book3s_pr.c 43.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30 31 32 33 34 35
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/hvcall.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44
#include <linux/miscdevice.h>
45

46
#include "book3s.h"
47 48 49

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
50 51 52 53 54 55

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
56
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
57 58 59 60 61 62 63 64

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif

65
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
66 67
{
#ifdef CONFIG_PPC_BOOK3S_64
68 69 70
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
71
	svcpu->in_use = 0;
72
	svcpu_put(svcpu);
73
#endif
74
	vcpu->cpu = smp_processor_id();
75
#ifdef CONFIG_PPC_BOOK3S_32
76
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
77 78 79
#endif
}

80
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
81 82
{
#ifdef CONFIG_PPC_BOOK3S_64
83
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
84 85 86
	if (svcpu->in_use) {
		kvmppc_copy_from_svcpu(vcpu, svcpu);
	}
87 88 89
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
90 91
#endif

92
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
93
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
94
	vcpu->cpu = -1;
95 96
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
			  struct kvm_vcpu *vcpu)
{
	svcpu->gpr[0] = vcpu->arch.gpr[0];
	svcpu->gpr[1] = vcpu->arch.gpr[1];
	svcpu->gpr[2] = vcpu->arch.gpr[2];
	svcpu->gpr[3] = vcpu->arch.gpr[3];
	svcpu->gpr[4] = vcpu->arch.gpr[4];
	svcpu->gpr[5] = vcpu->arch.gpr[5];
	svcpu->gpr[6] = vcpu->arch.gpr[6];
	svcpu->gpr[7] = vcpu->arch.gpr[7];
	svcpu->gpr[8] = vcpu->arch.gpr[8];
	svcpu->gpr[9] = vcpu->arch.gpr[9];
	svcpu->gpr[10] = vcpu->arch.gpr[10];
	svcpu->gpr[11] = vcpu->arch.gpr[11];
	svcpu->gpr[12] = vcpu->arch.gpr[12];
	svcpu->gpr[13] = vcpu->arch.gpr[13];
	svcpu->cr  = vcpu->arch.cr;
	svcpu->xer = vcpu->arch.xer;
	svcpu->ctr = vcpu->arch.ctr;
	svcpu->lr  = vcpu->arch.lr;
	svcpu->pc  = vcpu->arch.pc;
120 121 122
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
123 124 125 126 127
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
128
	svcpu->in_use = true;
129 130 131 132 133 134
}

/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
			    struct kvmppc_book3s_shadow_vcpu *svcpu)
{
135 136 137 138 139 140 141 142 143 144 145 146 147
	/*
	 * vcpu_put would just call us again because in_use hasn't
	 * been updated yet.
	 */
	preempt_disable();

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	vcpu->arch.gpr[0] = svcpu->gpr[0];
	vcpu->arch.gpr[1] = svcpu->gpr[1];
	vcpu->arch.gpr[2] = svcpu->gpr[2];
	vcpu->arch.gpr[3] = svcpu->gpr[3];
	vcpu->arch.gpr[4] = svcpu->gpr[4];
	vcpu->arch.gpr[5] = svcpu->gpr[5];
	vcpu->arch.gpr[6] = svcpu->gpr[6];
	vcpu->arch.gpr[7] = svcpu->gpr[7];
	vcpu->arch.gpr[8] = svcpu->gpr[8];
	vcpu->arch.gpr[9] = svcpu->gpr[9];
	vcpu->arch.gpr[10] = svcpu->gpr[10];
	vcpu->arch.gpr[11] = svcpu->gpr[11];
	vcpu->arch.gpr[12] = svcpu->gpr[12];
	vcpu->arch.gpr[13] = svcpu->gpr[13];
	vcpu->arch.cr  = svcpu->cr;
	vcpu->arch.xer = svcpu->xer;
	vcpu->arch.ctr = svcpu->ctr;
	vcpu->arch.lr  = svcpu->lr;
	vcpu->arch.pc  = svcpu->pc;
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
171 172 173
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
174 175 176 177 178 179
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;

180 181 182 183
	svcpu->in_use = false;

out:
	preempt_enable();
184 185
}

186
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
187
{
188 189
	int r = 1; /* Indicate we want to get back into the guest */

190 191 192 193
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
194 195

	return r;
196 197
}

198
/************* MMU Notifiers *************/
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
228

229
static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
230 231 232
{
	trace_kvm_unmap_hva(hva);

233
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
234 235 236 237

	return 0;
}

238 239
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
240
{
241
	do_kvm_unmap_hva(kvm, start, end);
242 243 244 245

	return 0;
}

246
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
247 248 249 250 251
{
	/* XXX could be more clever ;) */
	return 0;
}

252
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
253 254 255 256 257
{
	/* XXX could be more clever ;) */
	return 0;
}

258
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
259 260
{
	/* The page will get remapped properly on its next fault */
261
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
262 263 264 265
}

/*****************************************/

266 267
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
268 269
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;
270 271

	/* Guest MSR values */
272
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
273 274 275
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
276
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
277 278 279 280 281 282 283
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

284
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
285
{
286
	ulong old_msr = kvmppc_get_msr(vcpu);
287 288 289 290 291 292

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
293
	kvmppc_set_msr_fast(vcpu, msr);
294 295 296 297 298
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
299
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
300 301 302 303
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
304
			kvmppc_set_msr_fast(vcpu, msr);
305 306 307
		}
	}

308
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

339
	/* Preload FPU if it's enabled */
340
	if (kvmppc_get_msr(vcpu) & MSR_FP)
341 342 343
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

344
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
345 346 347 348 349 350 351 352
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
353 354
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
355
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
356
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
357 358 359 360
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
361 362
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
363
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
364
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
365 366
	}

367 368
	kvmppc_sanity_check(vcpu);

369 370 371 372 373 374 375 376 377 378 379 380
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
438
	if (is_error_page(hpage))
439 440 441 442 443 444 445
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
446
	page = kmap_atomic(hpage);
447 448 449

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
450 451
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
452

453
	kunmap_atomic(page);
454 455 456 457 458 459 460
	put_page(hpage);
}

static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

461
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
462 463
		mp_pa = (uint32_t)mp_pa;

464 465 466 467 468 469 470 471 472 473 474 475
	if (unlikely(mp_pa) &&
	    unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
		return 1;
	}

	return kvm_is_visible_gfn(vcpu->kvm, gfn);
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
476
	bool iswrite = false;
477 478 479 480 481
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
	struct kvmppc_pte pte;
	bool is_mmio = false;
482 483
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
484 485 486
	u64 vsid;

	relocated = data ? dr : ir;
487 488
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
489 490 491

	/* Resolve real address if translation turned on */
	if (relocated) {
492
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
493 494 495 496 497 498 499
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
500
		pte.page_size = MMU_PAGE_64K;
501 502
	}

503
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
504 505 506 507 508 509 510
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

511
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
534 535 536 537 538
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
539 540 541
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
542 543 544 545 546 547 548
		u32 dsisr = vcpu->arch.fault_dsisr;
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
		kvmppc_set_dsisr(vcpu, dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
549 550 551
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
552
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
553 554 555
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
	} else if (!is_mmio &&
		   kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
556 557 558 559 560 561 562 563
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
564
		/* The guest's PTE is not mapped yet. Map on the host */
565
		kvmppc_mmu_map_page(vcpu, &pte, iswrite);
566 567 568
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
569
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
570 571 572 573 574
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
575
		vcpu->arch.vaddr_accessed = pte.eaddr;
576 577 578 579 580 581 582 583 584 585
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

static inline int get_fpr_index(int i)
{
586
	return i * TS_FPRWIDTH;
587 588 589 590 591 592 593
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

594 595 596 597 598 599 600 601 602
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
603 604 605 606 607 608
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

609 610 611 612
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
613
		 * registers into thread.fp_state.fpr[].
614
		 */
615
		if (t->regs->msr & MSR_FP)
616
			giveup_fpu(current);
617
		t->fp_save_area = NULL;
618 619
	}

620
#ifdef CONFIG_ALTIVEC
621
	if (msr & MSR_VEC) {
622 623
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
624
		t->vr_save_area = NULL;
625
	}
626
#endif
627

628
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
629 630 631
	kvmppc_recalc_shadow_msr(vcpu);
}

632 633 634 635 636 637 638 639
/* Give up facility (TAR / EBB / DSCR) */
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
640 641 642 643 644 645 646 647

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
648 649 650
#endif
}

651 652 653 654 655 656 657 658
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
{
	ulong srr0 = kvmppc_get_pc(vcpu);
	u32 last_inst = kvmppc_get_last_inst(vcpu);
	int ret;

	ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
	if (ret == -ENOENT) {
659
		ulong msr = kvmppc_get_msr(vcpu);
660 661 662

		msr = kvmppc_set_field(msr, 33, 33, 1);
		msr = kvmppc_set_field(msr, 34, 36, 0);
663 664
		msr = kvmppc_set_field(msr, 42, 47, 0);
		kvmppc_set_msr_fast(vcpu, msr);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
		return EMULATE_AGAIN;
	}

	return EMULATE_DONE;
}

static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{

	/* Need to do paired single emulation? */
	if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
		return EMULATE_DONE;

	/* Read out the instruction */
	if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
		/* Need to emulate */
		return EMULATE_FAIL;

	return EMULATE_AGAIN;
}

/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

697
	if (!(kvmppc_get_msr(vcpu) & msr)) {
698 699 700 701
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
717 718
	}

719 720 721 722 723
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

724 725 726 727
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

728
	if (msr & MSR_FP) {
729
		preempt_disable();
730
		enable_kernel_fp();
731 732
		load_fp_state(&vcpu->arch.fp);
		t->fp_save_area = &vcpu->arch.fp;
733
		preempt_enable();
734 735 736
	}

	if (msr & MSR_VEC) {
737
#ifdef CONFIG_ALTIVEC
738
		preempt_disable();
739
		enable_kernel_altivec();
740 741
		load_vr_state(&vcpu->arch.vr);
		t->vr_save_area = &vcpu->arch.vr;
742
		preempt_enable();
743 744 745
#endif
	}

746
	t->regs->msr |= msr;
747 748 749 750 751 752
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

753 754 755 756 757 758 759 760 761 762 763 764
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

765
	if (lost_ext & MSR_FP) {
766
		preempt_disable();
767
		enable_kernel_fp();
768
		load_fp_state(&vcpu->arch.fp);
769
		preempt_enable();
770
	}
771
#ifdef CONFIG_ALTIVEC
772
	if (lost_ext & MSR_VEC) {
773
		preempt_disable();
774
		enable_kernel_altivec();
775
		load_vr_state(&vcpu->arch.vr);
776
		preempt_enable();
777
	}
778
#endif
779 780 781
	current->thread.regs->msr |= lost_ext;
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
#ifdef CONFIG_PPC_BOOK3S_64

static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
808
	bool guest_fac_enabled;
809 810
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
829 830 831 832 833 834
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
835 836 837 838 839 840
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
841 842 843 844 845 846 847 848 849
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

	return RESUME_GUEST;
}
#endif

850 851
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
852 853
{
	int r = RESUME_HOST;
854
	int s;
855 856 857 858 859 860

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

861
	/* We get here with MSR.EE=1 */
862

863
	trace_kvm_exit(exit_nr, vcpu);
864
	kvm_guest_exit();
865

866 867
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
868
	{
869
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
870 871 872 873 874
		vcpu->stat.pf_instruc++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
875 876 877 878 879 880
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
881
			svcpu_put(svcpu);
882 883 884 885 886
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
887 888 889 890
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
891
		if (shadow_srr1 & 0x40000000) {
892
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
893
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
894
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
895 896 897 898 899 900 901 902 903 904 905
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
906 907 908
			u64 msr = kvmppc_get_msr(vcpu);
			msr |= shadow_srr1 & 0x58000000;
			kvmppc_set_msr_fast(vcpu, msr);
909 910 911 912
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
913
	}
914 915 916
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
917
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
918 919 920 921 922
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
923 924 925 926 927 928
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
929
			svcpu_put(svcpu);
930 931 932 933 934
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
935 936 937
		}
#endif

938 939 940 941 942 943 944
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
945
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
946
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
947
		} else {
948 949
			kvmppc_set_dar(vcpu, dar);
			kvmppc_set_dsisr(vcpu, fault_dsisr);
950 951 952 953 954 955 956
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
957
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
958 959 960 961 962 963 964 965 966 967 968 969 970 971
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
972
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
973
	case BOOK3S_INTERRUPT_DOORBELL:
974 975 976 977
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
978 979
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
980 981 982 983 984 985 986
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
987
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
988 989 990 991 992
	{
		enum emulation_result er;
		ulong flags;

program_interrupt:
993
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
994

995
		if (kvmppc_get_msr(vcpu) & MSR_PR) {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
#ifdef EXIT_DEBUG
			printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
#endif
			if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
			    (INS_DCBZ & 0xfffffff7)) {
				kvmppc_core_queue_program(vcpu, flags);
				r = RESUME_GUEST;
				break;
			}
		}

		vcpu->stat.emulated_inst_exits++;
		er = kvmppc_emulate_instruction(run, vcpu);
		switch (er) {
		case EMULATE_DONE:
			r = RESUME_GUEST_NV;
			break;
		case EMULATE_AGAIN:
			r = RESUME_GUEST;
			break;
		case EMULATE_FAIL:
			printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
			       __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
			kvmppc_core_queue_program(vcpu, flags);
			r = RESUME_GUEST;
			break;
		case EMULATE_DO_MMIO:
			run->exit_reason = KVM_EXIT_MMIO;
			r = RESUME_HOST_NV;
			break;
1026
		case EMULATE_EXIT_USER:
1027 1028
			r = RESUME_HOST_NV;
			break;
1029 1030 1031 1032 1033 1034
		default:
			BUG();
		}
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
1035
		if (vcpu->arch.papr_enabled &&
1036
		    (kvmppc_get_last_sc(vcpu) == 0x44000022) &&
1037
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1038 1039 1040 1041
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1042
#ifdef CONFIG_PPC_BOOK3S_64
1043 1044 1045 1046
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1047
#endif
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1069
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;

		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP;  break;
		case BOOK3S_INTERRUPT_ALTIVEC:    ext_msr = MSR_VEC; break;
		case BOOK3S_INTERRUPT_VSX:        ext_msr = MSR_VSX; break;
		}

		switch (kvmppc_check_ext(vcpu, exit_nr)) {
		case EMULATE_DONE:
			/* everything ok - let's enable the ext */
			r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
			break;
		case EMULATE_FAIL:
			/* we need to emulate this instruction */
			goto program_interrupt;
			break;
		default:
			/* nothing to worry about - go again */
			break;
		}
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
		if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
			u32 last_inst = kvmppc_get_last_inst(vcpu);
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1120 1121 1122 1123
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1124 1125 1126 1127 1128 1129
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
		kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
		r = RESUME_GUEST;
		break;
#endif
1130 1131 1132 1133 1134 1135
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
	case BOOK3S_INTERRUPT_TRACE:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
	default:
1136
	{
1137
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1138 1139
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1140
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1141 1142 1143 1144
		r = RESUME_HOST;
		BUG();
		break;
	}
1145
	}
1146 1147 1148 1149 1150

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1151 1152 1153 1154 1155 1156 1157

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1158
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1159
		if (s <= 0)
1160
			r = s;
S
Scott Wood 已提交
1161 1162
		else {
			/* interrupts now hard-disabled */
1163
			kvmppc_fix_ee_before_entry();
1164
		}
S
Scott Wood 已提交
1165

1166
		kvmppc_handle_lost_ext(vcpu);
1167 1168 1169 1170 1171 1172 1173
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1174 1175
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1190
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1201 1202
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1203 1204 1205 1206
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1207
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	vcpu3s->sdr1 = sregs->u.s.sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
						    sregs->u.s.ppc64.slb[i].slbe);
		}
	} else {
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1237 1238
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1239
{
1240
	int r = 0;
1241

1242
	switch (id) {
1243
	case KVM_REG_PPC_HIOR:
1244
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1245
		break;
1246 1247 1248 1249 1250 1251 1252 1253 1254
	case KVM_REG_PPC_LPCR:
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1255
	default:
1256
		r = -EINVAL;
1257 1258 1259 1260 1261 1262
		break;
	}

	return r;
}

1263 1264 1265 1266 1267 1268 1269 1270
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1271 1272
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1273
{
1274
	int r = 0;
1275

1276
	switch (id) {
1277
	case KVM_REG_PPC_HIOR:
1278 1279
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1280
		break;
1281 1282 1283
	case KVM_REG_PPC_LPCR:
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1284
	default:
1285
		r = -EINVAL;
1286 1287 1288 1289 1290 1291
		break;
	}

	return r;
}

1292 1293
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1294 1295 1296 1297 1298 1299
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1300 1301
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1302 1303 1304 1305 1306
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1307
	vcpu->arch.book3s = vcpu_book3s;
1308

1309
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1310 1311 1312 1313
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1314
#endif
1315 1316 1317 1318 1319

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1320
	err = -ENOMEM;
1321 1322 1323
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1324 1325
	/* the real shared page fills the last 4k of our page */
	vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
1326
#ifdef CONFIG_PPC_BOOK3S_64
1327 1328 1329 1330 1331 1332 1333
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1334 1335 1336 1337 1338
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1339
	vcpu->arch.pvr = 0x3C0301;
1340 1341
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1342
	vcpu->arch.intr_msr = MSR_SF;
1343 1344 1345 1346
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1347
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1348 1349
	vcpu->arch.slb_nr = 64;

1350
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1361
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1362 1363
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1364
#endif
1365
	vfree(vcpu_book3s);
1366 1367
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1368 1369 1370 1371
out:
	return ERR_PTR(err);
}

1372
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1373 1374 1375 1376 1377
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1378
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1379 1380
	kfree(vcpu->arch.shadow_vcpu);
#endif
1381
	vfree(vcpu_book3s);
1382
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1383 1384
}

1385
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1386 1387 1388 1389 1390 1391
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1392 1393 1394
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1395 1396
		ret = -EINVAL;
		goto out;
1397 1398
	}

1399 1400 1401 1402 1403 1404
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1405
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1406
	if (ret <= 0)
1407
		goto out;
S
Scott Wood 已提交
1408
	/* interrupts now hard-disabled */
1409

1410
	/* Save FPU state in thread_struct */
1411 1412 1413 1414
	if (current->thread.regs->msr & MSR_FP)
		giveup_fpu(current);

#ifdef CONFIG_ALTIVEC
1415 1416 1417
	/* Save Altivec state in thread_struct */
	if (current->thread.regs->msr & MSR_VEC)
		giveup_altivec(current);
1418 1419 1420
#endif

#ifdef CONFIG_VSX
1421 1422
	/* Save VSX state in thread_struct */
	if (current->thread.regs->msr & MSR_VSX)
1423
		__giveup_vsx(current);
1424 1425 1426
#endif

	/* Preload FPU if it's enabled */
1427
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1428 1429
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1430
	kvmppc_fix_ee_before_entry();
1431 1432 1433

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1434 1435
	/* No need for kvm_guest_exit. It's done in handle_exit.
	   We also get here with interrupts enabled. */
1436 1437

	/* Make sure we save the guest FPU/Altivec/VSX state */
1438 1439
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1440 1441 1442
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1443
out:
1444
	vcpu->mode = OUTSIDE_GUEST_MODE;
1445 1446 1447
	return ret;
}

1448 1449 1450
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1451 1452
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
{
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = id_to_memslot(kvm->memslots, log->slot);

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1487 1488
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1489
{
1490 1491
	return;
}
1492

1493 1494 1495 1496
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
{
1497 1498 1499
	return 0;
}

1500 1501 1502
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
1503
{
1504
	return;
1505 1506
}

1507 1508
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1509
{
1510
	return;
1511 1512
}

1513 1514
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1515 1516 1517 1518
{
	return 0;
}

1519

1520
#ifdef CONFIG_PPC64
1521 1522
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1523
{
1524 1525 1526 1527
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1558
	/* Standard 16M large page size segment */
1559 1560 1561 1562
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1563

1564 1565
	return 0;
}
1566 1567 1568
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1569
{
1570 1571
	/* We should not get called */
	BUG();
1572
}
1573
#endif /* CONFIG_PPC64 */
1574

1575 1576 1577
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1578
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1579
{
1580
	mutex_init(&kvm->arch.hpt_mutex);
1581

1582 1583 1584 1585 1586 1587
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
			pSeries_disable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1588 1589 1590
	return 0;
}

1591
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1592
{
1593 1594 1595
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1596 1597 1598 1599 1600 1601 1602 1603

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
			pSeries_enable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1604 1605
}

1606
static int kvmppc_core_check_processor_compat_pr(void)
1607
{
1608 1609 1610
	/* we are always compatible */
	return 0;
}
1611

1612 1613 1614 1615 1616
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
1617

1618
static struct kvmppc_ops kvm_ops_pr = {
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva = kvm_unmap_hva_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
};

1652 1653

int kvmppc_book3s_init_pr(void)
1654 1655 1656
{
	int r;

1657 1658
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
1659 1660
		return r;

1661 1662
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
1663

1664
	r = kvmppc_mmu_hpte_sysinit();
1665 1666 1667
	return r;
}

1668
void kvmppc_book3s_exit_pr(void)
1669
{
1670
	kvmppc_pr_ops = NULL;
1671 1672 1673
	kvmppc_mmu_hpte_sysexit();
}

1674 1675 1676 1677 1678
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

1679 1680
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
1681 1682

MODULE_LICENSE("GPL");
1683 1684
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
1685
#endif