcpu->arch.fp;
895
		preempt_enable();
896 897 898
	}

	if (msr & MSR_VEC) {
899
#ifdef CONFIG_ALTIVEC
900
		preempt_disable();
901
		enable_kernel_altivec();
902
		load_vr_state(&vcpu->arch.vr);
903
		disable_kernel_altivec();
904
		t->vr_save_area = &vcpu->arch.vr;
905
		preempt_enable();
906 907 908
#endif
	}

909
	t->regs->msr |= msr;
910 911 912 913 914 915
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

916 917 918 919 920 921 922 923 924 925 926 927
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

928
	if (lost_ext & MSR_FP) {
929
		preempt_disable();
930
		enable_kernel_fp();
931
		load_fp_state(&vcpu->arch.fp);
932
		disable_kernel_fp();
933
		preempt_enable();
934
	}
935
#ifdef CONFIG_ALTIVEC
936
	if (lost_ext & MSR_VEC) {
937
		preempt_disable();
938
		enable_kernel_altivec();
939
		load_vr_state(&vcpu->arch.vr);
940
		disable_kernel_altivec();
941
		preempt_enable();
942
	}
943
#endif
944 945 946
	current->thread.regs->msr |= lost_ext;
}

947 948
#ifdef CONFIG_PPC_BOOK3S_64

949
void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
973
	bool guest_fac_enabled;
974 975
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
994 995 996 997 998 999
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
1000 1001 1002 1003 1004 1005
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
1006 1007 1008 1009 1010
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
	 * for TM spr can trigger TM fac unavailable. In this case, the
	 * emulation is handled by kvmppc_emulate_fac(), which invokes
	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
	 * RT for NV registers. So it need to restore those NV reg to reflect
	 * the update.
	 */
	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
		return RESUME_GUEST_NV;
#endif

1023 1024
	return RESUME_GUEST;
}
1025 1026 1027 1028 1029 1030

void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
{
	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
		/* TAR got dropped, drop it in shadow too */
		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1031 1032 1033 1034
	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
		vcpu->arch.fscr = fscr;
		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
		return;
1035
	}
1036

1037 1038
	vcpu->arch.fscr = fscr;
}
1039 1040
#endif

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr | MSR_SE);
	}
}

static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
	}
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
				  unsigned int exit_nr)
{
	enum emulation_result er;
	ulong flags;
	u32 last_inst;
	int emul, r;

	/*
	 * shadow_srr1 only contains valid flags if we came here via a program
	 * exception. The other exceptions (emulation assist, FP unavailable,
	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
	 * exception when injecting a program interrupt into the guest.
	 */
	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
	else
		flags = SRR1_PROGILL;

	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
	if (emul != EMULATE_DONE)
		return RESUME_GUEST;

	if (kvmppc_get_msr(vcpu) & MSR_PR) {
#ifdef EXIT_DEBUG
		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
			kvmppc_get_pc(vcpu), last_inst);
#endif
		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
			kvmppc_core_queue_program(vcpu, flags);
			return RESUME_GUEST;
		}
	}

	vcpu->stat.emulated_inst_exits++;
	er = kvmppc_emulate_instruction(run, vcpu);
	switch (er) {
	case EMULATE_DONE:
		r = RESUME_GUEST_NV;
		break;
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
	case EMULATE_FAIL:
		pr_crit("%s: emulation at %lx failed (%08x)\n",
			__func__, kvmppc_get_pc(vcpu), last_inst);
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST_NV;
		break;
	case EMULATE_EXIT_USER:
		r = RESUME_HOST_NV;
		break;
	default:
		BUG();
	}

	return r;
}

1122 1123
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
1124 1125
{
	int r = RESUME_HOST;
1126
	int s;
1127 1128 1129 1130 1131 1132

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1133
	/* We get here with MSR.EE=1 */
1134

1135
	trace_kvm_exit(exit_nr, vcpu);
1136
	guest_exit();
1137

1138 1139
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
1140
	{
1141
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1142 1143
		vcpu->stat.pf_instruc++;

1144 1145 1146
		if (kvmppc_is_split_real(vcpu))
			kvmppc_fixup_split_real(vcpu);

1147 1148 1149
#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1150 1151 1152 1153 1154 1155
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1156
			svcpu_put(svcpu);
1157 1158 1159 1160 1161
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
1162 1163 1164 1165
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
1166
		if (shadow_srr1 & 0x40000000) {
1167
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1168
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1169
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
1181 1182
			kvmppc_core_queue_inst_storage(vcpu,
						shadow_srr1 & 0x58000000);
1183 1184 1185
			r = RESUME_GUEST;
		}
		break;
1186
	}
1187 1188 1189
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
1190
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1191 1192 1193 1194 1195
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1196 1197 1198 1199 1200 1201
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
1202
			svcpu_put(svcpu);
1203 1204 1205 1206 1207
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
1208 1209 1210
		}
#endif

1211 1212 1213 1214 1215 1216 1217
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1218
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1219
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1220
		} else {
1221
			kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1222 1223 1224 1225 1226 1227
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1228
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
1243
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1244
	case BOOK3S_INTERRUPT_DOORBELL:
1245
	case BOOK3S_INTERRUPT_H_DOORBELL:
1246 1247 1248 1249
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1250
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1251
	case BOOK3S_INTERRUPT_H_VIRT:
1252 1253 1254
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1255
	case BOOK3S_INTERRUPT_HMI:
1256
	case BOOK3S_INTERRUPT_PERFMON:
1257
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1258 1259 1260
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
1261
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1262
		r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1263 1264
		break;
	case BOOK3S_INTERRUPT_SYSCALL:
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	{
		u32 last_sc;
		int emul;

		/* Get last sc for papr */
		if (vcpu->arch.papr_enabled) {
			/* The sc instuction points SRR0 to the next inst */
			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
			if (emul != EMULATE_DONE) {
				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
				r = RESUME_GUEST;
				break;
			}
		}

1280
		if (vcpu->arch.papr_enabled &&
1281
		    (last_sc == 0x44000022) &&
1282
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1283 1284 1285 1286
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1287
#ifdef CONFIG_PPC_BOOK3S_64
1288 1289 1290 1291
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1292
#endif
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1314
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1326
	}
1327 1328 1329 1330 1331
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;
1332 1333 1334 1335 1336
		int emul;
		u32 last_inst;

		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
			/* Do paired single instruction emulation */
1337 1338
			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
						    &last_inst);
1339
			if (emul == EMULATE_DONE)
1340
				r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1341 1342
			else
				r = RESUME_GUEST;
1343

1344
			break;
1345 1346
		}

1347 1348 1349 1350
		/* Enable external provider */
		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL:
			ext_msr = MSR_FP;
1351
			break;
1352 1353 1354

		case BOOK3S_INTERRUPT_ALTIVEC:
			ext_msr = MSR_VEC;
1355
			break;
1356 1357 1358

		case BOOK3S_INTERRUPT_VSX:
			ext_msr = MSR_VSX;
1359 1360
			break;
		}
1361 1362

		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1363 1364 1365
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
1366
	{
1367 1368
		u32 last_inst;
		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1369 1370

		if (emul == EMULATE_DONE) {
1371 1372 1373 1374 1375 1376 1377 1378 1379
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1380 1381 1382 1383
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1384
	}
1385 1386
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1387
		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1388 1389
		break;
#endif
1390 1391 1392 1393
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
1394 1395 1396 1397 1398 1399 1400 1401 1402
	case BOOK3S_INTERRUPT_TRACE:
		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
			run->exit_reason = KVM_EXIT_DEBUG;
			r = RESUME_HOST;
		} else {
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1403
	default:
1404
	{
1405
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1406 1407
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1408
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1409 1410 1411 1412
		r = RESUME_HOST;
		BUG();
		break;
	}
1413
	}
1414 1415 1416 1417 1418

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1419 1420 1421 1422 1423 1424 1425

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1426
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1427
		if (s <= 0)
1428
			r = s;
S
Scott Wood 已提交
1429 1430
		else {
			/* interrupts now hard-disabled */
1431
			kvmppc_fix_ee_before_entry();
1432
		}
S
Scott Wood 已提交
1433

1434
		kvmppc_handle_lost_ext(vcpu);
1435 1436 1437 1438 1439 1440 1441
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1442 1443
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1458
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1469 1470
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1471 1472 1473 1474
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1475
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1476 1477

	vcpu3s->sdr1 = sregs->u.s.sdr1;
1478
#ifdef CONFIG_PPC_BOOK3S_64
1479
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1480 1481 1482 1483
		/* Flush all SLB entries */
		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
		vcpu->arch.mmu.slbia(vcpu);

1484
		for (i = 0; i < 64; i++) {
1485 1486 1487 1488 1489
			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
			u64 rs = sregs->u.s.ppc64.slb[i].slbv;

			if (rb & SLB_ESID_V)
				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1490
		}
1491 1492 1493
	} else
#endif
	{
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1515 1516
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1517
{
1518
	int r = 0;
1519

1520
	switch (id) {
1521 1522 1523
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1524
	case KVM_REG_PPC_HIOR:
1525
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1526
		break;
1527 1528 1529
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
		break;
1530
	case KVM_REG_PPC_LPCR:
1531
	case KVM_REG_PPC_LPCR_64:
1532 1533 1534 1535 1536 1537 1538 1539
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		*val = get_reg_val(id,
				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int i, j;

		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1607
	default:
1608
		r = -EINVAL;
1609 1610 1611 1612 1613 1614
		break;
	}

	return r;
}

1615 1616 1617 1618 1619 1620 1621 1622
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1623 1624
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1625
{
1626
	int r = 0;
1627

1628
	switch (id) {
1629
	case KVM_REG_PPC_HIOR:
1630 1631
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1632
		break;
1633 1634 1635
	case KVM_REG_PPC_VTB:
		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
		break;
1636
	case KVM_REG_PPC_LPCR:
1637
	case KVM_REG_PPC_LPCR_64:
1638 1639
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
			set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int i, j;

		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1706
	default:
1707
		r = -EINVAL;
1708 1709 1710 1711 1712 1713
		break;
	}

	return r;
}

1714 1715
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1716 1717 1718 1719 1720 1721
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1722 1723
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1724 1725 1726 1727 1728
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1729
	vcpu->arch.book3s = vcpu_book3s;
1730

1731
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1732 1733 1734 1735
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1736
#endif
1737 1738 1739 1740 1741

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1742
	err = -ENOMEM;
1743 1744 1745
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1746
	vcpu->arch.shared = (void *)p;
1747
#ifdef CONFIG_PPC_BOOK3S_64
1748 1749 1750 1751 1752 1753 1754
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1755 1756 1757 1758 1759
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1760
	vcpu->arch.pvr = 0x3C0301;
1761 1762
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1763
	vcpu->arch.intr_msr = MSR_SF;
1764 1765 1766 1767
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1768
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1769 1770
	vcpu->arch.slb_nr = 64;

1771
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1782
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1783 1784
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1785
#endif
1786
	vfree(vcpu_book3s);
1787 1788
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1789 1790 1791 1792
out:
	return ERR_PTR(err);
}

1793
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1794 1795 1796 1797 1798
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1799
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1800 1801
	kfree(vcpu->arch.shadow_vcpu);
#endif
1802
	vfree(vcpu_book3s);
1803
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1804 1805
}

1806
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1807 1808 1809 1810 1811 1812
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1813 1814 1815
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1816 1817
		ret = -EINVAL;
		goto out;
1818 1819
	}

1820 1821
	kvmppc_setup_debug(vcpu);

1822 1823 1824 1825 1826 1827
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1828
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1829
	if (ret <= 0)
1830
		goto out;
S
Scott Wood 已提交
1831
	/* interrupts now hard-disabled */
1832

A
Anton Blanchard 已提交
1833 1834
	/* Save FPU, Altivec and VSX state */
	giveup_all(current);
1835 1836

	/* Preload FPU if it's enabled */
1837
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1838 1839
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1840
	kvmppc_fix_ee_before_entry();
1841 1842 1843

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1844 1845
	kvmppc_clear_debug(vcpu);

1846
	/* No need for guest_exit. It's done in handle_exit.
1847
	   We also get here with interrupts enabled. */
1848 1849

	/* Make sure we save the guest FPU/Altivec/VSX state */
1850 1851
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1852 1853 1854
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1855
out:
1856
	vcpu->mode = OUTSIDE_GUEST_MODE;
1857 1858 1859
	return ret;
}

1860 1861 1862
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1863 1864
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1865
{
1866
	struct kvm_memslots *slots;
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
1882 1883
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1901 1902
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1903
{
1904 1905
	return;
}
1906

1907 1908
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
1909
					const struct kvm_userspace_memory_region *mem)
1910
{
1911 1912 1913
	return 0;
}

1914
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1915
				const struct kvm_userspace_memory_region *mem,
1916
				const struct kvm_memory_slot *old,
1917 1918
				const struct kvm_memory_slot *new,
				enum kvm_mr_change change)
1919
{
1920
	return;
1921 1922
}

1923 1924
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1925
{
1926
	return;
1927 1928
}

1929 1930
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1931 1932 1933 1934
{
	return 0;
}

1935

1936
#ifdef CONFIG_PPC64
1937 1938
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1939
{
1940 1941 1942 1943
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1974
	/* Standard 16M large page size segment */
1975 1976 1977 1978
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1979

1980 1981
	return 0;
}
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;
	/* Require flags and process table base and size to all be zero. */
	if (cfg->flags || cfg->process_table)
		return -EINVAL;
	return 0;
}

1993 1994 1995
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1996
{
1997 1998
	/* We should not get called */
	BUG();
1999
}
2000
#endif /* CONFIG_PPC64 */
2001

2002 2003 2004
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

2005
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2006
{
2007
	mutex_init(&kvm->arch.hpt_mutex);
2008

2009 2010 2011 2012 2013
#ifdef CONFIG_PPC_BOOK3S_64
	/* Start out with the default set of hcalls enabled */
	kvmppc_pr_init_default_hcalls(kvm);
#endif

2014 2015 2016
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
2017
			pseries_disable_reloc_on_exc();
2018 2019
		spin_unlock(&kvm_global_user_count_lock);
	}
2020 2021 2022
	return 0;
}

2023
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2024
{
2025 2026 2027
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
2028 2029 2030 2031 2032

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
2033
			pseries_enable_reloc_on_exc();
2034 2035
		spin_unlock(&kvm_global_user_count_lock);
	}
2036 2037
}

2038
static int kvmppc_core_check_processor_compat_pr(void)
2039
{
2040
	/*
2041 2042 2043
	 * PR KVM can work on POWER9 inside a guest partition
	 * running in HPT mode.  It can't work if we are using
	 * radix translation (because radix provides no way for
2044
	 * a process to have unique translations in quadrant 3).
2045
	 */
2046
	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2047
		return -EIO;
2048 2049
	return 0;
}
2050

2051 2052 2053 2054 2055
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
2056

2057
static struct kvmppc_ops kvm_ops_pr = {
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2088 2089
#ifdef CONFIG_PPC_BOOK3S_64
	.hcall_implemented = kvmppc_hcall_impl_pr,
2090
	.configure_mmu = kvm_configure_mmu_pr,
2091
#endif
2092
	.giveup_ext = kvmppc_giveup_ext,
2093 2094
};

2095 2096

int kvmppc_book3s_init_pr(void)
2097 2098 2099
{
	int r;

2100 2101
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
2102 2103
		return r;

2104 2105
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
2106

2107
	r = kvmppc_mmu_hpte_sysinit();
2108 2109 2110
	return r;
}

2111
void kvmppc_book3s_exit_pr(void)
2112
{
2113
	kvmppc_pr_ops = NULL;
2114 2115 2116
	kvmppc_mmu_hpte_sysexit();
}

2117 2118 2119 2120 2121
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

2122 2123
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
2124 2125

MODULE_LICENSE("GPL");
2126 2127
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
2128
#endif